/* 3c527.c: 3Com Etherlink/MC32 driver for Linux 2.4 and 2.6. * * (c) Copyright 1998 Red Hat Software Inc * Written by Alan Cox. * Further debugging by Carl Drougge. * Initial SMP support by Felipe W Damasio <felipewd@terra.com.br> * Heavily modified by Richard Procter <rnp@paradise.net.nz> * * Based on skeleton.c written 1993-94 by Donald Becker and ne2.c * (for the MCA stuff) written by Wim Dumon. * * Thanks to 3Com for making this possible by providing me with the * documentation. * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * */ #define DRV_NAME "3c527" #define DRV_VERSION "0.7-SMP" #define DRV_RELDATE "2003/09/21" static const char *version = DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Richard Procter <rnp@paradise.net.nz>\n"; /** * DOC: Traps for the unwary * * The diagram (Figure 1-1) and the POS summary disagree with the * "Interrupt Level" section in the manual. * * The manual contradicts itself when describing the minimum number * buffers in the 'configure lists' command. * My card accepts a buffer config of 4/4. * * Setting the SAV BP bit does not save bad packets, but * only enables RX on-card stats collection. * * The documentation in places seems to miss things. In actual fact * I've always eventually found everything is documented, it just * requires careful study. * * DOC: Theory Of Operation * * The 3com 3c527 is a 32bit MCA bus mastering adapter with a large * amount of on board intelligence that housekeeps a somewhat dumber * Intel NIC. For performance we want to keep the transmit queue deep * as the card can transmit packets while fetching others from main * memory by bus master DMA. Transmission and reception are driven by * circular buffer queues. * * The mailboxes can be used for controlling how the card traverses * its buffer rings, but are used only for inital setup in this * implementation. The exec mailbox allows a variety of commands to * be executed. Each command must complete before the next is * executed. Primarily we use the exec mailbox for controlling the * multicast lists. We have to do a certain amount of interesting * hoop jumping as the multicast list changes can occur in interrupt * state when the card has an exec command pending. We defer such * events until the command completion interrupt. * * A copy break scheme (taken from 3c59x.c) is employed whereby * received frames exceeding a configurable length are passed * directly to the higher networking layers without incuring a copy, * in what amounts to a time/space trade-off. * * The card also keeps a large amount of statistical information * on-board. In a perfect world, these could be used safely at no * cost. However, lacking information to the contrary, processing * them without races would involve so much extra complexity as to * make it unworthwhile to do so. In the end, a hybrid SW/HW * implementation was made necessary --- see mc32_update_stats(). * * DOC: Notes * * It should be possible to use two or more cards, but at this stage * only by loading two copies of the same module. * * The on-board 82586 NIC has trouble receiving multiple * back-to-back frames and so is likely to drop packets from fast * senders. **/ #include <linux/module.h> #include <linux/errno.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_ether.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/mca-legacy.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/wait.h> #include <linux/ethtool.h> #include <linux/completion.h> #include <linux/bitops.h> #include <asm/semaphore.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/io.h> #include <asm/dma.h> #include "3c527.h" MODULE_LICENSE("GPL"); /* * The name of the card. Is used for messages and in the requests for * io regions, irqs and dma channels */ static const char* cardname = DRV_NAME; /* use 0 for production, 1 for verification, >2 for debug */ #ifndef NET_DEBUG #define NET_DEBUG 2 #endif #undef DEBUG_IRQ static unsigned int mc32_debug = NET_DEBUG; /* The number of low I/O ports used by the ethercard. */ #define MC32_IO_EXTENT 8 /* As implemented, values must be a power-of-2 -- 4/8/16/32 */ #define TX_RING_LEN 32 /* Typically the card supports 37 */ #define RX_RING_LEN 8 /* " " " */ /* Copy break point, see above for details. * Setting to > 1512 effectively disables this feature. */ #define RX_COPYBREAK 200 /* Value from 3c59x.c */ /* Issue the 82586 workaround command - this is for "busy lans", but * basically means for all lans now days - has a performance (latency) * cost, but best set. */ static const int WORKAROUND_82586=1; /* Pointers to buffers and their on-card records */ struct mc32_ring_desc { volatile struct skb_header *p; struct sk_buff *skb; }; /* Information that needs to be kept for each board. */ struct mc32_local { int slot; u32 base; struct net_device_stats net_stats; volatile struct mc32_mailbox *rx_box; volatile struct mc32_mailbox *tx_box; volatile struct mc32_mailbox *exec_box; volatile struct mc32_stats *stats; /* Start of on-card statistics */ u16 tx_chain; /* Transmit list start offset */ u16 rx_chain; /* Receive list start offset */ u16 tx_len; /* Transmit list count */ u16 rx_len; /* Receive list count */ u16 xceiver_desired_state; /* HALTED or RUNNING */ u16 cmd_nonblocking; /* Thread is uninterested in command result */ u16 mc_reload_wait; /* A multicast load request is pending */ u32 mc_list_valid; /* True when the mclist is set */ struct mc32_ring_desc tx_ring[TX_RING_LEN]; /* Host Transmit ring */ struct mc32_ring_desc rx_ring[RX_RING_LEN]; /* Host Receive ring */ atomic_t tx_count; /* buffers left */ atomic_t tx_ring_head; /* index to tx en-queue end */ u16 tx_ring_tail; /* index to tx de-queue end */ u16 rx_ring_tail; /* index to rx de-queue end */ struct semaphore cmd_mutex; /* Serialises issuing of execute commands */ struct completion execution_cmd; /* Card has completed an execute command */ struct completion xceiver_cmd; /* Card has completed a tx or rx command */ }; /* The station (ethernet) address prefix, used for a sanity check. */ #define SA_ADDR0 0x02 #define SA_ADDR1 0x60 #define SA_ADDR2 0xAC struct mca_adapters_t { unsigned int id; char *name; }; static const struct mca_adapters_t mc32_adapters[] = { { 0x0041, "3COM EtherLink MC/32" }, { 0x8EF5, "IBM High Performance Lan Adapter" }, { 0x0000, NULL } }; /* Macros for ring index manipulations */ static inline u16 next_rx(u16 rx) { return (rx+1)&(RX_RING_LEN-1); }; static inline u16 prev_rx(u16 rx) { return (rx-1)&(RX_RING_LEN-1); }; static inline u16 next_tx(u16 tx) { return (tx+1)&(TX_RING_LEN-1); }; /* Index to functions, as function prototypes. */ static int mc32_probe1(struct net_device *dev, int ioaddr); static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len); static int mc32_open(struct net_device *dev); static void mc32_timeout(struct net_device *dev); static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev); static irqreturn_t mc32_interrupt(int irq, void *dev_id, struct pt_regs *regs); static int mc32_close(struct net_device *dev); static struct net_device_stats *mc32_get_stats(struct net_device *dev); static void mc32_set_multicast_list(struct net_device *dev); static void mc32_reset_multicast_list(struct net_device *dev); static struct ethtool_ops netdev_ethtool_ops; static void cleanup_card(struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); unsigned slot = lp->slot; mca_mark_as_unused(slot); mca_set_adapter_name(slot, NULL); free_irq(dev->irq, dev); release_region(dev->base_addr, MC32_IO_EXTENT); } /** * mc32_probe - Search for supported boards * @unit: interface number to use * * Because MCA bus is a real bus and we can scan for cards we could do a * single scan for all boards here. Right now we use the passed in device * structure and scan for only one board. This needs fixing for modules * in particular. */ struct net_device *__init mc32_probe(int unit) { struct net_device *dev = alloc_etherdev(sizeof(struct mc32_local)); static int current_mca_slot = -1; int i; int err; if (!dev) return ERR_PTR(-ENOMEM); if (unit >= 0) sprintf(dev->name, "eth%d", unit); SET_MODULE_OWNER(dev); /* Do not check any supplied i/o locations. POS registers usually don't fail :) */ /* MCA cards have POS registers. Autodetecting MCA cards is extremely simple. Just search for the card. */ for(i = 0; (mc32_adapters[i].name != NULL); i++) { current_mca_slot = mca_find_unused_adapter(mc32_adapters[i].id, 0); if(current_mca_slot != MCA_NOTFOUND) { if(!mc32_probe1(dev, current_mca_slot)) { mca_set_adapter_name(current_mca_slot, mc32_adapters[i].name); mca_mark_as_used(current_mca_slot); err = register_netdev(dev); if (err) { cleanup_card(dev); free_netdev(dev); dev = ERR_PTR(err); } return dev; } } } free_netdev(dev); return ERR_PTR(-ENODEV); } /** * mc32_probe1 - Check a given slot for a board and test the card * @dev: Device structure to fill in * @slot: The MCA bus slot being used by this card * * Decode the slot data and configure the card structures. Having done this we * can reset the card and configure it. The card does a full self test cycle * in firmware so we have to wait for it to return and post us either a * failure case or some addresses we use to find the board internals. */ static int __init mc32_probe1(struct net_device *dev, int slot) { static unsigned version_printed; int i, err; u8 POS; u32 base; struct mc32_local *lp = netdev_priv(dev); static u16 mca_io_bases[]={ 0x7280,0x7290, 0x7680,0x7690, 0x7A80,0x7A90, 0x7E80,0x7E90 }; static u32 mca_mem_bases[]={ 0x00C0000, 0x00C4000, 0x00C8000, 0x00CC000, 0x00D0000, 0x00D4000, 0x00D8000, 0x00DC000 }; static char *failures[]={ "Processor instruction", "Processor data bus", "Processor data bus", "Processor data bus", "Adapter bus", "ROM checksum", "Base RAM", "Extended RAM", "82586 internal loopback", "82586 initialisation failure", "Adapter list configuration error" }; /* Time to play MCA games */ if (mc32_debug && version_printed++ == 0) printk(KERN_DEBUG "%s", version); printk(KERN_INFO "%s: %s found in slot %d:", dev->name, cardname, slot); POS = mca_read_stored_pos(slot, 2); if(!