/* * linux/drivers/mtd/onenand/onenand_base.c * * Copyright (C) 2005 Samsung Electronics * Kyungmin Park <kyungmin.park@samsung.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/jiffies.h> #include <linux/mtd/mtd.h> #include <linux/mtd/onenand.h> #include <linux/mtd/partitions.h> #include <asm/io.h> /** * onenand_oob_64 - oob info for large (2KB) page */ static struct nand_oobinfo onenand_oob_64 = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 20, .eccpos = { 8, 9, 10, 11, 12, 24, 25, 26, 27, 28, 40, 41, 42, 43, 44, 56, 57, 58, 59, 60, }, .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2}, {24, 3}, {46, 2}, {40, 3}, {62, 2} } }; /** * onenand_oob_32 - oob info for middle (1KB) page */ static struct nand_oobinfo onenand_oob_32 = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 10, .eccpos = { 8, 9, 10, 11, 12, 24, 25, 26, 27, 28, }, .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} } }; static const unsigned char ffchars[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */ }; /** * onenand_readw - [OneNAND Interface] Read OneNAND register * @param addr address to read * * Read OneNAND register */ static unsigned short onenand_readw(void __iomem *addr) { return readw(addr); } /** * onenand_writew - [OneNAND Interface] Write OneNAND register with value * @param value value to write * @param addr address to write * * Write OneNAND register with value */ static void onenand_writew(unsigned short value, void __iomem *addr) { writew(value, addr); } /** * onenand_block_address - [DEFAULT] Get block address * @param this onenand chip data structure * @param block the block * @return translated block address if DDP, otherwise same * * Setup Start Address 1 Register (F100h) */ static int onenand_block_address(struct onenand_chip *this, int block) { if (this->device_id & ONENAND_DEVICE_IS_DDP) { /* Device Flash Core select, NAND Flash Block Address */ int dfs = 0; if (block & this->density_mask) dfs = 1; return (dfs << ONENAND_DDP_SHIFT) | (block & (this->density_mask - 1)); } return block; } /** * onenand_bufferram_address - [DEFAULT] Get bufferram address * @param this onenand chip data structure * @param block the block * @return set DBS value if DDP, otherwise 0 * * Setup Start Address 2 Register (F101h) for DDP */ static int onenand_bufferram_address(struct onenand_chip *this, int block) { if (this->device_id & ONENAND_DEVICE_IS_DDP) { /* Device BufferRAM Select */ int dbs = 0; if (block & this->density_mask) dbs = 1; return (dbs << ONENAND_DDP_SHIFT); } return 0; } /** * onenand_page_address - [DEFAULT] Get page address * @param page the page address * @param sector the sector address * @return combined page and sector address * * Setup Start Address 8 Register (F107h) */ static int onenand_page_address(int page, int sector) { /* Flash Page Address, Flash Sector Address */ int fpa, fsa; fpa = page & ONENAND_FPA_MASK; fsa = sector & ONENAND_FSA_MASK; return ((fpa << ONENAND_FPA_SHIFT) | fsa); } /** * onenand_buffer_address - [DEFAULT] Get buffer address * @param dataram1 DataRAM index * @param sectors the sector address * @param count the number of sectors * @return the start buffer value * * Setup Start Buffer Register (F200h) */ static int onenand_buffer_address(int dataram1, int sectors, int count) { int bsa, bsc; /* BufferRAM Sector Address */ bsa = sectors & ONENAND_BSA_MASK; if (dataram1) bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */ else bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */ /* BufferRAM Sector Count */ bsc = count & ONENAND_BSC_MASK; return ((bsa << ONENAND_BSA_SHIFT) | bsc); } /** * onenand_command - [DEFAULT] Send command to OneNAND device * @param mtd MTD device structure * @param cmd the command to be sent * @param addr offset to read from or write to * @param len number of bytes to read or write * * Send command to OneNAND device. This function is used for middle/large page * devices (1KB/2KB Bytes per page) */ static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len) { struct onenand_chip *this = mtd->priv; int value, readcmd = 0; int block, page; /* Now we use page size operation */ int sectors = 4, count = 4; /* Address translation */ switch (cmd) { case ONENAND_CMD_UNLOCK: case ONENAND_CMD_LOCK: case ONENAND_CMD_LOCK_TIGHT: block = -1; page = -1; break; case ONENAND_CMD_ERASE: case ONENAND_CMD_BUFFERRAM: block = (int) (addr >> this->erase_shift); page = -1; break; default: block = (int) (addr >> this->erase_shift); page = (int) (addr >> this->page_shift); page &= this->page_mask; break; } /* NOTE: The setting order of the registers is very important! */ if (cmd == ONENAND_CMD_BUFFERRAM) { /* Select DataRAM for DDP */ value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); /* Switch to the next data buffer */ ONENAND_SET_NEXT_BUFFERRAM(this); return 0; } if (block != -1) { /* Write 'DFS, FBA' of Flash */ value = onenand_block_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); } if (page != -1) { int dataram; switch (cmd) { case ONENAND_CMD_READ: case ONENAND_CMD_READOOB: dataram = ONENAND_SET_NEXT_BUFFERRAM(this); readcmd = 1; break; default: dataram = ONENAND_CURRENT_BUFFERRAM(this); break; } /* Write 'FPA, FSA' of Flash */ value = onenand_page_address(page, sectors); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8); /* Write 'BSA, BSC' of DataRAM */ value = onenand_buffer_address(dataram, sectors, count); this->write_word(value, this->base + ONENAND_REG_START_BUFFER); if (readcmd) { /* Select DataRAM for DDP */ value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); } } /* Interrupt clear */ this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); /* Write command */ this->write_word(cmd, this->base + ONENAND_REG_COMMAND); return 0; } /** * onenand_wait - [DEFAULT] wait until the command is done * @param mtd MTD device structure * @param state state to select the max. timeout value * * Wait for command done. This applies to all OneNAND command * Read can take up to 30us, erase up to 2ms and program up to 350us * according to general OneNAND specs */ static int onenand_wait(struct mtd_info *mtd, int state) { struct onenand_chip * this = mtd->priv; unsigned long timeout; unsigned int flags = ONENAND_INT_MASTER; unsigned int interrupt = 0; unsigned int ctrl, ecc; /* The 20 msec is enough */ timeout = jiffies + msecs_to_jiffies(20); while (time_before(jiffies, timeout)) { interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); if (interrupt & flags) break; if (state != FL_READING) cond_resched(); } /* To get correct interrupt status in timeout case */ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); if (ctrl & ONENAND_CTRL_ERROR) { /* It maybe occur at initial bad block */ DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: controller error = 0x%04x\n", ctrl); /* Clear other interrupt bits for preventing ECC error */ interrupt &= ONENAND_INT_MASTER; } if (ctrl & ONENAND_CTRL_LOCK) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: it's locked error = 0x%04x\n", ctrl); return -EACCES; } if (interrupt & ONENAND_INT_READ) { ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS); if (ecc & ONENAND_ECC_2BIT_ALL) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: ECC error = 0x%04x\n", ecc); return -EBADMSG; } } return 0; } /** * onenand_bufferram_offset - [DEFAULT] BufferRAM offset * @param mtd MTD data structure * @param area BufferRAM area * @return offset given area * * Return BufferRAM offset given area */ static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area) { struct onenand_chip *this = mtd->priv; if (ONENAND_CURRENT_BUFFERRAM(this)) { if (area == ONENAND_DATARAM) return mtd->oobblock; if (area == ONENAND_SPARERAM) return mtd->oobsize; } return 0; } /** * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area * @param mtd MTD data structure * @param area BufferRAM area * @param buffer the databuffer to put/get data * @param offset offset to read from or write to * @param count number of bytes to read/write * * Read the BufferRAM area */ static int onenand_read_bufferram(struct mtd_info *mtd, int area, unsigned char *buffer, int offset, size_t count) { struct onenand_chip *this = mtd->priv; void __iomem *bufferram; bufferram = this->base + area; bufferram += onenand_bufferram_offset(mtd, area); memcpy(buffer, bufferram + offset, count); return 0; } /** * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode * @param mtd MTD data structure * @param area BufferRAM area * @param buffer the databuffer to put/get data * @param offset offset to read from or write to * @param count number of bytes to read/write * * Read the BufferRAM area with Sync. Burst Mode */ static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area, unsigned char *buffer, int offset, size_t count) { struct onenand_chip *this = mtd->priv; void __iomem *bufferram; bufferram = this->base + area; bufferram += onenand_bufferram_offset(mtd, area); this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ); memcpy(buffer, bufferram + offset, count); this->mmcontrol(mtd, 0); return 0; } /** * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area * @param mtd MTD data structure * @param area BufferRAM area * @param buffer the databuffer to put/get data * @param offset offset to read from or write to * @param count number of bytes to read/write * * Write the BufferRAM area */ static int onenand_write_bufferram(struct mtd_info *mtd, int area, const unsigned char *buffer, int offset, size_t count) { struct onenand_chip *this = mtd->priv; void __iomem *bufferram; bufferram = this->base + area; bufferram += onenand_bufferram_offset(mtd, area); memcpy(bufferram + offset, buffer, count); return 0; } /** * onenand_check_bufferram - [GENERIC] Check BufferRAM information * @param mtd MTD data structure * @param addr address to check * @return 1 if there are valid data, otherwise 0 * * Check bufferram if there is data we required */ static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr) { struct onenand_chip *this = mtd->priv; int block, page; int i; block = (int) (addr >> this->erase_shift); page = (int) (addr >> this->page_shift); page &= this->page_mask; i = ONENAND_CURRENT_BUFFERRAM(this); /* Is there valid data? */ if (this->bufferram[i].block == block && this->bufferram[i].page == page && this->bufferram[i].valid) return 1; return 0; } /** * onenand_update_bufferram - [GENERIC] Update BufferRAM information * @param mtd MTD data structure * @param addr address to update * @param valid valid flag * * Update BufferRAM information */ static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr, int valid) { struct onenand_chip *this = mtd->priv; int block, page; int i; block = (int) (addr >> this->erase_shift); page = (int) (addr >> this->page_shift); page &= this->page_mask; /* Invalidate BufferRAM */ for (i = 0; i < MAX_BUFFERRAM; i++) { if (this->bufferram[i].block == block && this->bufferram[i].page == page) this->bufferram[i].valid = 0; } /* Update BufferRAM */ i = ONENAND_CURRENT_BUFFERRAM(this); this->bufferram[i].block = block; this->bufferram[i].page = page; this->bufferram[i].valid = valid; return 0; } /** * onenand_get_device - [GENERIC] Get chip for selected access * @param mtd MTD device structure * @param new_state the state which is requested * * Get the device and lock it for exclusive access */ static int onenand_get_device(struct mtd_info *mtd, int new_state) { struct onenand_chip *this = mtd->priv; DECLARE_WAITQUEUE(wait, current); /* * Grab the lock and see if the device is available */ while (1) { spin_lock(&this->chip_lock); if (this->state == FL_READY) { this->state = new_state; spin_unlock(&this->chip_lock); break; } if (new_state == FL_PM_SUSPENDED) { spin_unlock(&this->chip_lock); return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN; } set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&this->wq, &wait); spin_unlock(&this->chip_lock); schedule(); remove_wait_queue(&this->wq, &wait); } return 0; } /** * onenand_release_device - [GENERIC] release chip * @param mtd MTD device structure * * Deselect, release chip lock and wake up anyone waiting on the device */ static void onenand_release_device(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; /* Release the chip */ spin_lock(&this->chip_lock); this->state = FL_READY; wake_up(&this->wq); spin_unlock(&this->chip_lock); } /** * onenand_read_ecc - [MTD Interface] Read data with ECC * @param mtd MTD device structure * @param from offset to read from * @param len number of bytes to read * @param retlen pointer to variable to store the number of read bytes * @param buf the databuffer to put data * @param oob_buf filesystem supplied oob data buffer * @param oobsel oob selection structure * * OneNAND read with ECC */ static int onenand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf, u_char *oob_buf, struct nand_oobinfo *oobsel) { struct onenand_chip *this = mtd->priv; int read = 0, column; int thislen; int ret = 0; DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); /* Do not allow reads past end of device */ if ((from + len) > mtd->size) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_ecc: Attempt read beyond end of device\n"); *retlen = 0; return -EINVAL; } /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_READING); /* TODO handling oob */ while (read < len) { thislen = min_t(int, mtd->oobblock, len - read); column = from & (mtd->oobblock - 1); if (column + thislen > mtd->oobblock) thislen = mtd->oobblock - column; if (!onenand_check_bufferram(mtd, from)) { this->command(mtd, ONENAND_CMD_READ, from, mtd->oobblock); ret = this->wait(mtd, FL_READING); /* First copy data and check return value for ECC handling */ onenand_update_bufferram(mtd, from, 1); } this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); read += thislen; if (read == len) break; if (ret) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_ecc: read failed = %d\n", ret); goto out; } from += thislen; buf += thislen; } out: /* Deselect and wake up anyone waiting on the device */ onenand_release_device(mtd); /* * Return success, if no ECC failures, else -EBADMSG * fs driver will take care of that, because * retlen == desired len and result == -EBADMSG */ *retlen = read; return ret; } /** * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc * @param mtd MTD device structure * @param from