/* * Copyright © 2003 Rick Bronson * * Derived from drivers/mtd/nand/autcpu12.c * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de) * * Derived from drivers/mtd/spia.c * Copyright © 2000 Steven J. Hill (sjhill@cotw.com) * * * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007 * * Derived from Das U-Boot source code * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas * * Add Programmable Multibit ECC support for various AT91 SoC * © Copyright 2012 ATMEL, Hong Xu * * Add Nand Flash Controller support for SAMA5 SoC * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int use_dma = 1; module_param(use_dma, int, 0); static int on_flash_bbt = 0; module_param(on_flash_bbt, int, 0); /* Register access macros */ #define ecc_readl(add, reg) \ __raw_readl(add + ATMEL_ECC_##reg) #define ecc_writel(add, reg, value) \ __raw_writel((value), add + ATMEL_ECC_##reg) #include "atmel_nand_ecc.h" /* Hardware ECC registers */ #include "atmel_nand_nfc.h" /* Nand Flash Controller definition */ /* oob layout for large page size * bad block info is on bytes 0 and 1 * the bytes have to be consecutives to avoid * several NAND_CMD_RNDOUT during read */ static struct nand_ecclayout atmel_oobinfo_large = { .eccbytes = 4, .eccpos = {60, 61, 62, 63}, .oobfree = { {2, 58} }, }; /* oob layout for small page size * bad block info is on bytes 4 and 5 * the bytes have to be consecutives to avoid * several NAND_CMD_RNDOUT during read */ static struct nand_ecclayout atmel_oobinfo_small = { .eccbytes = 4, .eccpos = {0, 1, 2, 3}, .oobfree = { {6, 10} }, }; struct atmel_nfc { void __iomem *base_cmd_regs; void __iomem *hsmc_regs; void __iomem *sram_bank0; dma_addr_t sram_bank0_phys; bool use_nfc_sram; bool write_by_sram; bool is_initialized; struct completion comp_nfc; /* Point to the sram bank which include readed data via NFC */ void __iomem *data_in_sram; bool will_write_sram; }; static struct atmel_nfc nand_nfc; struct atmel_nand_host { struct nand_chip nand_chip; struct mtd_info mtd; void __iomem *io_base; dma_addr_t io_phys; struct atmel_nand_data board; struct device *dev; void __iomem *ecc; struct completion comp; struct dma_chan *dma_chan; struct atmel_nfc *nfc; bool has_pmecc; u8 pmecc_corr_cap; u16 pmecc_sector_size; u32 pmecc_lookup_table_offset; u32 pmecc_lookup_table_offset_512; u32 pmecc_lookup_table_offset_1024; int pmecc_bytes_per_sector; int pmecc_sector_number; int pmecc_degree; /* Degree of remainders */ int pmecc_cw_len; /* Length of codeword */ void __iomem *pmerrloc_base; void __iomem *pmecc_rom_base; /* lookup table for alpha_to and index_of */ void __iomem *pmecc_alpha_to; void __iomem *pmecc_index_of; /* data for pmecc computation */ int16_t *pmecc_partial_syn; int16_t *pmecc_si; int16_t *pmecc_smu; /* Sigma table */ int16_t *pmecc_lmu; /* polynomal order */ int *pmecc_mu; int *pmecc_dmu; int *pmecc_delta; }; static struct nand_ecclayout atmel_pmecc_oobinfo; /* * Enable NAND. */ static void atmel_nand_enable(struct atmel_nand_host *host) { if (gpio_is_valid(host->board.enable_pin)) gpio_set_value(host->board.enable_pin, 0); } /* * Disable NAND. */ static void atmel_nand_disable(struct atmel_nand_host *host) { if (gpio_is_valid(host->board.enable_pin)) gpio_set_value(host->board.enable_pin, 1); } /* * Hardware specific access to control-lines */ static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; if (ctrl & NAND_CTRL_CHANGE) { if (ctrl & NAND_NCE) atmel_nand_enable(host); else atmel_nand_disable(host); } if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) writeb(cmd, host->io_base + (1 << host->board.cle)); else writeb(cmd, host->io_base + (1 << host->board.ale)); } /* * Read the Device Ready pin. */ static int atmel_nand_device_ready(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; return gpio_get_value(host->board.rdy_pin) ^ !!host->board.rdy_pin_active_low; } /* Set up for hardware ready pin and enable pin. */ static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct atmel_nand_host *host = chip->priv; int res = 0; if (gpio_is_valid(host->board.rdy_pin)) { res = devm_gpio_request(host->dev, host->board.rdy_pin, "nand_rdy"); if (res < 0) { dev_err(host->dev, "can't request rdy gpio %d\n", host->board.rdy_pin); return res; } res = gpio_direction_input(host->board.rdy_pin); if (res < 0) { dev_err(host->dev, "can't request input direction rdy gpio %d\n", host->board.rdy_pin); return res; } chip->dev_ready = atmel_nand_device_ready; } if (gpio_is_valid(host->board.enable_pin)) { res = devm_gpio_request(host->dev, host->board.enable_pin, "nand_enable"); if (res < 0) { dev_err(host->dev, "can't request enable gpio %d\n", host->board.enable_pin); return res; } res = gpio_direction_output(host->board.enable_pin, 1); if (res < 0) { dev_err(host->dev, "can't request output direction enable gpio %d\n", host->board.enable_pin); return res; } } return res; } static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) { int i; u32 *t = trg; const __iomem u32 *s = src; for (i = 0; i < (size >> 2); i++) *t++ = readl_relaxed(s++); } static void memcpy32_toio(void __iomem *trg, const void *src, int size) { int i; u32 __iomem *t = trg; const u32 *s = src; for (i = 0; i < (size >> 2); i++) writel_relaxed(*s++, t++); } /* * Minimal-overhead PIO for data access. */ static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) { memcpy32_fromio(buf, host->nfc->data_in_sram, len); host->nfc->data_in_sram += len; } else { __raw_readsb(nand_chip->IO_ADDR_R, buf, len); } } static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) { memcpy32_fromio(buf, host->nfc->data_in_sram, len); host->nfc->data_in_sram += len; } else { __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2); } } static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; __raw_writesb(nand_chip->IO_ADDR_W, buf, len); } static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2); } static void dma_complete_func(void *completion) { complete(completion); } static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank) { /* NFC only has two banks. Must be 0 or 1 */ if (bank > 1) return -EINVAL; if (bank) { /* Only for a 2k-page or lower flash, NFC can handle 2 banks */ if (host->mtd.writesize > 2048) return -EINVAL; nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1); } else { nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0); } return 0; } static uint nfc_get_sram_off(struct atmel_nand_host *host) { if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1) return NFC_SRAM_BANK1_OFFSET; else return 0; } static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host) { if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1) return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET; else return host->nfc->sram_bank0_phys; } static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len, int is_read) { struct dma_device *dma_dev; enum dma_ctrl_flags flags; dma_addr_t dma_src_addr, dma_dst_addr, phys_addr; struct dma_async_tx_descriptor *tx = NULL; dma_cookie_t cookie; struct nand_chip *chip = mtd->priv; struct atmel_nand_host *host = chip->priv; void *p = buf; int err = -EIO; enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; struct atmel_nfc *nfc = host->nfc; if (buf >= high_memory) goto err_buf; dma_dev = host->dma_chan->device; flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP | DMA_COMPL_SKIP_DEST_UNMAP; phys_addr = dma_map_single(dma_dev->dev, p, len, dir); if (dma_mapping_error(dma_dev->dev, phys_addr)) { dev_err(host->dev, "Failed to dma_map_single\n"); goto err_buf; } if (is_read) { if (nfc && nfc->data_in_sram) dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram - (nfc->sram_bank0 + nfc_get_sram_off(host))); else dma_src_addr = host->io_phys; dma_dst_addr = phys_addr; } else { dma_src_addr = phys_addr; if (nfc && nfc->write_by_sram) dma_dst_addr = nfc_sram_phys(host); else dma_dst_addr = host->io_phys; } tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr, dma_src_addr, len, flags); if (!tx) { dev_err(host->dev, "Failed to prepare DMA memcpy\n"); goto err_dma; } init_completion(&host->comp); tx->callback = dma_complete_func; tx->callback_param = &host->comp; cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { dev_err(host->dev, "Failed to do DMA tx_submit\n"); goto err_dma; } dma_async_issue_pending(host->dma_chan); wait_for_completion(&host->comp); if (is_read && nfc && nfc->data_in_sram) /* After read data from SRAM, need to increase the position */ nfc->data_in_sram += len; err = 0; err_dma: dma_unmap_single(dma_dev->dev, phys_addr, len, dir); err_buf: if (err != 0) dev_warn(host->dev, "Fall back to CPU I/O\n"); return err; } static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *chip = mtd->priv; struct atmel_nand_host *host = chip->priv; if (use_dma && len > mtd->oobsize) /* only use DMA for bigger than oob size: better performances */ if (atmel_nand_dma_op(mtd, buf, len, 1) == 0) return; if (host->board.bus_width_16) atmel_read_buf16(mtd, buf, len); else atmel_read_buf8(mtd, buf, len); } static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *chip = mtd->priv; struct atmel_nand_host *host = chip->priv; if (use_dma && len > mtd->oobsize) /* only use DMA for bigger than oob size: better performances */ if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0) return; if (host->board.bus_width_16) atmel_write_buf16(mtd, buf, len); else atmel_write_buf8(mtd, buf, len); } /* * Return number of ecc bytes per sector according to sector size and * correction capability * * Following table shows what at91 PMECC supported: * Correction Capability Sector_512_bytes Sector_1024_bytes * ===================== ================ ================= * 2-bits 4-bytes 4-bytes * 4-bits 7-bytes 7-bytes * 8-bits 13-bytes 14-bytes * 12-bits 20-bytes 21-bytes * 24-bits 39-bytes 42-bytes */ static int pmecc_get_ecc_bytes(int cap, int sector_size) { int m = 12 + sector_size / 512; return (m * cap + 7) / 8; } static void pmecc_config_ecc_layout(struct nand_ecclayout *layout, int oobsize, int ecc_len) { int i; layout->eccbytes = ecc_len; /* ECC will occupy the last ecc_len bytes continuously */ for (i = 0; i < ecc_len; i++) layout->eccpos[i] = oobsize - ecc_len + i; layout->oobfree[0].offset = 2; layout->oobfree[0].length = oobsize - ecc_len - layout->oobfree[0].offset; } static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host) { int table_size; table_size = host->pmecc_sector_size == 512 ? PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024; return host->pmecc_rom_base + host->pmecc_lookup_table_offset + table_size * sizeof(int16_t); } static int pmecc_data_alloc(struct atmel_nand_host *host) { const int cap = host->pmecc_corr_cap; int size; size = (2 * cap + 1) * sizeof(int16_t); host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL); host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL); host->pmecc_lmu = devm_kzalloc(host->dev, (cap + 1) * sizeof(int16_t), GFP_KERNEL); host->pmecc_smu = devm_kzalloc(host->dev, (cap + 2) * size, GFP_KERNEL); size = (cap + 1) * sizeof(int); host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL); host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL); host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL); if (!host->pmecc_partial_syn || !host->pmecc_si || !host->pmecc_lmu || !host->pmecc_smu || !host->pmecc_mu || !host->pmecc_dmu || !host->pmecc_delta) return -ENOMEM; return 0; } static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; int i; uint32_t value; /* Fill odd syndromes */ for (i = 0; i < host->pmecc_corr_cap; i++) { value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2); if (i & 1) value >>= 16; value &= 0xffff; host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value; } } static void pmecc_substitute(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; int16_t __iomem *alpha_to = host->pmecc_alpha_to; int16_t __iomem *index_of = host->pmecc_index_of; int16_t *partial_syn = host->pmecc_partial_syn; const int cap = host->pmecc_corr_cap; int16_t *si; int i, j; /* si[] is a table that holds the current syndrome value, * an element of that table belongs to the field */ si = host->pmecc_si; memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1)); /* Computation 2t syndromes based on S(x) */ /* Odd syndromes */ for (i = 1; i < 2 * cap; i += 2) { for (j = 0; j < host->pmecc_degree; j++) { if (partial_syn[i] & ((unsigned short)0x1 << j)) si[i] = readw_relaxed(alpha_to + i * j) ^ si[i]; } } /* Even syndrome = (Odd syndrome) ** 