(POS&1)) { printk(" disabled.\n"); return -ENODEV; } /* Fill in the 'dev' fields. */ dev->base_addr = mca_io_bases[(POS>>1)&7]; dev->mem_start = mca_mem_bases[(POS>>4)&7]; POS = mca_read_stored_pos(slot, 4); if(!(POS&1)) { printk("memory window disabled.\n"); return -ENODEV; } POS = mca_read_stored_pos(slot, 5); i=(POS>>4)&3; if(i==3) { printk("invalid memory window.\n"); return -ENODEV; } i*=16384; i+=16384; dev->mem_end=dev->mem_start + i; dev->irq = ((POS>>2)&3)+9; if(!request_region(dev->base_addr, MC32_IO_EXTENT, cardname)) { printk("io 0x%3lX, which is busy.\n", dev->base_addr); return -EBUSY; } printk("io 0x%3lX irq %d mem 0x%lX (%dK)\n", dev->base_addr, dev->irq, dev->mem_start, i/1024); /* We ought to set the cache line size here.. */ /* * Go PROM browsing */ printk("%s: Address ", dev->name); /* Retrieve and print the ethernet address. */ for (i = 0; i < 6; i++) { mca_write_pos(slot, 6, i+12); mca_write_pos(slot, 7, 0); printk(" %2.2x", dev->dev_addr[i] = mca_read_pos(slot,3)); } mca_write_pos(slot, 6, 0); mca_write_pos(slot, 7, 0); POS = mca_read_stored_pos(slot, 4); if(POS&2) printk(" : BNC port selected.\n"); else printk(" : AUI port selected.\n"); POS=inb(dev->base_addr+HOST_CTRL); POS|=HOST_CTRL_ATTN|HOST_CTRL_RESET; POS&=~HOST_CTRL_INTE; outb(POS, dev->base_addr+HOST_CTRL); /* Reset adapter */ udelay(100); /* Reset off */ POS&=~(HOST_CTRL_ATTN|HOST_CTRL_RESET); outb(POS, dev->base_addr+HOST_CTRL); udelay(300); /* * Grab the IRQ */ err = request_irq(dev->irq, &mc32_interrupt, SA_SHIRQ | SA_SAMPLE_RANDOM, DRV_NAME, dev); if (err) { release_region(dev->base_addr, MC32_IO_EXTENT); printk(KERN_ERR "%s: unable to get IRQ %d.\n", DRV_NAME, dev->irq); goto err_exit_ports; } memset(lp, 0, sizeof(struct mc32_local)); lp->slot = slot; i=0; base = inb(dev->base_addr); while(base == 0xFF) { i++; if(i == 1000) { printk(KERN_ERR "%s: failed to boot adapter.\n", dev->name); err = -ENODEV; goto err_exit_irq; } udelay(1000); if(inb(dev->base_addr+2)&(1<<5)) base = inb(dev->base_addr); } if(base>0) { if(base < 0x0C) printk(KERN_ERR "%s: %s%s.\n", dev->name, failures[base-1], base<0x0A?" test failure":""); else printk(KERN_ERR "%s: unknown failure %d.\n", dev->name, base); err = -ENODEV; goto err_exit_irq; } base=0; for(i=0;i<4;i++) { int n=0; while(!(inb(dev->base_addr+2)&(1<<5))) { n++; udelay(50); if(n>100) { printk(KERN_ERR "%s: mailbox read fail (%d).\n", dev->name, i); err = -ENODEV; goto err_exit_irq; } } base|=(inb(dev->base_addr)<<(8*i)); } lp->exec_box=isa_bus_to_virt(dev->mem_start+base); base=lp->exec_box->data[1]<<16|lp->exec_box->data[0]; lp->base = dev->mem_start+base; lp->rx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[2]); lp->tx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[3]); lp->stats = isa_bus_to_virt(lp->base + lp->exec_box->data[5]); /* * Descriptor chains (card relative) */ lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */ lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */ lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */ lp->rx_len = lp->exec_box->data[11]; /* Receive list count */ init_MUTEX_LOCKED(&lp->cmd_mutex); init_completion(&lp->execution_cmd); init_completion(&lp->xceiver_cmd); printk("%s: Firmware Rev %d. %d RX buffers, %d TX buffers. Base of 0x%08X.\n", dev->name, lp->exec_box->data[12], lp->rx_len, lp->tx_len, lp->base); dev->open = mc32_open; dev->stop = mc32_close; dev->hard_start_xmit = mc32_send_packet; dev->get_stats = mc32_get_stats; dev->set_multicast_list = mc32_set_multicast_list; dev->tx_timeout = mc32_timeout; dev->watchdog_timeo = HZ*5; /* Board does all the work */ dev->ethtool_ops = &netdev_ethtool_ops; return 0; err_exit_irq: free_irq(dev->irq, dev); err_exit_ports: release_region(dev->base_addr, MC32_IO_EXTENT); return err; } /** * mc32_ready_poll - wait until we can feed it a command * @dev: The device to wait for * * Wait until the card becomes ready to accept a command via the * command register. This tells us nothing about the completion * status of any pending commands and takes very little time at all. */ static inline void mc32_ready_poll(struct net_device *dev) { int ioaddr = dev->base_addr; while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR)); } /** * mc32_command_nowait - send a command non blocking * @dev: The 3c527 to issue the command to * @cmd: The command word to write to the mailbox * @data: A data block if the command expects one * @len: Length of the data block * * Send a command from interrupt state. If there is a command * currently being executed then we return an error of -1. It * simply isn't viable to wait around as commands may be * slow. This can theoretically be starved on SMP, but it's hard * to see a realistic situation. We do not wait for the command * to complete --- we rely on the interrupt handler to tidy up * after us. */ static int mc32_command_nowait(struct net_device *dev, u16 cmd, void *data, int