/* * Amiga Linux/m68k Ariadne Ethernet Driver * * © Copyright 1995-2003 by Geert Uytterhoeven (geert@linux-m68k.org) * Peter De Schrijver (p2@mind.be) * * --------------------------------------------------------------------------- * * This program is based on * * lance.c: An AMD LANCE ethernet driver for linux. * Written 1993-94 by Donald Becker. * * Am79C960: PCnet(tm)-ISA Single-Chip Ethernet Controller * Advanced Micro Devices * Publication #16907, Rev. B, Amendment/0, May 1994 * * MC68230: Parallel Interface/Timer (PI/T) * Motorola Semiconductors, December, 1983 * * --------------------------------------------------------------------------- * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux * distribution for more details. * * --------------------------------------------------------------------------- * * The Ariadne is a Zorro-II board made by Village Tronic. It contains: * * - an Am79C960 PCnet-ISA Single-Chip Ethernet Controller with both * 10BASE-2 (thin coax) and 10BASE-T (UTP) connectors * * - an MC68230 Parallel Interface/Timer configured as 2 parallel ports */ #include <linux/module.h> #include <linux/stddef.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/interrupt.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/zorro.h> #include <linux/bitops.h> #include <asm/amigaints.h> #include <asm/amigahw.h> #include <asm/irq.h> #include "ariadne.h" #ifdef ARIADNE_DEBUG int ariadne_debug = ARIADNE_DEBUG; #else int ariadne_debug = 1; #endif /* * Macros to Fix Endianness problems */ /* Swap the Bytes in a WORD */ #define swapw(x) (((x>>8)&0x00ff)|((x<<8)&0xff00)) /* Get the Low BYTE in a WORD */ #define lowb(x) (x&0xff) /* Get the Swapped High WORD in a LONG */ #define swhighw(x) ((((x)>>8)&0xff00)|(((x)>>24)&0x00ff)) /* Get the Swapped Low WORD in a LONG */ #define swloww(x) ((((x)<<8)&0xff00)|(((x)>>8)&0x00ff)) /* * Transmit/Receive Ring Definitions */ #define TX_RING_SIZE 5 #define RX_RING_SIZE 16 #define PKT_BUF_SIZE 1520 /* * Private Device Data */ struct ariadne_private { volatile struct TDRE *tx_ring[TX_RING_SIZE]; volatile struct RDRE *rx_ring[RX_RING_SIZE]; volatile u_short *tx_buff[TX_RING_SIZE]; volatile u_short *rx_buff[RX_RING_SIZE]; int cur_tx, cur_rx; /* The next free ring entry */ int dirty_tx; /* The ring entries to be free()ed. */ char tx_full; }; /* * Structure Created in the Ariadne's RAM Buffer */ struct lancedata { struct TDRE tx_ring[TX_RING_SIZE]; struct RDRE rx_ring[RX_RING_SIZE]; u_short tx_buff[TX_RING_SIZE][PKT_BUF_SIZE/sizeof(u_short)]; u_short rx_buff[RX_RING_SIZE][PKT_BUF_SIZE/sizeof(u_short)]; }; static int ariadne_open(struct net_device *dev); static void ariadne_init_ring(struct net_device *dev); static int ariadne_start_xmit(struct sk_buff *skb, struct net_device *dev); static void ariadne_tx_timeout(struct net_device *dev); static int ariadne_rx(struct net_device *dev); static void ariadne_reset(struct net_device *dev); static irqreturn_t ariadne_interrupt(int irq, void *data); static int ariadne_close(struct net_device *dev); static struct net_device_stats *ariadne_get_stats(struct net_device *dev); #ifdef HAVE_MULTICAST static void set_multicast_list(struct net_device *dev); #endif static void memcpyw(volatile u_short *dest, u_short *src, int len) { while (len >= 2) { *(dest++) = *(src++); len -= 2; } if (len == 1) *dest = (*(u_char *)src)<<8; } static int __devinit ariadne_init_one(struct zorro_dev *z, const struct zorro_device_id *ent); static void __devexit ariadne_remove_one(struct zorro_dev *z); static struct zorro_device_id ariadne_zorro_tbl[] __devinitdata = { { ZORRO_PROD_VILLAGE_TRONIC_ARIADNE }, { 0 } }; static struct zorro_driver ariadne_driver = { .name = "ariadne", .id_table = ariadne_zorro_tbl, .probe = ariadne_init_one, .remove = __devexit_p(ariadne_remove_one), }; static const struct net_device_ops ariadne_netdev_ops = { .ndo_open = ariadne_open, .ndo_stop = ariadne_close, .ndo_start_xmit = ariadne_start_xmit, .ndo_tx_timeout = ariadne_tx_timeout, .ndo_get_stats = ariadne_get_stats, .ndo_set_multicast_list = set_multicast_list, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = eth_change_mtu, .ndo_set_mac_address = eth_mac_addr, }; static int __devinit ariadne_init_one(struct zorro_dev *z, const struct zorro_device_id *ent) { unsigned long board = z->resource.start; unsigned long base_addr = board+ARIADNE_LANCE; unsigned long mem_start = board+ARIADNE_RAM; struct resource *r1, *r2; struct net_device *dev; struct ariadne_private *priv; int err; r1 = request_mem_region(base_addr, sizeof(struct Am79C960), "Am79C960"); if (!r1) return -EBUSY; r2 = request_mem_region(mem_start, ARIADNE_RAM_SIZE, "RAM"); if (!r2) { release_resource(r1); return -EBUSY; } dev = alloc_etherdev(sizeof(struct ariadne_private)); if (dev == NULL) { release_resource(r1); release_resource(r2); return -ENOMEM; } priv = netdev_priv(dev); r1->name = dev->name; r2->name = dev->name; dev->dev_addr[0] = 0x00; dev->dev_addr[1] = 0x60; dev->dev_addr[2] = 0x30; dev->dev_addr[3] = (z->rom.er_SerialNumber>>16) & 0xff; dev->dev_addr[4] = (z->rom.er_SerialNumber>>8) & 0xff; dev->dev_addr[5] = z->rom.er_SerialNumber & 0xff; dev->base_addr = ZTWO_VADDR(base_addr); dev->mem_start = ZTWO_VADDR(mem_start); dev->mem_end = dev->mem_start+ARIADNE_RAM_SIZE; dev->netdev_ops = &ariadne_netdev_ops; dev->watchdog_timeo = 5*HZ; err = register_netdev(dev); if (err) { release_resource(r1); release_resource(r2); free_netdev(dev); return err; } zorro_set_drvdata(z, dev); printk(KERN_INFO "%s: Ariadne at 0x%08lx, Ethernet Address %pM\n", dev->name, board, dev->dev_addr); return 0; } static int ariadne_open(struct net_device *dev) { volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr; u_short in; u_long version; int i; /* Reset the LANCE */ in = lance->Reset; /* Stop the LANCE */ lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = STOP; /* Check the LANCE version */ lance->RAP = CSR88; /* Chip ID */ version = swapw(lance->RDP); lance->RAP = CSR89; /* Chip ID */ version |= swapw(lance->RDP)<<16; if ((version & 0x00000fff) != 0x00000003) { printk(KERN_WARNING "ariadne_open: Couldn't find AMD Ethernet Chip\n"); return -EAGAIN; } if ((version & 0x0ffff000) != 0x00003000) { printk(KERN_WARNING "ariadne_open: Couldn't find Am79C960 (Wrong part " "number = %ld)\n", (version & 0x0ffff000)>>12); return -EAGAIN; } #if 0 printk(KERN_DEBUG "ariadne_open: Am79C960 (PCnet-ISA) Revision %ld\n", (version & 0xf0000000)>>28); #endif ariadne_init_ring(dev); /* Miscellaneous Stuff */ lance->RAP = CSR3; /* Interrupt Masks and Deferral Control */ lance->RDP = 0x0000; lance->RAP = CSR4; /* Test and Features Control */ lance->RDP = DPOLL|APAD_XMT|MFCOM|RCVCCOM|TXSTRTM|JABM; /* Set the Multicast Table */ lance->RAP = CSR8; /* Logical Address Filter, LADRF[15:0] */ lance->RDP = 0x0000; lance->RAP = CSR9; /* Logical Address Filter, LADRF[31:16] */ lance->RDP = 0x0000; lance->RAP = CSR10; /* Logical Address Filter, LADRF[47:32] */ lance->RDP = 0x0000; lance->RAP = CSR11; /* Logical Address Filter, LADRF[63:48] */ lance->RDP = 0x0000; /* Set the Ethernet Hardware Address */ lance->RAP = CSR12; /* Physical Address Register, PADR[15:0] */ lance->RDP = ((u_short *)&dev->dev_addr[0])[0]; lance->RAP = CSR13; /* Physical Address Register, PADR[31:16] */ lance->RDP = ((u_short *)&dev->dev_addr[0])[1]; lance->RAP = CSR14; /* Physical Address Register, PADR[47:32] */ lance->RDP = ((u_short *)&dev->dev_addr[0])[2]; /* Set the Init Block Mode */ lance->RAP = CSR15; /* Mode Register */ lance->RDP = 0x0000; /* Set the Transmit Descriptor Ring Pointer */ lance->RAP = CSR30; /* Base Address of Transmit Ring */ lance->RDP = swloww(ARIADNE_RAM+offsetof(struct lancedata, tx_ring)); lance->RAP = CSR31; /* Base Address of transmit Ring */ lance->RDP = swhighw(ARIADNE_RAM+offsetof(struct lancedata, tx_ring)); /* Set the Receive Descriptor Ring Pointer */ lance->RAP = CSR24; /* Base Address of Receive Ring */ lance->RDP = swloww(ARIADNE_RAM+offsetof(struct lancedata, rx_ring)); lance->RAP = CSR25; /* Base Address of Receive Ring */ lance->RDP = swhighw(ARIADNE_RAM+offsetof(struct lancedata, rx_ring)); /* Set the Number of RX and TX Ring Entries */ lance->RAP = CSR76; /* Receive Ring Length */ lance->RDP = swapw(((u_short)-RX_RING_SIZE)); lance->RAP = CSR78; /* Transmit Ring Length */ lance->RDP = swapw(((u_short)-TX_RING_SIZE)); /* Enable Media Interface Port Auto Select (10BASE-2/10BASE-T) */ lance->RAP = ISACSR2; /* Miscellaneous Configuration */ lance->IDP = ASEL; /* LED Control */ lance->RAP = ISACSR5; /* LED1 Status */ lance->IDP = PSE|XMTE; lance->RAP = ISACSR6; /* LED2 Status */ lance->IDP = PSE|COLE; lance->RAP = ISACSR7; /* LED3 Status */ lance->IDP = PSE|RCVE; netif_start_queue(dev); i = request_irq(IRQ_AMIGA_PORTS, ariadne_interrupt, IRQF_SHARED, dev->name, dev); if (i) return i; lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = INEA|STRT; return 0; } static void ariadne_init_ring(struct net_device *dev) { struct ariadne_private *priv = netdev_priv(dev); volatile struct lancedata *lancedata = (struct lancedata *)dev->mem_start; int i; netif_stop_queue(dev); priv->tx_full = 0; priv->cur_rx = priv->cur_tx = 0; priv->dirty_tx = 0; /* Set up TX Ring */ for (i = 0; i < TX_RING_SIZE; i++) { volatile struct TDRE *t = &lancedata->tx_ring[i]; t->TMD0 = swloww(ARIADNE_RAM+offsetof(struct lancedata, tx_buff[i])); t->TMD1 = swhighw(ARIADNE_RAM+offsetof(struct lancedata, tx_buff[i])) | TF_STP | TF_ENP; t->TMD2 = swapw((u_short)-PKT_BUF_SIZE); t->TMD3 = 0; priv->tx_ring[i] = &lancedata->tx_ring[i]; priv->tx_buff[i] = lancedata->tx_buff[i]; #if 0 printk(KERN_DEBUG "TX Entry %2d at %p, Buf at %p\n", i, &lancedata->tx_ring[i], lancedata->tx_buff[i]); #endif } /* Set up RX Ring */ for (i = 0; i < RX_RING_SIZE; i++) { volatile struct RDRE *r = &lancedata->rx_ring[i]; r->RMD0 = swloww(ARIADNE_RAM+offsetof(struct lancedata, rx_buff[i])); r->RMD1 = swhighw(ARIADNE_RAM+offsetof(struct lancedata, rx_buff[i])) | RF_OWN; r->RMD2 = swapw((u_short)-PKT_BUF_SIZE); r->RMD3 = 0x0000; priv->rx_ring[i] = &lancedata->rx_ring[i]; priv->rx_buff[i] = lancedata->rx_buff[i]; #if 0 printk(KERN_DEBUG "RX Entry %2d at %p, Buf at %p\n", i, &lancedata->rx_ring[i], lancedata->rx_buff[i]); #endif } } static int ariadne_close(struct net_device *dev) { volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr; netif_stop_queue(dev); lance->RAP = CSR112; /* Missed Frame Count */ dev->stats.rx_missed_errors = swapw(lance->RDP); lance->RAP = CSR0; /* PCnet-ISA Controller Status */ if (ariadne_debug > 1) { printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n", dev->name, lance->RDP); printk(KERN_DEBUG "%s: %lu packets missed\n", dev->name, dev->stats.rx_missed_errors); } /* We stop the LANCE here -- it occasionally