2 */ for (i = 2, j = 1; j <= cap; i = ++j << 1) { if (si[j] == 0) { si[i] = 0; } else { int16_t tmp; tmp = readw_relaxed(index_of + si[j]); tmp = (tmp * 2) % host->pmecc_cw_len; si[i] = readw_relaxed(alpha_to + tmp); } } return; } static void pmecc_get_sigma(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; int16_t *lmu = host->pmecc_lmu; int16_t *si = host->pmecc_si; int *mu = host->pmecc_mu; int *dmu = host->pmecc_dmu; /* Discrepancy */ int *delta = host->pmecc_delta; /* Delta order */ int cw_len = host->pmecc_cw_len; const int16_t cap = host->pmecc_corr_cap; const int num = 2 * cap + 1; int16_t __iomem *index_of = host->pmecc_index_of; int16_t __iomem *alpha_to = host->pmecc_alpha_to; int i, j, k; uint32_t dmu_0_count, tmp; int16_t *smu = host->pmecc_smu; /* index of largest delta */ int ro; int largest; int diff; dmu_0_count = 0; /* First Row */ /* Mu */ mu[0] = -1; memset(smu, 0, sizeof(int16_t) * num); smu[0] = 1; /* discrepancy set to 1 */ dmu[0] = 1; /* polynom order set to 0 */ lmu[0] = 0; delta[0] = (mu[0] * 2 - lmu[0]) >> 1; /* Second Row */ /* Mu */ mu[1] = 0; /* Sigma(x) set to 1 */ memset(&smu[num], 0, sizeof(int16_t) * num); smu[num] = 1; /* discrepancy set to S1 */ dmu[1] = si[1]; /* polynom order set to 0 */ lmu[1] = 0; delta[1] = (mu[1] * 2 - lmu[1]) >> 1; /* Init the Sigma(x) last row */ memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num); for (i = 1; i <= cap; i++) { mu[i + 1] = i << 1; /* Begin Computing Sigma (Mu+1) and L(mu) */ /* check if discrepancy is set to 0 */ if (dmu[i] == 0) { dmu_0_count++; tmp = ((cap - (lmu[i] >> 1) - 1) / 2); if ((cap - (lmu[i] >> 1) - 1) & 0x1) tmp += 2; else tmp += 1; if (dmu_0_count == tmp) { for (j = 0; j <= (lmu[i] >> 1) + 1; j++) smu[(cap + 1) * num + j] = smu[i * num + j]; lmu[cap + 1] = lmu[i]; return; } /* copy polynom */ for (j = 0; j <= lmu[i] >> 1; j++) smu[(i + 1) * num + j] = smu[i * num + j]; /* copy previous polynom order to the next */ lmu[i + 1] = lmu[i]; } else { ro = 0; largest = -1; /* find largest delta with dmu != 0 */ for (j = 0; j < i; j++) { if ((dmu[j]) && (delta[j] > largest)) { largest = delta[j]; ro = j; } } /* compute difference */ diff = (mu[i] - mu[ro]); /* Compute degree of the new smu polynomial */ if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) lmu[i + 1] = lmu[i]; else lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; /* Init smu[i+1] with 0 */ for (k = 0; k < num; k++) smu[(i + 1) * num + k] = 0; /* Compute smu[i+1] */ for (k = 0; k <= lmu[ro] >> 1; k++) { int16_t a, b, c; if (!(smu[ro * num + k] && dmu[i])) continue; a = readw_relaxed(index_of + dmu[i]); b = readw_relaxed(index_of + dmu[ro]); c = readw_relaxed(index_of + smu[ro * num + k]); tmp = a + (cw_len - b) + c; a = readw_relaxed(alpha_to + tmp % cw_len); smu[(i + 1) * num + (k + diff)] = a; } for (k = 0; k <= lmu[i] >> 1; k++) smu[(i + 1) * num + k] ^= smu[i * num + k]; } /* End Computing Sigma (Mu+1) and L(mu) */ /* In either case compute delta */ delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; /* Do not compute discrepancy for the last iteration */ if (i >= cap) continue; for (k = 0; k <= (lmu[i + 1] >> 1); k++) { tmp = 2 * (i - 1); if (k == 0) { dmu[i + 1] = si[tmp + 3]; } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { int16_t a, b, c; a = readw_relaxed(index_of + smu[(i + 1) * num + k]); b = si[2 * (i - 1) + 3 - k]; c = readw_relaxed(index_of + b); tmp = a + c; tmp %= cw_len; dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^ dmu[i + 1]; } } } return; } static int pmecc_err_location(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; unsigned long end_time; const int cap = host->pmecc_corr_cap; const int num = 2 * cap + 1; int sector_size = host->pmecc_sector_size; int err_nbr = 0; /* number of error */ int roots_nbr; /* number of roots */ int i; uint32_t val; int16_t *smu = host->pmecc_smu; pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE); for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) { pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i, smu[(cap + 1) * num + i]); err_nbr++; } val = (err_nbr - 1) << 16; if (sector_size == 1024) val |= 1; pmerrloc_writel(host->pmerrloc_base, ELCFG, val); pmerrloc_writel(host->pmerrloc_base, ELEN, sector_size * 8 + host->pmecc_degree * cap); end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR) & PMERRLOC_CALC_DONE)) { if (unlikely(time_after(jiffies, end_time))) { dev_err(host->dev, "PMECC: Timeout to calculate error location.\n"); return -1; } cpu_relax(); } roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR) & PMERRLOC_ERR_NUM_MASK) >> 8; /* Number of roots == degree of smu hence <= cap */ if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1) return err_nbr - 1; /* Number of roots does not match the degree of smu * unable to correct error */ return -1; } static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc, int sector_num, int extra_bytes, int err_nbr) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; int i = 0; int byte_pos, bit_pos, sector_size, pos; uint32_t tmp; uint8_t err_byte; sector_size = host->pmecc_sector_size; while (err_nbr) { tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1; byte_pos = tmp / 8; bit_pos = tmp % 8; if (byte_pos >= (sector_size + extra_bytes)) BUG(); /* should never happen */ if (byte_pos < sector_size) { err_byte = *(buf + byte_pos); *(buf + byte_pos) ^= (1 << bit_pos); pos = sector_num * host->pmecc_sector_size + byte_pos; dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", pos, bit_pos, err_byte, *(buf + byte_pos)); } else { /* Bit flip in OOB area */ tmp = sector_num * host->pmecc_bytes_per_sector + (byte_pos - sector_size); err_byte = ecc[tmp]; ecc[tmp] ^= (1 << bit_pos); pos = tmp + nand_chip->ecc.layout->eccpos[0]; dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", pos, bit_pos, err_byte, ecc[tmp]); } i++; err_nbr--; } return; } static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf, u8 *ecc) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; int i, err_nbr, eccbytes; uint8_t *buf_pos; int total_err = 0; eccbytes = nand_chip->ecc.bytes; for (i = 0; i < eccbytes; i++) if (ecc[i] != 0xff) goto normal_check; /* Erased page, return OK */ return 0; normal_check: for (i = 0; i < host->pmecc_sector_number; i++) { err_nbr = 0; if (pmecc_stat & 0x1) { buf_pos = buf + i * host->pmecc_sector_size; pmecc_gen_syndrome(mtd, i); pmecc_substitute(mtd); pmecc_get_sigma(mtd); err_nbr = pmecc_err_location(mtd); if (err_nbr == -1) { dev_err(host->dev, "PMECC: Too many errors\n"); mtd->ecc_stats.failed++; return -EIO; } else { pmecc_correct_data(mtd, buf_pos, ecc, i, host->pmecc_bytes_per_sector, err_nbr); mtd->ecc_stats.corrected += err_nbr; total_err += err_nbr; } } pmecc_stat >>= 1; } return total_err; } static void pmecc_enable(struct atmel_nand_host *host, int ecc_op) { u32 val; if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) { dev_err(host->dev, "atmel_nand: wrong pmecc operation type!"); return; } pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); val = pmecc_readl_relaxed(host->ecc, CFG); if (ecc_op == NAND_ECC_READ) pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE); else pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE); pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA); } static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct atmel_nand_host *host = chip->priv; int eccsize = chip->ecc.size; uint8_t *oob = chip->oob_poi; uint32_t *eccpos = chip->ecc.layout->eccpos; uint32_t stat; unsigned long end_time; int bitflips = 0; if (!host->nfc || !host->nfc->use_nfc_sram) pmecc_enable(host, NAND_ECC_READ); chip->read_buf(mtd, buf, eccsize); chip->read_buf(mtd, oob, mtd->oobsize); end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) { if (unlikely(time_after(jiffies, end_time))) { dev_err(host->dev, "PMECC: Timeout to get error status.\n"); return -EIO; } cpu_relax(); } stat = pmecc_readl_relaxed(host->ecc, ISR); if (stat != 0) { bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]); if (bitflips < 0) /* uncorrectable errors */ return 0; } return bitflips; } static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { struct atmel_nand_host *host = chip->priv; uint32_t *eccpos = chip->ecc.layout->eccpos; int i, j; unsigned long end_time; if (!host->nfc || !host->nfc->write_by_sram) { pmecc_enable(host, NAND_ECC_WRITE); chip->write_buf(mtd, (u8 *)buf, mtd->writesize); } end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) { if (unlikely(time_after(jiffies, end_time))) { dev_err(host->dev, "PMECC: Timeout to get ECC value.\n"); return -EIO; } cpu_relax(); } for (i = 0; i < host->pmecc_sector_number; i++) { for (j = 0; j < host->pmecc_bytes_per_sector; j++) { int pos; pos = i * host->pmecc_bytes_per_sector + j; chip->oob_poi[eccpos[pos]] = pmecc_readb_ecc_relaxed(host->ecc, i, j); } } chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } static void atmel_pmecc_core_init(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; uint32_t val = 0; struct nand_ecclayout *ecc_layout; pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); switch (host->pmecc_corr_cap) { case 2: val = PMECC_CFG_BCH_ERR2; break; case 4: val = PMECC_CFG_BCH_ERR4; break; case 8: val = PMECC_CFG_BCH_ERR8; break; case 12: val = PMECC_CFG_BCH_ERR12; break; case 24: val = PMECC_CFG_BCH_ERR24; break; } if (host->pmecc_sector_size == 512) val |= PMECC_CFG_SECTOR512; else if (host->pmecc_sector_size == 1024) val |= PMECC_CFG_SECTOR1024; switch (host->pmecc_sector_number) { case 1: val |= PMECC_CFG_PAGE_1SECTOR; break; case 2: val |= PMECC_CFG_PAGE_2SECTORS; break; case 4: val |= PMECC_CFG_PAGE_4SECTORS; break; case 8: val |= PMECC_CFG_PAGE_8SECTORS; break; } val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE | PMECC_CFG_AUTO_DISABLE); pmecc_writel(host->ecc, CFG, val); ecc_layout = nand_chip->ecc.layout; pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1); pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]); pmecc_writel(host->ecc, EADDR, ecc_layout->eccpos[ecc_layout->eccbytes - 1]); /* See datasheet about PMECC Clock Control Register */ pmecc_writel(host->ecc, CLK, 2); pmecc_writel(host->ecc, IDR, 0xff); pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); } /* * Get ECC requirement in ONFI parameters, returns -1 if ONFI * parameters is not supported. * return 0 if success to get the ECC requirement. */ static int get_onfi_ecc_param(struct nand_chip *chip, int *ecc_bits, int *sector_size) { *ecc_bits = *sector_size = 0; if (chip->onfi_params.ecc_bits == 0xff) /* TODO: the sector_size and ecc_bits need to be find in * extended ecc parameter, currently we don't support it. */ return -1; *ecc_bits = chip->onfi_params.ecc_bits; /* The default sector size (ecc codeword size) is 512 */ *sector_size = 512; return 0; } /* * Get ecc requirement from ONFI parameters ecc requirement. * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function * will set them according to ONFI ecc requirement. Otherwise, use the * value in DTS file. * return 0 if success. otherwise return error code. */ static int pmecc_choose_ecc(struct atmel_nand_host *host, int *cap, int *sector_size) { /* Get ECC requirement from ONFI parameters */ *cap = *sector_size = 0; if (host->nand_chip.onfi_version) { if (!get_onfi_ecc_param(&host->nand_chip, cap, sector_size)) dev_info(host->dev, "ONFI params, minimum required ECC: %d bits in %d bytes\n", *cap, *sector_size); else dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n"); } else { dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes"); } if (*cap == 0 && *sector_size == 0) { *cap = 2; *sector_size = 512; } /* If dts file doesn't specify then use the one in ONFI parameters */ if (host->pmecc_corr_cap == 0) { /* use the most fitable ecc bits (the near bigger one ) */ if (*cap <= 2) host->pmecc_corr_cap = 2; else if (*cap <= 4) host->pmecc_corr_cap = 4; else if (*cap <= 8) host->pmecc_corr_cap = 8; else if (*cap <= 12) host->pmecc_corr_cap = 12; else if (*cap <= 24) host->pmecc_corr_cap = 24; else return -EINVAL; } if (host->pmecc_sector_size == 0) { /* use the most fitable sector size (the near smaller one ) */ if (*sector_size >= 1024) host->pmecc_sector_size = 1024; else if (*sector_size >= 512) host->pmecc_sector_size = 512; else return -EINVAL; } return 0; } static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev, struct atmel_nand_host *host) { struct mtd_info *mtd = &host->mtd; struct nand_chip *nand_chip = &host->nand_chip; struct resource *regs, *regs_pmerr, *regs_rom; int cap, sector_size, err_no; err_no = pmecc_choose_ecc(host, &cap, §or_size); if (err_no) { dev_err(host->dev, "The NAND flash's ECC requirement are not support!"); return err_no; } if (cap > host->pmecc_corr_cap || sector_size != host->pmecc_sector_size) dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n"); cap = host->pmecc_corr_cap; sector_size = host->pmecc_sector_size; host->pmecc_lookup_table_offset = (sector_size == 512) ? host->pmecc_lookup_table_offset_512 : host->pmecc_lookup_table_offset_1024; dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n", cap, sector_size); regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!regs) { dev_warn(host->dev, "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n"); nand_chip->ecc.mode = NAND_ECC_SOFT; return 0; } host->ecc = devm_ioremap_resource(&pdev->dev, regs); if (IS_ERR(host->ecc)) { dev_err(host->dev, "ioremap failed\n"); err_no = PTR_ERR(host->ecc); goto err; } regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2); host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr); if (IS_ERR(host->pmerrloc_base)) { dev_err(host->dev, "Can not get I/O resource for PMECC ERRLOC controller!\n"); err_no = PTR_ERR(host->pmerrloc_base); goto err; } regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3); host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom); if (IS_ERR(host->pmecc_rom_base)) { dev_err(host->dev, "Can not get I/O resource for ROM!\n"); err_no = PTR_ERR(host->pmecc_rom_base); goto err; } /* ECC is calculated for the whole page (1 step) */ nand_chip->ecc.size = mtd->writesize; /* set ECC page size and oob layout */ switch (mtd->writesize) { case 2048: host->pmecc_degree = (sector_size == 512) ? PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14; host->pmecc_cw_len = (1 << host->pmecc_degree) - 1; host->pmecc_sector_number = mtd->writesize / sector_size; host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes( cap, sector_size); host->pmecc_alpha_to = pmecc_get_alpha_to(host); host->pmecc_index_of = host->pmecc_rom_base + host->pmecc_lookup_table_offset; nand_chip->ecc.steps = 1; nand_chip->ecc.strength = cap; nand_chip->ecc.bytes = host->pmecc_bytes_per_sector * host->pmecc_sector_number; if (nand_chip->ecc.bytes > mtd->oobsize - 2) { dev_err(host->dev, "No room for ECC bytes\n"); err_no = -EINVAL; goto err; } pmecc_config_ecc_layout(&atmel_pmecc_oobinfo, mtd->oobsize, nand_chip->ecc.bytes); nand_chip->ecc.layout = &atmel_pmecc_oobinfo; break; case 512: case 1024: case 4096: /* TODO */ dev_warn(host->dev, "Unsupported page size for PMECC, use Software ECC\n"); default: /* page size not handled by HW ECC */ /* switching back to soft ECC */ nand_chip->ecc.mode = NAND_ECC_SOFT; return 0; } /* Allocate data for PMECC computation */ err_no = pmecc_data_alloc(host); if (err_no) { dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n"); goto err; } nand_chip->ecc.read_page = atmel_nand_pmecc_read_page; nand_chip->ecc.write_page = atmel_nand_pmecc_write_page; atmel_pmecc_core_init(mtd); return 0; err: return err_no; } /* * Calculate HW ECC * * function called after a write * * mtd: MTD block structure * dat: raw data (unused) * ecc_code: buffer for ECC */ static int atmel_nand_calculate(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; unsigned int ecc_value; /* get the first 2 ECC bytes */ ecc_value = ecc_readl(host->ecc, PR); ecc_code[0] = ecc_value & 0xFF; ecc_code[1] = (ecc_value >> 8) & 0xFF; /* get the last 2 ECC bytes */ ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY; ecc_code[2] = ecc_value & 0xFF; ecc_code[3] = (ecc_value >> 8) & 0xFF; return 0; } /* * HW ECC read page function * * mtd: mtd info structure * chip: nand chip info structure * buf: buffer to store read data * oob_required: caller expects OOB data read to chip->oob_poi */ static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; uint32_t *eccpos = chip->ecc.layout->eccpos; uint8_t *p = buf; uint8_t *oob = chip->oob_poi; uint8_t *ecc_pos; int stat; unsigned int max_bitflips = 0; /* * Errata: ALE is incorrectly wired up to the ECC controller * on the AP7000, so it will include the address cycles in the * ECC calculation. * * Workaround: Reset the parity registers before reading the * actual data. */ struct atmel_nand_host *host = chip->priv; if (host->board.need_reset_workaround) ecc_writel(host->ecc, CR, ATMEL_ECC_RST); /* read the page */ chip->read_buf(mtd, p, eccsize); /* move to ECC position if needed */ if (eccpos[0] != 0) { /* This only works on large pages * because the ECC controller waits for * NAND_CMD_RNDOUTSTART after the * NAND_CMD_RNDOUT. * anyway, for small pages, the eccpos[0] == 0 */ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + eccpos[0], -1); } /* the ECC controller needs to read the ECC just after the data */ ecc_pos = oob + eccpos[0]; chip->read_buf(mtd, ecc_pos, eccbytes); /* check if there's an error */ stat = chip->ecc.correct(mtd, p, oob, NULL); if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } /* get back to oob start (end of page) */ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); /* read the oob */ chip->read_buf(mtd, oob, mtd->oobsize); return max_bitflips; } /* * HW ECC Correction * * function called after a read * * mtd: MTD block structure * dat: raw data read from the chip * read_ecc: ECC from the chip (unused) * isnull: unused * * Detect and correct a 1 bit error for a page */ static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *isnull) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; unsigned int ecc_status; unsigned int ecc_word, ecc_bit; /* get the status from the Status Register */ ecc_status = ecc_readl(host->ecc, SR); /* if there's no error */ if (likely(!(ecc_status & ATMEL_ECC_RECERR))) return 0; /* get error bit offset (4 bits) */ ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR; /* get word address (12 bits) */ ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR; ecc_word >>= 4; /* if there are multiple errors */ if (ecc_status & ATMEL_ECC_MULERR) { /* check if it is a freshly erased block * (filled with 0xff) */ if ((ecc_bit == ATMEL_ECC_BITADDR) && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) { /* the block has just been erased, return OK */ return 0; } /* it doesn't seems to be a freshly * erased block. * We can't correct so many errors */ dev_dbg(host->dev, "atmel_nand : multiple errors detected." " Unable to correct.