len) { struct mc32_local *lp = netdev_priv(dev); int ioaddr = dev->base_addr; int ret = -1; if (down_trylock(&lp->cmd_mutex) == 0) { lp->cmd_nonblocking=1; lp->exec_box->mbox=0; lp->exec_box->mbox=cmd; memcpy((void *)lp->exec_box->data, data, len); barrier(); /* the memcpy forgot the volatile so be sure */ /* Send the command */ mc32_ready_poll(dev); outb(1<<6, ioaddr+HOST_CMD); ret = 0; /* Interrupt handler will signal mutex on completion */ } return ret; } /** * mc32_command - send a command and sleep until completion * @dev: The 3c527 card to issue the command to * @cmd: The command word to write to the mailbox * @data: A data block if the command expects one * @len: Length of the data block * * Sends exec commands in a user context. This permits us to wait around * for the replies and also to wait for the command buffer to complete * from a previous command before we execute our command. After our * command completes we will attempt any pending multicast reload * we blocked off by hogging the exec buffer. * * You feed the card a command, you wait, it interrupts you get a * reply. All well and good. The complication arises because you use * commands for filter list changes which come in at bh level from things * like IPV6 group stuff. */ static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len) { struct mc32_local *lp = netdev_priv(dev); int ioaddr = dev->base_addr; int ret = 0; down(&lp->cmd_mutex); /* * My Turn */ lp->cmd_nonblocking=0; lp->exec_box->mbox=0; lp->exec_box->mbox=cmd; memcpy((void *)lp->exec_box->data, data, len); barrier(); /* the memcpy forgot the volatile so be sure */ mc32_ready_poll(dev); outb(1<<6, ioaddr+HOST_CMD); wait_for_completion(&lp->execution_cmd); if(lp->exec_box->mbox&(1<<13)) ret = -1; up(&lp->cmd_mutex); /* * A multicast set got blocked - try it now */ if(lp->mc_reload_wait) { mc32_reset_multicast_list(dev); } return ret; } /** * mc32_start_transceiver - tell board to restart tx/rx * @dev: The 3c527 card to issue the command to * * This may be called from the interrupt state, where it is used * to restart the rx ring if the card runs out of rx buffers. * * We must first check if it's ok to (re)start the transceiver. See * mc32_close for details. */ static void mc32_start_transceiver(struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); int ioaddr = dev->base_addr; /* Ignore RX overflow on device closure */ if (lp->xceiver_desired_state==HALTED) return; /* Give the card the offset to the post-EOL-bit RX descriptor */ mc32_ready_poll(dev); lp->rx_box->mbox=0; lp->rx_box->data[0]=lp->rx_ring[prev_rx(lp->rx_ring_tail)].p->next; outb(HOST_CMD_START_RX, ioaddr+HOST_CMD); mc32_ready_poll(dev); lp->tx_box->mbox=0; outb(HOST_CMD_RESTRT_TX, ioaddr+HOST_CMD); /* card ignores this on RX restart */ /* We are not interrupted on start completion */ } /** * mc32_halt_transceiver - tell board to stop tx/rx * @dev: The 3c527 card to issue the command to * * We issue the commands to halt the card's transceiver. In fact, * after some experimenting we now simply tell the card to * suspend. When issuing aborts occasionally odd things happened. * * We then sleep until the card has notified us that both rx and * tx have been suspended. */ static void mc32_halt_transceiver(struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); int ioaddr = dev->base_addr; mc32_ready_poll(dev); lp->rx_box->mbox=0; outb(HOST_CMD_SUSPND_RX, ioaddr+HOST_CMD); wait_for_completion(&lp->xceiver_cmd); mc32_ready_poll(dev); lp->tx_box->mbox=0; outb(HOST_CMD_SUSPND_TX, ioaddr+HOST_CMD); wait_for_completion(&lp->xceiver_cmd); } /** * mc32_load_rx_ring - load the ring of receive buffers * @dev: 3c527 to build the ring for * * This initalises the on-card and driver datastructures to * the point where mc32_start_transceiver() can be called. * * The card sets up the receive ring for us. We are required to use the * ring it provides, although the size of the ring is configurable. * * We allocate an sk_buff for each ring entry in turn and * initalise its house-keeping info. At the same time, we read * each 'next' pointer in our rx_ring array. This reduces slow * shared-memory reads and makes it easy to access predecessor * descriptors. * * We then set the end-of-list bit for the last entry so that the * card will know when it has run out of buffers. */ static int mc32_load_rx_ring(struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); int i; u16 rx_base; volatile struct skb_header *p; rx_base=lp->rx_chain; for(i=0; i<RX_RING_LEN; i++) { lp->rx_ring[i].skb=alloc_skb(1532, GFP_KERNEL); if (lp->rx_ring[i].skb==NULL) { for (;i>=0;i--) kfree_skb(lp->rx_ring[i].skb); return -ENOBUFS; } skb_reserve(lp->rx_ring[i].skb, 18); p=isa_bus_to_virt(lp->base+rx_base); p->control=0; p->data=isa_virt_to_bus(lp->rx_ring[i].skb->data); p->status=0; p->length=1532; lp->rx_ring[i].p=p; rx_base=p->next; } lp->rx_ring[i-1].p->control |= CONTROL_EOL; lp->rx_ring_tail=0; return 0; } /** * mc32_flush_rx_ring - free the ring of receive