polls memory if we don't. */ lance->RDP = STOP; free_irq(IRQ_AMIGA_PORTS, dev); return 0; } static inline void ariadne_reset(struct net_device *dev) { volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr; lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = STOP; ariadne_init_ring(dev); lance->RDP = INEA|STRT; netif_start_queue(dev); } static irqreturn_t ariadne_interrupt(int irq, void *data) { struct net_device *dev = (struct net_device *)data; volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr; struct ariadne_private *priv; int csr0, boguscnt; int handled = 0; if (dev == NULL) { printk(KERN_WARNING "ariadne_interrupt(): irq for unknown device.\n"); return IRQ_NONE; } lance->RAP = CSR0; /* PCnet-ISA Controller Status */ if (!(lance->RDP & INTR)) /* Check if any interrupt has been */ return IRQ_NONE; /* generated by the board. */ priv = netdev_priv(dev); boguscnt = 10; while ((csr0 = lance->RDP) & (ERR|RINT|TINT) && --boguscnt >= 0) { /* Acknowledge all of the current interrupt sources ASAP. */ lance->RDP = csr0 & ~(INEA|TDMD|STOP|STRT|INIT); #if 0 if (ariadne_debug > 5) { printk(KERN_DEBUG "%s: interrupt csr0=%#2.2x new csr=%#2.2x.", dev->name, csr0, lance->RDP); printk("["); if (csr0 & INTR) printk(" INTR"); if (csr0 & INEA) printk(" INEA"); if (csr0 & RXON) printk(" RXON"); if (csr0 & TXON) printk(" TXON"); if (csr0 & TDMD) printk(" TDMD"); if (csr0 & STOP) printk(" STOP"); if (csr0 & STRT) printk(" STRT"); if (csr0 & INIT) printk(" INIT"); if (csr0 & ERR) printk(" ERR"); if (csr0 & BABL) printk(" BABL"); if (csr0 & CERR) printk(" CERR"); if (csr0 & MISS) printk(" MISS"); if (csr0 & MERR) printk(" MERR"); if (csr0 & RINT) printk(" RINT"); if (csr0 & TINT) printk(" TINT"); if (csr0 & IDON) printk(" IDON"); printk(" ]\n"); } #endif if (csr0 & RINT) { /* Rx interrupt */ handled = 1; ariadne_rx(dev); } if (csr0 & TINT) { /* Tx-done interrupt */ int dirty_tx = priv->dirty_tx; handled = 1; while (dirty_tx < priv->cur_tx) { int entry = dirty_tx % TX_RING_SIZE; int status = lowb(priv->tx_ring[entry]->TMD1); if (status & TF_OWN) break; /* It still hasn't been Txed */ priv->tx_ring[entry]->TMD1 &= 0xff00; if (status & TF_ERR) { /* There was an major error, log it. */ int err_status = priv->tx_ring[entry]->TMD3; dev->stats.tx_errors++; if (err_status & EF_RTRY) dev->stats.tx_aborted_errors++; if (err_status & EF_LCAR) dev->stats.tx_carrier_errors++; if (err_status & EF_LCOL) dev->stats.tx_window_errors++; if (err_status & EF_UFLO) { /* Ackk! On FIFO errors the Tx unit is turned off! */ dev->stats.tx_fifo_errors++; /* Remove this verbosity later! */ printk(KERN_ERR "%s: Tx FIFO error! Status %4.4x.\n", dev->name, csr0); /* Restart the chip. */ lance->RDP = STRT; } } else { if (status & (TF_MORE|TF_ONE)) dev->stats.collisions++; dev->stats.tx_packets++; } dirty_tx++; } #ifndef final_version if (priv->cur_tx - dirty_tx >= TX_RING_SIZE) { printk(KERN_ERR "out-of-sync dirty pointer, %d vs. %d, " "full=%d.\n", dirty_tx, priv->cur_tx, priv->tx_full); dirty_tx += TX_RING_SIZE; } #endif if (priv->tx_full && netif_queue_stopped(dev) && dirty_tx > priv->cur_tx - TX_RING_SIZE + 2) { /* The ring is no longer full. */ priv->tx_full = 0; netif_wake_queue(dev); } priv->dirty_tx = dirty_tx; } /* Log misc errors. */ if (csr0 & BABL) { handled = 1; dev->stats.tx_errors++; /* Tx babble. */ } if (csr0 & MISS) { handled = 1; dev->stats.rx_errors++; /* Missed a Rx frame. */ } if (csr0 & MERR) { handled = 1; printk(KERN_ERR "%s: Bus master arbitration failure, status " "%4.4x.