\n"); return -EIO; } /* if there's a single bit error : we can correct it */ if (ecc_status & ATMEL_ECC_ECCERR) { /* there's nothing much to do here. * the bit error is on the ECC itself. */ dev_dbg(host->dev, "atmel_nand : one bit error on ECC code." " Nothing to correct\n"); return 0; } dev_dbg(host->dev, "atmel_nand : one bit error on data." " (word offset in the page :" " 0x%x bit offset : 0x%x)\n", ecc_word, ecc_bit); /* correct the error */ if (nand_chip->options & NAND_BUSWIDTH_16) { /* 16 bits words */ ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit); } else { /* 8 bits words */ dat[ecc_word] ^= (1 << ecc_bit); } dev_dbg(host->dev, "atmel_nand : error corrected\n"); return 1; } /* * Enable HW ECC : unused on most chips */ static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; if (host->board.need_reset_workaround) ecc_writel(host->ecc, CR, ATMEL_ECC_RST); } static int atmel_of_init_port(struct atmel_nand_host *host, struct device_node *np) { u32 val; u32 offset[2]; int ecc_mode; struct atmel_nand_data *board = &host->board; enum of_gpio_flags flags = 0; if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) { if (val >= 32) { dev_err(host->dev, "invalid addr-offset %u\n", val); return -EINVAL; } board->ale = val; } if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) { if (val >= 32) { dev_err(host->dev, "invalid cmd-offset %u\n", val); return -EINVAL; } board->cle = val; } ecc_mode = of_get_nand_ecc_mode(np); board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode; board->on_flash_bbt = of_get_nand_on_flash_bbt(np); board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma"); if (of_get_nand_bus_width(np) == 16) board->bus_width_16 = 1; board->rdy_pin = of_get_gpio_flags(np, 0, &flags); board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW); board->enable_pin = of_get_gpio(np, 1); board->det_pin = of_get_gpio(np, 2); host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc"); /* load the nfc driver if there is */ of_platform_populate(np, NULL, NULL, host->dev); if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc) return 0; /* Not using PMECC */ /* use PMECC, get correction capability, sector size and lookup * table offset. * If correction bits and sector size are not specified, then find * them from NAND ONFI parameters. */ if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) { if ((val != 2) && (val != 4) && (val != 8) && (val != 12) && (val != 24)) { dev_err(host->dev, "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n", val); return -EINVAL; } host->pmecc_corr_cap = (u8)val; } if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) { if ((val != 512) && (val != 1024)) { dev_err(host->dev, "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n", val); return -EINVAL; } host->pmecc_sector_size = (u16)val; } if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset", offset, 2) != 0) { dev_err(host->dev, "Cannot get PMECC lookup table offset\n"); return -EINVAL; } if (!offset[0] && !offset[1]) { dev_err(host->dev, "Invalid PMECC lookup table offset\n"); return -EINVAL; } host->pmecc_lookup_table_offset_512 = offset[0]; host->pmecc_lookup_table_offset_1024 = offset[1]; return 0; } static int __init atmel_hw_nand_init_params(struct platform_device *pdev, struct atmel_nand_host *host) { struct mtd_info *mtd = &host->mtd; struct nand_chip *nand_chip = &host->nand_chip; struct resource *regs; regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!regs) { dev_err(host->dev, "Can't get I/O resource regs, use software ECC\n"); nand_chip->ecc.mode = NAND_ECC_SOFT; return 0; } host->ecc = devm_ioremap_resource(&pdev->dev, regs); if (IS_ERR(host->ecc)) { dev_err(host->dev, "ioremap failed\n"); return PTR_ERR(host->ecc); } /* ECC is calculated for the whole page (1 step) */ nand_chip->ecc.size = mtd->writesize; /* set ECC page size and oob layout */ switch (mtd->writesize) { case 512: nand_chip->ecc.layout = &atmel_oobinfo_small; ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); break; case 1024: nand_chip->ecc.layout = &atmel_oobinfo_large; ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056); break; case 2048: nand_chip->ecc.layout = &atmel_oobinfo_large; ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112); break; case 4096: nand_chip->ecc.layout = &atmel_oobinfo_large; ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224); break; default: /* page size not handled by HW ECC */ /* switching back to soft ECC */ nand_chip->ecc.mode = NAND_ECC_SOFT; return 0; } /* set up for HW ECC */ nand_chip->ecc.calculate = atmel_nand_calculate; nand_chip->ecc.correct = atmel_nand_correct; nand_chip->ecc.hwctl = atmel_nand_hwctl; nand_chip->ecc.read_page = atmel_nand_read_page; nand_chip->ecc.bytes = 4; nand_chip->ecc.strength = 1; return 0; } /* SMC interrupt service routine */ static irqreturn_t hsmc_interrupt(int irq, void *dev_id) { struct atmel_nand_host *host = dev_id; u32 status, mask, pending; irqreturn_t ret = IRQ_HANDLED; status = nfc_readl(host->nfc->hsmc_regs, SR); mask = nfc_readl(host->nfc->hsmc_regs, IMR); pending = status & mask; if (pending & NFC_SR_XFR_DONE) { complete(&host->nfc->comp_nfc); nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE); } else if (pending & NFC_SR_RB_EDGE) { complete(&host->nfc->comp_nfc); nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE); } else if (pending & NFC_SR_CMD_DONE) { complete(&host->nfc->comp_nfc); nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE); } else { ret = IRQ_NONE; } return ret; } /* NFC(Nand Flash Controller) related functions */ static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag) { unsigned long timeout; init_completion(&host->nfc->comp_nfc); /* Enable interrupt that need to wait for */ nfc_writel(host->nfc->hsmc_regs, IER, flag); timeout = wait_for_completion_timeout(&host->nfc->comp_nfc, msecs_to_jiffies(NFC_TIME_OUT_MS)); if (timeout) return 0; /* Time out to wait for the interrupt */ dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag); return -ETIMEDOUT; } static int nfc_send_command(struct atmel_nand_host *host, unsigned int cmd, unsigned int addr, unsigned char cycle0) { unsigned long timeout; dev_dbg(host->dev, "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n", cmd, addr, cycle0); timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS); while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs) & NFCADDR_CMD_NFCBUSY) { if (time_after(jiffies, timeout)) { dev_err(host->dev, "Time out to wait CMD_NFCBUSY ready!