offset to read from * @param len number of bytes to read * @param retlen pointer to variable to store the number of read bytes * @param buf the databuffer to put data * * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL */ static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { return onenand_read_ecc(mtd, from, len, retlen, buf, NULL, NULL); } /** * onenand_read_oob - [MTD Interface] OneNAND read out-of-band * @param mtd MTD device structure * @param from offset to read from * @param len number of bytes to read * @param retlen pointer to variable to store the number of read bytes * @param buf the databuffer to put data * * OneNAND read out-of-band data from the spare area */ static int onenand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct onenand_chip *this = mtd->priv; int read = 0, thislen, column; int ret = 0; DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); /* Initialize return length value */ *retlen = 0; /* Do not allow reads past end of device */ if (unlikely((from + len) > mtd->size)) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempt read beyond end of device\n"); return -EINVAL; } /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_READING); column = from & (mtd->oobsize - 1); while (read < len) { thislen = mtd->oobsize - column; thislen = min_t(int, thislen, len); this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize); onenand_update_bufferram(mtd, from, 0); ret = this->wait(mtd, FL_READING); /* First copy data and check return value for ECC handling */ this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); read += thislen; if (read == len) break; if (ret) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: read failed = %d\n", ret); goto out; } buf += thislen; /* Read more? */ if (read < len) { /* Page size */ from += mtd->oobblock; column = 0; } } out: /* Deselect and wake up anyone waiting on the device */ onenand_release_device(mtd); *retlen = read; return ret; } #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE /** * onenand_verify_page - [GENERIC] verify the chip contents after a write * @param mtd MTD device structure * @param buf the databuffer to verify * * Check DataRAM area directly */ static int onenand_verify_page(struct mtd_info *mtd, u_char *buf, loff_t addr) { struct onenand_chip *this = mtd->priv; void __iomem *dataram0, *dataram1; int ret = 0; this->command(mtd, ONENAND_CMD_READ, addr, mtd->oobblock); ret = this->wait(mtd, FL_READING); if (ret) return ret; onenand_update_bufferram(mtd, addr, 1); /* Check, if the two dataram areas are same */ dataram0 = this->base + ONENAND_DATARAM; dataram1 = dataram0 + mtd->oobblock; if (memcmp(dataram0, dataram1, mtd->oobblock)) return -EBADMSG; return 0; } #else #define onenand_verify_page(...) (0) #endif #define NOTALIGNED(x) ((x & (mtd->oobblock - 1)) != 0) /** * onenand_write_ecc - [MTD Interface] OneNAND write with ECC * @param mtd MTD device structure * @param to offset to write to * @param len number of bytes to write * @param retlen pointer to variable to store the number of written bytes * @param buf the data to write * @param eccbuf filesystem supplied oob data buffer * @param oobsel oob selection structure * * OneNAND write with ECC */ static int onenand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel) { struct onenand_chip *this = mtd->priv; int written = 0; int ret = 0; DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); /* Initialize retlen, in case of early exit */ *retlen = 0; /* Do not allow writes past end of device */ if (unlikely((to + len) > mtd->size)) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: Attempt write to past end of device\n"); return -EINVAL; } /* Reject writes, which are not page aligned */ if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: Attempt to write not page aligned data\n"); return -EINVAL; } /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_WRITING); /* Loop until all data write */ while (written < len) { int thislen = min_t(int, mtd->oobblock, len - written); this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobblock); this->write_bufferram(mtd, ONENAND_DATARAM, buf, 0, thislen); this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize); this->command(mtd, ONENAND_CMD_PROG, to, mtd->oobblock); onenand_update_bufferram(mtd, to, 1); ret = this->wait(mtd, FL_WRITING); if (ret) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: write filaed %d\n", ret); goto out; } written += thislen; /* Only check verify write turn on */ ret = onenand_verify_page(mtd, (u_char *) buf, to); if (ret) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: verify failed %d\n", ret); goto out; } if (written == len) break; to += thislen; buf += thislen; } out: /* Deselect and wake up anyone waiting on the device */ onenand_release_device(mtd); *retlen = written; return ret; } /** * onenand_write - [MTD Interface] compability function for onenand_write_ecc * @param mtd MTD device structure * @param to offset to write to * @param len number of bytes to write * @param retlen pointer to variable to store the number of written bytes * @param buf the data to write * * This function simply calls onenand_write_ecc * with oob buffer and oobsel = NULL */ static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { return onenand_write_ecc(mtd, to, len, retlen, buf, NULL, NULL); } /** * onenand_write_oob - [MTD Interface] OneNAND write out-of-band * @param mtd MTD device structure * @param to offset to write to * @param len number of bytes to write * @param retlen pointer to variable to store the number of written bytes * @param buf the data to write * * OneNAND write out-of-band */ static int onenand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct onenand_chip *this = mtd->priv; int column, status; int written = 0; DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); /* Initialize retlen, in case of early exit */ *retlen = 0; /* Do not allow writes past end of device */ if (unlikely((to + len) > mtd->size)) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempt write to past end of device\n"); return -EINVAL; } /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_WRITING); /* Loop until all data write */ while (written < len) { int thislen = min_t(int, mtd->oobsize, len - written); column = to & (mtd->oobsize - 1); this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize); this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize); this->write_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize); onenand_update_bufferram(mtd, to, 0); status = this->wait(mtd, FL_WRITING); if (status) goto out; written += thislen; if (written == len) break; to += thislen; buf += thislen; } out: /* Deselect and wake up anyone waiting on the device */ onenand_release_device(mtd); *retlen = written; return 0; } /** * onenand_writev_ecc - [MTD Interface] write with iovec with ecc * @param mtd MTD device structure * @param vecs the iovectors to write * @param count number of vectors * @param to offset to write to * @param retlen pointer to variable to store the number of written bytes * @param eccbuf filesystem supplied oob data buffer * @param oobsel oob selection structure * * OneNAND write with iovec with ecc */ static int onenand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel) { struct onenand_chip *this = mtd->priv; unsigned char *pbuf; size_t total_len, len; int i, written = 0; int ret = 0; /* Preset written len for early exit */ *retlen = 0; /* Calculate total length of data */ total_len = 0; for (i = 0; i < count; i++) total_len += vecs[i].iov_len; DEBUG(MTD_DEBUG_LEVEL3, "onenand_writev_ecc: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count); /* Do not allow write past end of the device */ if (unlikely((to + total_len) > mtd->size)) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: Attempted write past end of device\n"); return -EINVAL; } /* Reject writes, which are not page aligned */ if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(total_len))) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: Attempt to write not page aligned data\n"); return -EINVAL; } /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_WRITING); /* TODO handling oob */ /* Loop until all keve's data has been written */ len = 0; while (count) { pbuf = this->page_buf; /* * If the given tuple is >= pagesize then * write it out from the iov */ if ((vecs->iov_len - len) >= mtd->oobblock) { pbuf = vecs->iov_base + len; len += mtd->oobblock; /* Check, if we have to switch to the next tuple */ if (len >= (int) vecs->iov_len) { vecs++; len = 0; count--; } } else { int cnt = 0, thislen; while (cnt < mtd->oobblock) { thislen = min_t(int, mtd->oobblock - cnt, vecs->iov_len - len); memcpy(this->page_buf + cnt, vecs->iov_base + len, thislen); cnt += thislen; len += thislen; /* Check, if we have to switch to the next tuple */ if (len >= (int) vecs->iov_len) { vecs++; len = 0; count--; } } } this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobblock); this->write_bufferram(mtd, ONENAND_DATARAM, pbuf, 0, mtd->oobblock); this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize); this->command(mtd, ONENAND_CMD_PROG, to, mtd->oobblock); onenand_update_bufferram(mtd, to, 1); ret = this->wait(mtd, FL_WRITING); if (ret) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: write failed %d\n", ret); goto out; } /* Only check verify write turn on */ ret = onenand_verify_page(mtd, (u_char *) pbuf, to); if (ret) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: verify failed %d\n", ret); goto out; } written += mtd->oobblock; to += mtd->oobblock; } out: /* Deselect and wakt up anyone waiting on the device */ onenand_release_device(mtd); *retlen = written; return 0; } /** * onenand_writev - [MTD Interface] compabilty function for onenand_writev_ecc * @param mtd MTD device structure * @param vecs the iovectors to write * @param count number of vectors * @param to offset to write to * @param retlen pointer to variable to store the number of written bytes * * OneNAND write with kvec. This just calls the ecc function */ static int onenand_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen) { return onenand_writev_ecc(mtd, vecs, count, to, retlen, NULL, NULL); } /** * onenand_block_checkbad - [GENERIC] Check if a block is marked bad * @param mtd MTD device structure * @param ofs offset from device start * @param getchip 0, if the chip is already selected * @param allowbbt 1, if its allowed to access the bbt area * * Check, if the block is bad. Either by reading the bad block table or * calling of the scan function. */ static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt) { struct onenand_chip *this = mtd->priv; struct bbm_info *bbm = this->bbm; /* Return info from the table */ return bbm->isbad_bbt(mtd, ofs, allowbbt); } /** * onenand_erase - [MTD Interface] erase block(s) * @param mtd MTD device structure * @param instr erase instruction * * Erase one ore more blocks */ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) { struct onenand_chip *this = mtd->priv; unsigned int block_size; loff_t addr; int len; int ret = 0; DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len); block_size = (1 << this->erase_shift); /* Start address must align on block boundary */ if (unlikely(instr->addr & (block_size - 1))) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Unaligned address\n"); return -EINVAL; } /* Length must align on block boundary */ if (unlikely(instr->len & (block_size - 1))) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Length not block aligned\n"); return -EINVAL; } /* Do not allow erase past end of device */ if (unlikely((instr->len + instr->addr) > mtd->size)) { DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Erase past end of device\n"); return -EINVAL; } instr->fail_addr = 0xffffffff; /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_ERASING); /* Loop throught the pages */ len = instr->len; addr = instr->addr; instr->state = MTD_ERASING; while (len) { /* Check if we have a bad block, we do not erase bad blocks */ if (onenand_block_checkbad(mtd, addr, 0, 0)) { printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr); instr->state = MTD_ERASE_FAILED; goto erase_exit; } this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); ret = this->wait(mtd, FL_ERASING); /* Check, if it is write protected */ if (ret) { if (ret == -EPERM) DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Device is write protected!!!\n"); else DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift)); instr->state = MTD_ERASE_FAILED; instr->fail_addr = addr; goto erase_exit; } len -= block_size; addr += block_size; } instr->state = MTD_ERASE_DONE; erase_exit: ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; /* Do call back function */ if (!ret) mtd_erase_callback(instr); /* Deselect and wake up anyone waiting on the device */ onenand_release_device(mtd); return ret; } /** * onenand_sync - [MTD Interface] sync * @param mtd MTD device structure * * Sync is actually a wait for chip ready function */ static void onenand_sync(struct mtd_info *mtd) { DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n"); /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_SYNCING); /* Release it and go back */ onenand_release_device(mtd); } /** * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad * @param mtd MTD device structure * @param ofs offset relative to mtd start * * Check whether the block is bad */ static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) { /* Check for invalid offset */ if (ofs > mtd->size) return -EINVAL; return onenand_block_checkbad(mtd, ofs, 1, 0); } /** * onenand_default_block_markbad - [DEFAULT] mark a block bad * @param mtd MTD device structure * @param ofs offset from device start * * This is the default implementation, which can be overridden by * a hardware specific driver. */ static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct onenand_chip *this = mtd->priv; struct bbm_info *bbm = this->bbm; u_char buf[2] = {0, 0}; size_t retlen; int block; /* Get block number */ block = ((int) ofs) >> bbm->bbt_erase_shift; if (bbm->bbt) bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); /* We write two bytes, so we dont have to mess with 16 bit access */ ofs += mtd->oobsize + (bbm->badblockpos & ~0x01); return mtd->write_oob(mtd, ofs , 2, &retlen, buf); } /** * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad * @param mtd MTD device structure * @param ofs offset relative to mtd start * * Mark the block as bad */ static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct onenand_chip *this = mtd->priv; int ret; ret = onenand_block_isbad(mtd, ofs); if (ret) { /* If it was bad already, return success and do nothing */ if (ret > 0) return 0; return ret; } return this->block_markbad(mtd, ofs); } /** * onenand_unlock - [MTD Interface] Unlock block(s) * @param mtd MTD device structure * @param ofs offset relative to mtd start * @param len number of bytes to unlock * * Unlock one or more blocks */ static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) { struct onenand_chip *this = mtd->priv; int start, end, block, value, status; start = ofs >> this->erase_shift; end = len >> this->erase_shift; /* Continuous lock scheme */ if (this->options & ONENAND_CONT_LOCK) { /* Set start block address */ this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS); /* Set end block address */ this->write_word(end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS); /* Write unlock command */ this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0); /* There's no return value */ this->wait(mtd, FL_UNLOCKING); /* Sanity check */ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) & ONENAND_CTRL_ONGO) continue; /* Check lock status */ status = this->read_word(this->base + ONENAND_REG_WP_STATUS); if (!(status & ONENAND_WP_US)) printk(KERN_ERR "wp status = 0x%x\n", status); return 0; } /* Block lock scheme */ for (block = start; block < end; block++) { /* Set block address */ value = onenand_block_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); /* Select DataRAM for DDP */ value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); /* Set start block address */ this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); /* Write unlock command */ this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0); /* There's no return value */ this->wait(mtd, FL_UNLOCKING); /* Sanity check */ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) & ONENAND_CTRL_ONGO) continue; /* Check lock status */ status = this->read_word(this->base + ONENAND_REG_WP_STATUS); if (!(status & ONENAND_WP_US)) printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status); } return 0; } /** * onenand_print_device_info - Print device ID * @param device device ID * * Print device ID */ static void onenand_print_device_info(int device) { int vcc, demuxed, ddp, density; vcc = device & ONENAND_DEVICE_VCC_MASK; demuxed = device & ONENAND_DEVICE_IS_DEMUX; ddp = device & ONENAND_DEVICE_IS_DDP; density = device >> ONENAND_DEVICE_DENSITY_SHIFT; printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n", demuxed ? "" : "Muxed ", ddp ? "(DDP)" : "", (16 << density), vcc ? "2.65/3.3" : "1.8", device); } static const struct onenand_manufacturers onenand_manuf_ids[] = { {ONENAND_MFR_SAMSUNG, "Samsung"}, }; /** * onenand_check_maf - Check manufacturer ID * @param manuf manufacturer ID * * Check manufacturer ID */ static int onenand_check_maf(int manuf) { int size = ARRAY_SIZE(onenand_manuf_ids); char *name; int i; for (i = 0; i < size; i++) if (manuf == onenand_manuf_ids[i].id) break; if (i < size) name = onenand_manuf_ids[i].name; else name = "Unknown"; printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf); return (i == size); } /** * onenand_probe - [OneNAND Interface] Probe the OneNAND device * @param mtd MTD device structure * * OneNAND detection method: * Compare the the values from command with ones from register */ static int onenand_probe(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; int bram_maf_id, bram_dev_id, maf_id, dev_id; int version_id; int density; /* Send the command for reading device ID from BootRAM */ this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM); /* Read manufacturer and device IDs from BootRAM */ bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0); bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2); /* Check manufacturer ID */ if (onenand_check_maf(bram_maf_id)) return -ENXIO; /* Reset OneNAND to read default register values */ this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM); /* Read manufacturer and device IDs from Register */ maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); /* Check OneNAND device */ if (maf_id != bram_maf_id || dev_id != bram_dev_id) return -ENXIO; /* Flash device information */ onenand_print_device_info(dev_id); this->device_id = dev_id; density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT; this->chipsize = (16 << density) << 20; /* Set density mask. it is used for DDP */ this->density_mask = (1 << (density + 6)); /* OneNAND page size & block size */ /* The data buffer size is equal to page size */ mtd->oobblock = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); mtd->oobsize = mtd->oobblock >> 5; /* Pagers per block is always 64 in OneNAND */ mtd->erasesize = mtd->oobblock << 6; this->erase_shift = ffs(mtd->erasesize) - 1; this->page_shift = ffs(mtd->oobblock) - 1; this->ppb_shift = (this->erase_shift - this->page_shift); this->page_mask = (mtd->erasesize / mtd->oobblock) - 1; /* REVIST: Multichip handling */ mtd->size = this->chipsize; /* Version ID */ version_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version_id); /* Lock scheme */ if (density <= ONENAND_DEVICE_DENSITY_512Mb && !