\n", dev->name, csr0); /* Restart the chip. */ lance->RDP = STRT; } } /* Clear any other interrupt, and set interrupt enable. */ lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = INEA|BABL|CERR|MISS|MERR|IDON; #if 0 if (ariadne_debug > 4) printk(KERN_DEBUG "%s: exiting interrupt, csr%d=%#4.4x.\n", dev->name, lance->RAP, lance->RDP); #endif return IRQ_RETVAL(handled); } static void ariadne_tx_timeout(struct net_device *dev) { volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr; printk(KERN_ERR "%s: transmit timed out, status %4.4x, resetting.\n", dev->name, lance->RDP); ariadne_reset(dev); netif_wake_queue(dev); } static int ariadne_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ariadne_private *priv = netdev_priv(dev); volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr; int entry; unsigned long flags; int len = skb->len; #if 0 if (ariadne_debug > 3) { lance->RAP = CSR0; /* PCnet-ISA Controller Status */ printk(KERN_DEBUG "%s: ariadne_start_xmit() called, csr0 %4.4x.\n", dev->name, lance->RDP); lance->RDP = 0x0000; } #endif /* FIXME: is the 79C960 new enough to do its own padding right ? */ if (skb->len < ETH_ZLEN) { if (skb_padto(skb, ETH_ZLEN)) return NETDEV_TX_OK; len = ETH_ZLEN; } /* Fill in a Tx ring entry */ #if 0 { printk(KERN_DEBUG "TX pkt type 0x%04x from %pM to %pM " " data 0x%08x len %d\n", ((u_short *)skb->data)[6], skb->data + 6, skb->data, (int)skb->data, (int)skb->len); } #endif local_irq_save(flags); entry = priv->cur_tx % TX_RING_SIZE; /* Caution: the write order is important here, set the base address with the "ownership" bits last. */ priv->tx_ring[entry]->TMD2 = swapw((u_short)-skb->len); priv->tx_ring[entry]->TMD3 = 0x0000; memcpyw(priv->tx_buff[entry], (u_short *)skb->data, len); #if 0 { int i, len; len = skb->len > 64 ? 64 : skb->len; len >>= 1; for (i = 0; i < len; i += 8) { int j; printk(KERN_DEBUG "%04x:", i); for (j = 0; (j < 8) && ((i+j) < len); j++) { if (!(j & 1)) printk(" "); printk("%04x", priv->tx_buff[entry][i+j]); } printk("\n"); } } #endif priv->tx_ring[entry]->TMD1 = (priv->tx_ring[entry]->TMD1&0xff00)|TF_OWN|TF_STP|TF_ENP; dev_kfree_skb(skb); priv->cur_tx++; if ((priv->cur_tx >= TX_RING_SIZE) && (priv->dirty_tx >= TX_RING_SIZE)) { #if 0 printk(KERN_DEBUG "*** Subtracting TX_RING_SIZE from cur_tx (%d) and " "dirty_tx (%d)\n", priv->cur_tx, priv->dirty_tx); #endif priv->cur_tx -= TX_RING_SIZE; priv->dirty_tx -= TX_RING_SIZE; } dev->stats.tx_bytes += len; /* Trigger an immediate send poll. */ lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = INEA|TDMD; dev->trans_start = jiffies; if (lowb(priv->tx_ring[(entry+1) % TX_RING_SIZE]->TMD1) != 0) { netif_stop_queue(dev); priv->tx_full = 1; } local_irq_restore(flags); return NETDEV_TX_OK; } static int ariadne_rx(struct net_device *dev) { struct ariadne_private *priv = netdev_priv(dev); int entry = priv->cur_rx % RX_RING_SIZE; int i; /* If we own the next entry, it's a new packet. Send it up. */ while (!(lowb(priv->rx_ring[entry]->RMD1) & RF_OWN)) { int status = lowb(priv->rx_ring[entry]->RMD1); if (status != (RF_STP|RF_ENP)) { /* There was an error. */ /* There is a tricky error noted by John Murphy, <murf@perftech.com> to Russ Nelson: Even with full-sized buffers it's possible for a jabber packet to use two buffers, with only the last correctly noting the error. */ if (status & RF_ENP) /* Only count a general error at the end of a packet.