\n"); return -ETIMEDOUT; } } nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0); nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs); return nfc_wait_interrupt(host, NFC_SR_CMD_DONE); } static int nfc_device_ready(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; if (!nfc_wait_interrupt(host, NFC_SR_RB_EDGE)) return 1; return 0; } static void nfc_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *nand_chip = mtd->priv; struct atmel_nand_host *host = nand_chip->priv; if (chip == -1) nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE); else nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE); } static int nfc_make_addr(struct mtd_info *mtd, int column, int page_addr, unsigned int *addr1234, unsigned int *cycle0) { struct nand_chip *chip = mtd->priv; int acycle = 0; unsigned char addr_bytes[8]; int index = 0, bit_shift; BUG_ON(addr1234 == NULL || cycle0 == NULL); *cycle0 = 0; *addr1234 = 0; if (column != -1) { if (chip->options & NAND_BUSWIDTH_16) column >>= 1; addr_bytes[acycle++] = column & 0xff; if (mtd->writesize > 512) addr_bytes[acycle++] = (column >> 8) & 0xff; } if (page_addr != -1) { addr_bytes[acycle++] = page_addr & 0xff; addr_bytes[acycle++] = (page_addr >> 8) & 0xff; if (chip->chipsize > (128 << 20)) addr_bytes[acycle++] = (page_addr >> 16) & 0xff; } if (acycle > 4) *cycle0 = addr_bytes[index++]; for (bit_shift = 0; index < acycle; bit_shift += 8) *addr1234 += addr_bytes[index++] << bit_shift; /* return acycle in cmd register */ return acycle << NFCADDR_CMD_ACYCLE_BIT_POS; } static void nfc_nand_command(struct mtd_info *mtd, unsigned int command, int column, int page_addr) { struct nand_chip *chip = mtd->priv; struct atmel_nand_host *host = chip->priv; unsigned long timeout; unsigned int nfc_addr_cmd = 0; unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS; /* Set default settings: no cmd2, no addr cycle. read from nand */ unsigned int cmd2 = 0; unsigned int vcmd2 = 0; int acycle = NFCADDR_CMD_ACYCLE_NONE; int csid = NFCADDR_CMD_CSID_3; int dataen = NFCADDR_CMD_DATADIS; int nfcwr = NFCADDR_CMD_NFCRD; unsigned int addr1234 = 0; unsigned int cycle0 = 0; bool do_addr = true; host->nfc->data_in_sram = NULL; dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n", __func__, command, column, page_addr); switch (command) { case NAND_CMD_RESET: nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr; nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0); udelay(chip->chip_delay); nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1); timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS); while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) { if (time_after(jiffies, timeout)) { dev_err(host->dev, "Time out to wait status ready!\n"); break; } } return; case NAND_CMD_STATUS: do_addr = false; break; case NAND_CMD_PARAM: case NAND_CMD_READID: do_addr = false; acycle = NFCADDR_CMD_ACYCLE_1; if (column != -1) addr1234 = column; break; case NAND_CMD_RNDOUT: cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS; vcmd2 = NFCADDR_CMD_VCMD2; break; case NAND_CMD_READ0: case NAND_CMD_READOOB: if (command == NAND_CMD_READOOB) { column += mtd->writesize; command = NAND_CMD_READ0; /* only READ0 is valid */ cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS; } if (host->nfc->use_nfc_sram) { /* Enable Data transfer to sram */ dataen = NFCADDR_CMD_DATAEN; /* Need enable PMECC now, since NFC will transfer * data in bus after sending nfc read command. */ if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) pmecc_enable(host, NAND_ECC_READ); } cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS; vcmd2 = NFCADDR_CMD_VCMD2; break; /* For prgramming command, the cmd need set to write enable */ case NAND_CMD_PAGEPROG: case NAND_CMD_SEQIN: case NAND_CMD_RNDIN: nfcwr = NFCADDR_CMD_NFCWR; if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN) dataen = NFCADDR_CMD_DATAEN; break; default: break; } if (do_addr) acycle = nfc_make_addr(mtd, column, page_addr, &addr1234, &cycle0); nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr; nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0); if (dataen == NFCADDR_CMD_DATAEN) if (nfc_wait_interrupt(host, NFC_SR_XFR_DONE)) dev_err(host->dev, "something wrong, No XFR_DONE interrupt comes.\n"); /* * Program and erase have their own busy handlers status, sequential * in, and deplete1 need no delay. */ switch (command) { case NAND_CMD_CACHEDPROG: case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_RNDIN: case NAND_CMD_STATUS: case NAND_CMD_RNDOUT: case NAND_CMD_SEQIN: case NAND_CMD_READID: return; case NAND_CMD_READ0: if (dataen == NFCADDR_CMD_DATAEN) { host->nfc->data_in_sram = host->nfc->sram_bank0 + nfc_get_sram_off(host); return; } /* fall through */ default: nfc_wait_interrupt(host, NFC_SR_RB_EDGE); } } static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip, uint32_t offset, int data_len, const uint8_t *buf, int oob_required, int page, int cached, int raw) { int cfg, len; int status = 0; struct atmel_nand_host *host = chip->priv; void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host); /* Subpage write is not supported */ if (offset || (data_len < mtd->writesize)) return -EINVAL; cfg = nfc_readl(host->nfc->hsmc_regs, CFG); len = mtd->writesize; if (unlikely(raw)) { len += mtd->oobsize; nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE); } else nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE); /* Copy page data to sram that will write to nand via NFC */ if (use_dma) { if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0) /* Fall back to use cpu copy */ memcpy32_toio(sram, buf, len); } else { memcpy32_toio(sram, buf, len); } if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) /* * When use NFC