(version_id >> ONENAND_VERSION_PROCESS_SHIFT)) { printk(KERN_INFO "Lock scheme is Continues Lock\n"); this->options |= ONENAND_CONT_LOCK; } return 0; } /** * onenand_suspend - [MTD Interface] Suspend the OneNAND flash * @param mtd MTD device structure */ static int onenand_suspend(struct mtd_info *mtd) { return onenand_get_device(mtd, FL_PM_SUSPENDED); } /** * onenand_resume - [MTD Interface] Resume the OneNAND flash * @param mtd MTD device structure */ static void onenand_resume(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; if (this->state == FL_PM_SUSPENDED) onenand_release_device(mtd); else printk(KERN_ERR "resume() called for the chip which is not" "in suspended state\n"); } /** * onenand_scan - [OneNAND Interface] Scan for the OneNAND device * @param mtd MTD device structure * @param maxchips Number of chips to scan for * * This fills out all the not initialized function pointers * with the defaults. * The flash ID is read and the mtd/chip structures are * filled with the appropriate values. */ int onenand_scan(struct mtd_info *mtd, int maxchips) { struct onenand_chip *this = mtd->priv; if (!this->read_word) this->read_word = onenand_readw; if (!this->write_word) this->write_word = onenand_writew; if (!this->command) this->command = onenand_command; if (!this->wait) this->wait = onenand_wait; if (!this->read_bufferram) this->read_bufferram = onenand_read_bufferram; if (!this->write_bufferram) this->write_bufferram = onenand_write_bufferram; if (!this->block_markbad) this->block_markbad = onenand_default_block_markbad; if (!this->scan_bbt) this->scan_bbt = onenand_default_bbt; if (onenand_probe(mtd)) return -ENXIO; /* Set Sync. Burst Read after probing */ if (this->mmcontrol) { printk(KERN_INFO "OneNAND Sync. Burst Read support\n"); this->read_bufferram = onenand_sync_read_bufferram; } /* Allocate buffers, if necessary */ if (!this->page_buf) { size_t len; len = mtd->oobblock + mtd->oobsize; this->page_buf = kmalloc(len, GFP_KERNEL); if (!this->page_buf) { printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n"); return -ENOMEM; } this->options |= ONENAND_PAGEBUF_ALLOC; } this->state = FL_READY; init_waitqueue_head(&this->wq); spin_lock_init(&this->chip_lock); switch (mtd->oobsize) { case 64: this->autooob = &onenand_oob_64; break; case 32: this->autooob = &onenand_oob_32; break; default: printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n", mtd->oobsize); /* To prevent kernel oops */ this->autooob = &onenand_oob_32; break; } memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo)); /* Fill in remaining MTD driver data */ mtd->type = MTD_NANDFLASH; mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC; mtd->ecctype = MTD_ECC_SW; mtd->erase = onenand_erase; mtd->point = NULL; mtd->unpoint = NULL; mtd->read = onenand_read; mtd->write = onenand_write; mtd->read_ecc = onenand_read_ecc; mtd->write_ecc = onenand_write_ecc; mtd->read_oob = onenand_read_oob; mtd->write_oob = onenand_write_oob; mtd->readv = NULL; mtd->readv_ecc = NULL; mtd->writev = onenand_writev; mtd->writev_ecc = onenand_writev_ecc; mtd->sync = onenand_sync; mtd->lock = NULL; mtd->unlock = onenand_unlock; mtd->suspend = onenand_suspend; mtd->resume = onenand_resume; mtd->block_isbad = onenand_block_isbad; mtd->block_markbad = onenand_block_markbad; mtd->owner = THIS_MODULE; /* Unlock whole block */ mtd->unlock(mtd, 0x0, this->chipsize); return this->scan_bbt(mtd); } /** * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device * @param mtd MTD device structure */ void onenand_release(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; #ifdef CONFIG_MTD_PARTITIONS /* Deregister partitions */ del_mtd_partitions (mtd); #endif /* Deregister the device */ del_mtd_device (mtd); /* Free bad block table memory, if allocated */ if (this->bbm) kfree(this->bbm); /* Buffer allocated by onenand_scan */ if (this->options & ONENAND_PAGEBUF_ALLOC) kfree(this->page_buf); } EXPORT_SYMBOL_GPL(onenand_scan); EXPORT_SYMBOL_GPL(onenand_release); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>"); MODULE_DESCRIPTION("Generic OneNAND flash driver code");