buffers * @lp: Local data of 3c527 to flush the rx ring of * * Free the buffer for each ring slot. This may be called * before mc32_load_rx_ring(), eg. on error in mc32_open(). * Requires rx skb pointers to point to a valid skb, or NULL. */ static void mc32_flush_rx_ring(struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); int i; for(i=0; i < RX_RING_LEN; i++) { if (lp->rx_ring[i].skb) { dev_kfree_skb(lp->rx_ring[i].skb); lp->rx_ring[i].skb = NULL; } lp->rx_ring[i].p=NULL; } } /** * mc32_load_tx_ring - load transmit ring * @dev: The 3c527 card to issue the command to * * This sets up the host transmit data-structures. * * First, we obtain from the card it's current postion in the tx * ring, so that we will know where to begin transmitting * packets. * * Then, we read the 'next' pointers from the on-card tx ring into * our tx_ring array to reduce slow shared-mem reads. Finally, we * intitalise the tx house keeping variables. * */ static void mc32_load_tx_ring(struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); volatile struct skb_header *p; int i; u16 tx_base; tx_base=lp->tx_box->data[0]; for(i=0 ; i<TX_RING_LEN ; i++) { p=isa_bus_to_virt(lp->base+tx_base); lp->tx_ring[i].p=p; lp->tx_ring[i].skb=NULL; tx_base=p->next; } /* -1 so that tx_ring_head cannot "lap" tx_ring_tail */ /* see mc32_tx_ring */ atomic_set(&lp->tx_count, TX_RING_LEN-1); atomic_set(&lp->tx_ring_head, 0); lp->tx_ring_tail=0; } /** * mc32_flush_tx_ring - free transmit ring * @lp: Local data of 3c527 to flush the tx ring of * * If the ring is non-empty, zip over the it, freeing any * allocated skb_buffs. The tx ring house-keeping variables are * then reset. Requires rx skb pointers to point to a valid skb, * or NULL. */ static void mc32_flush_tx_ring(struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); int i; for (i=0; i < TX_RING_LEN; i++) { if (lp->tx_ring[i].skb) { dev_kfree_skb(lp->tx_ring[i].skb); lp->tx_ring[i].skb = NULL; } } atomic_set(&lp->tx_count, 0); atomic_set(&lp->tx_ring_head, 0); lp->tx_ring_tail=0; } /** * mc32_open - handle 'up' of card * @dev: device to open * * The user is trying to bring the card into ready state. This requires * a brief dialogue with the card. Firstly we enable interrupts and then * 'indications'. Without these enabled the card doesn't bother telling * us what it has done. This had me puzzled for a week. * * We configure the number of card descriptors, then load the network * address and multicast filters. Turn on the workaround mode. This * works around a bug in the 82586 - it asks the firmware to do * so. It has a performance (latency) hit but is needed on busy * [read most] lans. We load the ring with buffers then we kick it * all off. */ static int mc32_open(struct net_device *dev) { int ioaddr = dev->base_addr; struct mc32_local *lp = netdev_priv(dev); u8 one=1; u8 regs; u16 descnumbuffs[2] = {TX_RING_LEN, RX_RING_LEN}; /* * Interrupts enabled */ regs=inb(ioaddr+HOST_CTRL); regs|=HOST_CTRL_INTE; outb(regs, ioaddr+HOST_CTRL); /* * Allow ourselves to issue commands */ up(&lp->cmd_mutex); /* * Send the indications on command */ mc32_command(dev, 4, &one, 2); /* * Poke it to make sure it's really dead. */ mc32_halt_transceiver(dev); mc32_flush_tx_ring(dev); /* * Ask card to set up on-card descriptors to our spec */ if(mc32_command(dev, 8, descnumbuffs, 4)) { printk("%s: %s rejected our buffer configuration!\n", dev->name, cardname); mc32_close(dev); return -ENOBUFS; } /* Report new configuration */ mc32_command(dev, 6, NULL, 0); lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */ lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */ lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */ lp->rx_len = lp->exec_box->data[11]; /* Receive list count */ /* Set Network Address */ mc32_command(dev, 1, dev->dev_addr, 6); /* Set the filters */ mc32_set_multicast_list(dev); if (WORKAROUND_82586) { u16 zero_word=0; mc32_command(dev, 0x0D, &zero_word, 2); /* 82586 bug workaround on */ } mc32_load_tx_ring(dev); if(mc32_load_rx_ring(dev)) { mc32_close(dev); return -ENOBUFS; } lp->xceiver_desired_state = RUNNING; /* And finally, set the ball rolling... */ mc32_start_transceiver(dev); netif_start_queue(dev); return 0; } /** * mc32_timeout - handle a timeout from the network layer * @dev: 3c527 that timed out * * Handle a timeout on transmit from the 3c527. This normally means * bad things as the hardware handles cable timeouts and mess for * us. * */ static void mc32_timeout(struct net_device *dev) { printk(KERN_WARNING "%s: transmit timed out?