*/ dev->stats.rx_errors++; if (status & RF_FRAM) dev->stats.rx_frame_errors++; if (status & RF_OFLO) dev->stats.rx_over_errors++; if (status & RF_CRC) dev->stats.rx_crc_errors++; if (status & RF_BUFF) dev->stats.rx_fifo_errors++; priv->rx_ring[entry]->RMD1 &= 0xff00|RF_STP|RF_ENP; } else { /* Malloc up new buffer, compatible with net-3. */ short pkt_len = swapw(priv->rx_ring[entry]->RMD3); struct sk_buff *skb; skb = dev_alloc_skb(pkt_len+2); if (skb == NULL) { printk(KERN_WARNING "%s: Memory squeeze, deferring packet.\n", dev->name); for (i = 0; i < RX_RING_SIZE; i++) if (lowb(priv->rx_ring[(entry+i) % RX_RING_SIZE]->RMD1) & RF_OWN) break; if (i > RX_RING_SIZE-2) { dev->stats.rx_dropped++; priv->rx_ring[entry]->RMD1 |= RF_OWN; priv->cur_rx++; } break; } skb_reserve(skb,2); /* 16 byte align */ skb_put(skb,pkt_len); /* Make room */ skb_copy_to_linear_data(skb, (char *)priv->rx_buff[entry], pkt_len); skb->protocol=eth_type_trans(skb,dev); #if 0 { printk(KERN_DEBUG "RX pkt type 0x%04x from ", ((u_short *)skb->data)[6]); { u_char *ptr = &((u_char *)skb->data)[6]; printk("%pM", ptr); } printk(" to "); { u_char *ptr = (u_char *)skb->data; printk("%pM", ptr); } printk(" data 0x%08x len %d\n", (int)skb->data, (int)skb->len); } #endif netif_rx(skb); dev->stats.rx_packets++; dev->stats.rx_bytes += pkt_len; } priv->rx_ring[entry]->RMD1 |= RF_OWN; entry = (++priv->cur_rx) % RX_RING_SIZE; } priv->cur_rx = priv->cur_rx % RX_RING_SIZE; /* We should check that at least two ring entries are free. If not, we should free one and mark stats->rx_dropped++. */ return 0; } static struct net_device_stats *ariadne_get_stats(struct net_device *dev) { volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr; short saved_addr; unsigned long flags; local_irq_save(flags); saved_addr = lance->RAP; lance->RAP = CSR112; /* Missed Frame Count */ dev->stats.rx_missed_errors = swapw(lance->RDP); lance->RAP = saved_addr; local_irq_restore(flags); return &dev->stats; } /* Set or clear the multicast filter for this adaptor. num_addrs == -1 Promiscuous mode, receive all packets num_addrs == 0 Normal mode, clear multicast list num_addrs > 0 Multicast mode, receive normal and MC packets, and do best-effort filtering. */ static void set_multicast_list(struct net_device *dev) { volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr; if (!netif_running(dev)) return; netif_stop_queue(dev); /* We take the simple way out and always enable promiscuous mode. */ lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = STOP; /* Temporarily stop the lance. */ ariadne_init_ring(dev); if (dev->flags & IFF_PROMISC) { lance->RAP = CSR15; /* Mode Register */ lance->RDP = PROM; /* Set promiscuous mode */ } else { short multicast_table[4]; int num_addrs = dev->mc_count; int i; /* We don't use the multicast table, but rely on upper-layer filtering. */ memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table)); for (i = 0; i < 4; i++) { lance->RAP = CSR8+(i<<8); /* Logical Address Filter */ lance->RDP = swapw(multicast_table[i]); } lance->RAP = CSR15; /* Mode Register */ lance->RDP = 0x0000; /* Unset promiscuous mode */ } lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = INEA|STRT|IDON; /* Resume normal operation. */ netif_wake_queue(dev); } static void __devexit ariadne_remove_one(struct zorro_dev *z) { struct net_device *dev = zorro_get_drvdata(z); unregister_netdev(dev); release_mem_region(ZTWO_PADDR(dev->base_addr), sizeof(struct Am79C960)); release_mem_region(ZTWO_PADDR(dev->mem_start), ARIADNE_RAM_SIZE); free_netdev(dev); } static int __init ariadne_init_module(void) { return zorro_register_driver(&ariadne_driver); } static void __exit ariadne_cleanup_module(void) { zorro_unregister_driver(&ariadne_driver); } module_init(ariadne_init_module); module_exit(ariadne_cleanup_module); MODULE_LICENSE("GPL");