\n", dev->name); /* Try to restart the adaptor. */ netif_wake_queue(dev); } /** * mc32_send_packet - queue a frame for transmit * @skb: buffer to transmit * @dev: 3c527 to send it out of * * Transmit a buffer. This normally means throwing the buffer onto * the transmit queue as the queue is quite large. If the queue is * full then we set tx_busy and return. Once the interrupt handler * gets messages telling it to reclaim transmit queue entries, we will * clear tx_busy and the kernel will start calling this again. * * We do not disable interrupts or acquire any locks; this can * run concurrently with mc32_tx_ring(), and the function itself * is serialised at a higher layer. However, similarly for the * card itself, we must ensure that we update tx_ring_head only * after we've established a valid packet on the tx ring (and * before we let the card "see" it, to prevent it racing with the * irq handler). * */ static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); u32 head = atomic_read(&lp->tx_ring_head); volatile struct skb_header *p, *np; netif_stop_queue(dev); if(atomic_read(&lp->tx_count)==0) { return 1; } skb = skb_padto(skb, ETH_ZLEN); if (skb == NULL) { netif_wake_queue(dev); return 0; } atomic_dec(&lp->tx_count); /* P is the last sending/sent buffer as a pointer */ p=lp->tx_ring[head].p; head = next_tx(head); /* NP is the buffer we will be loading */ np=lp->tx_ring[head].p; /* We will need this to flush the buffer out */ lp->tx_ring[head].skb=skb; np->length = unlikely(skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len; np->data = isa_virt_to_bus(skb->data); np->status = 0; np->control = CONTROL_EOP | CONTROL_EOL; wmb(); /* * The new frame has been setup; we can now * let the interrupt handler and card "see" it */ atomic_set(&lp->tx_ring_head, head); p->control &= ~CONTROL_EOL; netif_wake_queue(dev); return 0; } /** * mc32_update_stats - pull off the on board statistics * @dev: 3c527 to service * * * Query and reset the on-card stats. There's the small possibility * of a race here, which would result in an underestimation of * actual errors. As such, we'd prefer to keep all our stats * collection in software. As a rule, we do. However it can't be * used for rx errors and collisions as, by default, the card discards * bad rx packets. * * Setting the SAV BP in the rx filter command supposedly * stops this behaviour. However, testing shows that it only seems to * enable the collation of on-card rx statistics --- the driver * never sees an RX descriptor with an error status set. * */ static void mc32_update_stats(struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); volatile struct mc32_stats *st = lp->stats; u32 rx_errors=0; rx_errors+=lp->net_stats.rx_crc_errors +=st->rx_crc_errors; st->rx_crc_errors=0; rx_errors+=lp->net_stats.rx_fifo_errors +=st->rx_overrun_errors; st->rx_overrun_errors=0; rx_errors+=lp->net_stats.rx_frame_errors +=st->rx_alignment_errors; st->rx_alignment_errors=0; rx_errors+=lp->net_stats.rx_length_errors+=st->rx_tooshort_errors; st->rx_tooshort_errors=0; rx_errors+=lp->net_stats.rx_missed_errors+=st->rx_outofresource_errors; st->rx_outofresource_errors=0; lp->net_stats.rx_errors=rx_errors; /* Number of packets which saw one collision */ lp->net_stats.collisions+=st->dataC[10]; st->dataC[10]=0; /* Number of packets which saw 2--15 collisions */ lp->net_stats.collisions+=st->dataC[11]; st->dataC[11]=0; } /** * mc32_rx_ring - process the receive ring * @dev: 3c527 that needs its receive ring processing * * * We have received one or more indications from the card that a * receive has completed. The buffer ring thus contains dirty * entries. We walk the ring by iterating over the circular rx_ring * array, starting at the next dirty buffer (which happens to be the * one we finished up at last time around). * * For each completed packet, we will either copy it and pass it up * the stack or, if the packet is near MTU sized, we allocate * another buffer and flip the old one up the stack. * * We must succeed in keeping a buffer on the ring. If necessary we * will toss a received packet rather than lose a ring entry. Once * the first uncompleted descriptor is found, we move the * End-Of-List bit to include the buffers just processed. * */ static void mc32_rx_ring(struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); volatile struct skb_header *p; u16 rx_ring_tail; u16 rx_old_tail; int x=0; rx_old_tail = rx_ring_tail = lp->rx_ring_tail; do { p=lp->rx_ring[rx_ring_tail].p; if(!(p->status & (1<<7))) { /* Not COMPLETED */ break; } if(p->status & (1<<6)) /* COMPLETED_OK */ { u16 length=p->length; struct sk_buff *skb; struct sk_buff *newskb; /* Try to save time by avoiding a copy on big frames */ if ((length > RX_COPYBREAK) && ((newskb=dev_alloc_skb(1532)) != NULL)) { skb=lp->rx_ring[rx_ring_tail].skb; skb_put(skb, length); skb_reserve(newskb,18); lp->rx_ring[rx_ring_tail].skb=newskb; p->data=isa_virt_to_bus(newskb->data); } else { skb=dev_alloc_skb(length+2); if(skb==NULL) { lp->net_stats.rx_dropped++; goto dropped; } skb_reserve(skb,2); memcpy(skb_put(skb, length), lp->rx_ring[rx_ring_tail].skb->data, length); } skb->protocol=eth_type_trans(skb,dev); skb->dev=dev; dev->last_rx = jiffies; lp->net_stats.rx_packets++; lp->net_stats.rx_bytes += length; netif_rx(skb); } dropped: p->length = 1532; p->status = 0; rx_ring_tail=next_rx(rx_ring_tail); } while(x++<48); /* If there was actually a frame to be processed, place the EOL bit */ /* at the descriptor prior to the one to be filled next */ if (rx_ring_tail != rx_old_tail) { lp->rx_ring[prev_rx(rx_ring_tail)].p->control |= CONTROL_EOL; lp->rx_ring[prev_rx(rx_old_tail)].p->control &= ~CONTROL_EOL; lp->rx_ring_tail=rx_ring_tail; } } /** * mc32_tx_ring - process completed transmits * @dev: 3c527 that needs its transmit ring processing * * * This operates in a similar fashion to mc32_rx_ring. We iterate * over the transmit ring. For each descriptor which has been * processed by the card, we free its associated buffer and note * any errors. This continues until the transmit ring is emptied * or we reach a descriptor that hasn't yet been processed by the * card. * */ static void mc32_tx_ring(struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); volatile struct skb_header *np; /* * We rely on head==tail to mean 'queue empty'. * This is why lp->tx_count=TX_RING_LEN-1: in order to prevent * tx_ring_head wrapping to tail and confusing a 'queue empty' * condition with 'queue full' */ while (lp->tx_ring_tail != atomic_read(&lp->tx_ring_head)) { u16 t; t=next_tx(lp->tx_ring_tail); np=lp->tx_ring[t].p; if(!(np->status & (1<<7))) { /* Not COMPLETED */ break; } lp->net_stats.tx_packets++; if(!(np->status & (1<<6))) /* Not COMPLETED_OK */ { lp->net_stats.tx_errors++; switch(np->status&0x0F) { case 1: lp->net_stats.tx_aborted_errors++; break; /* Max collisions */ case 2: lp->net_stats.tx_fifo_errors++; break; case 3: lp->net_stats.tx_carrier_errors++; break; case 4: lp->net_stats.tx_window_errors++; break; /* CTS Lost */ case 5: lp->net_stats.tx_aborted_errors++; break; /* Transmit timeout */ } } /* Packets are sent in order - this is basically a FIFO queue of buffers matching the card ring */ lp->net_stats.tx_bytes+=lp->tx_ring[t].skb->len; dev_kfree_skb_irq(lp->tx_ring[t].skb); lp->tx_ring[t].skb=NULL; atomic_inc(&lp->tx_count); netif_wake_queue(dev); lp->tx_ring_tail=t; } } /** * mc32_interrupt - handle an interrupt from a 3c527 * @irq: Interrupt number * @dev_id: 3c527 that requires servicing * @regs: Registers (unused) * * * An interrupt is raised whenever the 3c527 writes to the command * register. This register contains the message it wishes to send us * packed into a single byte field. We keep reading status entries * until we have processed all the control items, but simply count * transmit and receive reports. When all reports are in we empty the * transceiver rings as appropriate. This saves the overhead of * multiple command requests. * * Because MCA is level-triggered, we shouldn't miss indications. * Therefore, we needn't ask the card to suspend interrupts within * this handler. The card receives an implicit acknowledgment of the * current interrupt when we read the command register. * */ static irqreturn_t mc32_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = dev_id; struct mc32_local *lp; int ioaddr, status, boguscount = 0; int rx_event = 0; int tx_event = 0; if (dev == NULL) { printk(KERN_WARNING "%s: irq %d for unknown device.\n", cardname, irq); return IRQ_NONE; } ioaddr = dev->base_addr; lp = netdev_priv(dev); /* See whats cooking */ while((inb(ioaddr+HOST_STATUS)&HOST_STATUS_CWR) && boguscount++<2000) { status=inb(ioaddr+HOST_CMD); #ifdef DEBUG_IRQ printk("Status TX%d RX%d EX%d OV%d BC%d\n", (status&7), (status>>3)&7, (status>>6)&1, (status>>7)&1, boguscount); #endif switch(status&7) { case 0: break; case 6: /* TX fail */ case 2: /* TX ok */ tx_event = 1; break; case 3: /* Halt */ case 4: /* Abort */ complete(&lp->xceiver_cmd); break; default: printk("%s: strange tx ack %d\n", dev->name, status&7); } status>>=3; switch(status&7) { case 0: break; case 2: /* RX */ rx_event=1; break; case 3: /* Halt */ case 4: /* Abort */ complete(&lp->xceiver_cmd); break; case 6: /* Out of RX buffers stat */ /* Must restart rx */ lp->net_stats.rx_dropped++; mc32_rx_ring(dev); mc32_start_transceiver(dev); break; default: printk("%s: strange rx ack %d\n", dev->name, status&7); } status>>=3; if(status&1) { /* * No thread is waiting: we need to tidy * up ourself. */ if (lp->cmd_nonblocking) { up(&lp->cmd_mutex); if (lp->mc_reload_wait) mc32_reset_multicast_list(dev); } else complete(&lp->execution_cmd); } if(status&2) { /* * We get interrupted once per * counter that is about to overflow. */ mc32_update_stats(dev); } } /* * Process the transmit and receive rings */ if(tx_event) mc32_tx_ring(dev); if(rx_event) mc32_rx_ring(dev); return IRQ_HANDLED; } /** * mc32_close - user configuring the 3c527 down * @dev: 3c527 card to shut down * * The 3c527 is a bus mastering device. We must be careful how we * shut it down. It may also be running shared interrupt so we have * to be sure to silence it properly * * We indicate that the card is closing to the rest of the * driver. Otherwise, it is possible that the card may run out * of receive buffers and restart the transceiver while we're * trying to close it. * * We abort any receive and transmits going on and then wait until * any pending exec commands have completed in other code threads. * In theory we can't get here while that is true, in practice I am * paranoid * * We turn off the interrupt enable for the board to be sure it can't * intefere with other devices. */ static int mc32_close(struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); int ioaddr = dev->base_addr; u8 regs; u16 one=1; lp->xceiver_desired_state = HALTED; netif_stop_queue(dev); /* * Send the indications on command (handy debug check) */ mc32_command(dev, 4, &one, 2); /* Shut down the transceiver */ mc32_halt_transceiver(dev); /* Ensure we issue no more commands beyond this point */ down(&lp->cmd_mutex); /* Ok the card is now stopping */ regs=inb(ioaddr+HOST_CTRL); regs&=~HOST_CTRL_INTE; outb(regs, ioaddr+HOST_CTRL); mc32_flush_rx_ring(dev); mc32_flush_tx_ring(dev); mc32_update_stats(dev); return 0; } /** * mc32_get_stats - hand back stats to network layer * @dev: The 3c527 card to handle * * We've collected all the stats we can in software already. Now * it's time to update those kept on-card and return the lot. * */ static struct net_device_stats *mc32_get_stats(struct net_device *dev) { struct mc32_local *lp = netdev_priv(dev); mc32_update_stats(dev); return &lp->net_stats; } /** * do_mc32_set_multicast_list - attempt to update multicasts * @dev: 3c527 device to load the list on * @retry: indicates this is not the first call. * * * Actually set or clear the multicast filter for this adaptor. The * locking issues are handled by this routine. We have to track * state as it may take multiple calls to get the command sequence * completed. We just keep trying to schedule the loads until we * manage to process them all. * * num_addrs == -1 Promiscuous mode, receive all packets * * num_addrs == 0 Normal mode, clear multicast list * * num_addrs > 0 Multicast mode, receive normal and MC packets, * and do best-effort filtering. * * See mc32_update_stats() regards setting the SAV BP bit. * */ static void do_mc32_set_multicast_list(struct net_device *dev, int retry) { struct mc32_local *lp = netdev_priv(dev); u16 filt = (1<<2); /* Save Bad Packets, for stats purposes */ if (dev->flags&IFF_PROMISC) /* Enable promiscuous mode */ filt |= 1; else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > 10) { dev->flags|=IFF_PROMISC; filt |= 1; } else if(dev->mc_count) { unsigned char block[62]; unsigned char *bp; struct dev_mc_list *dmc=dev->mc_list; int i; if(retry==0) lp->mc_list_valid = 0; if(!lp->mc_list_valid) { block[1]=0; block[0]=dev->mc_count; bp=block+2; for(i=0;i<dev->mc_count;i++) { memcpy(bp, dmc->dmi_addr, 6); bp+=6; dmc=dmc->next; } if(mc32_command_nowait(dev, 2, block, 2+6*dev->mc_count)==-1) { lp->mc_reload_wait = 1; return; } lp->mc_list_valid=1; } } if(mc32_command_nowait(dev, 0, &filt, 2)==-1) { lp->mc_reload_wait = 1; } else { lp->mc_reload_wait = 0; } } /** * mc32_set_multicast_list - queue multicast list update * @dev: The 3c527 to use * * Commence loading the multicast list. This is called when the kernel * changes the lists. It will override any pending list we are trying to * load. */ static void mc32_set_multicast_list(struct net_device *dev) { do_mc32_set_multicast_list(dev,0); } /** * mc32_reset_multicast_list - reset multicast list * @dev: The 3c527 to use * * Attempt the next step in loading the multicast lists. If this attempt * fails to complete then it will be scheduled and this function called * again later from elsewhere. */ static void mc32_reset_multicast_list(struct net_device *dev) { do_mc32_set_multicast_list(dev,1); } static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); sprintf(info->bus_info, "MCA 0x%lx", dev->base_addr); } static u32 netdev_get_msglevel(struct net_device *dev) { return mc32_debug; } static void netdev_set_msglevel(struct net_device *dev, u32 level) { mc32_debug = level; } static struct ethtool_ops netdev_ethtool_ops = { .get_drvinfo = netdev_get_drvinfo, .get_msglevel = netdev_get_msglevel, .set_msglevel = netdev_set_msglevel, }; #ifdef MODULE static struct net_device *this_device; /** * init_module - entry point * * Probe and locate a 3c527 card. This really should probe and locate * all the 3c527 cards in the machine not just one of them. Yes you can * insmod multiple modules for now but it's a hack. */ int __init init_module(void) { this_device = mc32_probe(-1); if (IS_ERR(this_device)) return PTR_ERR(this_device); return 0; } /** * cleanup_module - free resources for an unload * * Unloading time. We release the MCA bus resources and the interrupt * at which point everything is ready to unload. The card must be stopped * at this point or we would not have been called. When we unload we * leave the card stopped but not totally shut down. When the card is * initialized it must be rebooted or the rings reloaded before any * transmit operations are allowed to start scribbling into memory. */ void cleanup_module(void) { unregister_netdev(this_device); cleanup_card(this_device); free_netdev(this_device); } #endif /* MODULE */