sram, need set up PMECC before send * NAND_CMD_SEQIN command. Since when the nand command * is sent, nfc will do transfer from sram and nand. */ pmecc_enable(host, NAND_ECC_WRITE); host->nfc->will_write_sram = true; chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); host->nfc->will_write_sram = false; if (likely(!raw)) /* Need to write ecc into oob */ status = chip->ecc.write_page(mtd, chip, buf, oob_required); if (status < 0) return status; chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); if ((status & NAND_STATUS_FAIL) && (chip->errstat)) status = chip->errstat(mtd, chip, FL_WRITING, status, page); if (status & NAND_STATUS_FAIL) return -EIO; return 0; } static int nfc_sram_init(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct atmel_nand_host *host = chip->priv; int res = 0; /* Initialize the NFC CFG register */ unsigned int cfg_nfc = 0; /* set page size and oob layout */ switch (mtd->writesize) { case 512: cfg_nfc = NFC_CFG_PAGESIZE_512; break; case 1024: cfg_nfc = NFC_CFG_PAGESIZE_1024; break; case 2048: cfg_nfc = NFC_CFG_PAGESIZE_2048; break; case 4096: cfg_nfc = NFC_CFG_PAGESIZE_4096; break; case 8192: cfg_nfc = NFC_CFG_PAGESIZE_8192; break; default: dev_err(host->dev, "Unsupported page size for NFC.\n"); res = -ENXIO; return res; } /* oob bytes size = (NFCSPARESIZE + 1) * 4 * Max support spare size is 512 bytes. */ cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS & NFC_CFG_NFC_SPARESIZE); /* default set a max timeout */ cfg_nfc |= NFC_CFG_RSPARE | NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL; nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc); host->nfc->will_write_sram = false; nfc_set_sram_bank(host, 0); /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */ if (host->nfc->write_by_sram) { if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) || chip->ecc.mode == NAND_ECC_NONE) chip->write_page = nfc_sram_write_page; else host->nfc->write_by_sram = false; } dev_info(host->dev, "Using NFC Sram read %s\n", host->nfc->write_by_sram ? "and write" : ""); return 0; } static struct platform_driver atmel_nand_nfc_driver; /* * Probe for the NAND device. */ static int __init atmel_nand_probe(struct platform_device *pdev) { struct atmel_nand_host *host; struct mtd_info *mtd; struct nand_chip *nand_chip; struct resource *mem; struct mtd_part_parser_data ppdata = {}; int res, irq; /* Allocate memory for the device structure (and zero it) */ host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); if (!host) { printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n"); return -ENOMEM; } res = platform_driver_register(&atmel_nand_nfc_driver); if (res) dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n"); mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); host->io_base = devm_ioremap_resource(&pdev->dev, mem); if (IS_ERR(host->io_base)) { dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n"); res = PTR_ERR(host->io_base); goto err_nand_ioremap; } host->io_phys = (dma_addr_t)mem->start; mtd = &host->mtd; nand_chip = &host->nand_chip; host->dev = &pdev->dev; if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { /* Only when CONFIG_OF is enabled of_node can be parsed */ res = atmel_of_init_port(host, pdev->dev.of_node); if (res) goto err_nand_ioremap; } else { memcpy(&host->board, dev_get_platdata(&pdev->dev), sizeof(struct atmel_nand_data)); } nand_chip->priv = host; /* link the private data structures */ mtd->priv = nand_chip; mtd->owner = THIS_MODULE; /* Set address of NAND IO lines */ nand_chip->IO_ADDR_R = host->io_base; nand_chip->IO_ADDR_W = host->io_base; if (nand_nfc.is_initialized) { /* NFC driver is probed and initialized */ host->nfc = &nand_nfc; nand_chip->select_chip = nfc_select_chip; nand_chip->dev_ready = nfc_device_ready; nand_chip->cmdfunc = nfc_nand_command; /* Initialize the interrupt for NFC */ irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(host->dev, "Cannot get HSMC irq!\n"); res = irq; goto err_nand_ioremap; } res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt, 0, "hsmc", host); if (res) { dev_err(&pdev->dev, "Unable to request HSMC irq %d\n", irq); goto err_nand_ioremap; } } else { res = atmel_nand_set_enable_ready_pins(mtd); if (res) goto err_nand_ioremap; nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl; } nand_chip->ecc.mode = host->board.ecc_mode; nand_chip->chip_delay = 20; /* 20us command delay time */ if (host->board.bus_width_16) /* 16-bit bus width */ nand_chip->options |= NAND_BUSWIDTH_16; nand_chip->read_buf = atmel_read_buf; nand_chip->write_buf = atmel_write_buf; platform_set_drvdata(pdev, host); atmel_nand_enable(host); if (gpio_is_valid(host->board.det_pin)) { res = devm_gpio_request(&pdev->dev, host->board.det_pin, "nand_det"); if (res < 0) { dev_err(&pdev->dev, "can't request det gpio %d\n", host->board.det_pin); goto err_no_card; } res = gpio_direction_input(host->board.det_pin); if (res < 0) { dev_err(&pdev->dev, "can't request input direction det gpio %d\n", host->board.det_pin); goto err_no_card; } if (gpio_get_value(host->board.det_pin)) { printk(KERN_INFO "No SmartMedia card inserted.\n"); res = -ENXIO; goto err_no_card; } } if (host->board.on_flash_bbt || on_flash_bbt) { printk(KERN_INFO "atmel_nand: Use On Flash BBT\n"); nand_chip->bbt_options |= NAND_BBT_USE_FLASH; } if (!host->board.has_dma) use_dma = 0; if (use_dma) { dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); host->dma_chan = dma_request_channel(mask, NULL, NULL); if (!host->dma_chan) { dev_err(host->dev, "Failed to request DMA channel\n"); use_dma = 0; } } if (use_dma) dev_info(host->dev, "Using %s for DMA transfers.\n", dma_chan_name(host->dma_chan)); else dev_info(host->dev, "No DMA support for NAND access.\n"); /* first scan to find the device and get the page size */ if (nand_scan_ident(mtd, 1, NULL)) { res = -ENXIO; goto err_scan_ident; } if (nand_chip->ecc.mode == NAND_ECC_HW) { if (host->has_pmecc) res = atmel_pmecc_nand_init_params(pdev, host); else res = atmel_hw_nand_init_params(pdev, host); if (res != 0) goto err_hw_ecc; } /* initialize the nfc configuration register */ if (host->nfc && host->nfc->use_nfc_sram) { res = nfc_sram_init(mtd); if (res) { host->nfc->use_nfc_sram = false; dev_err(host->dev, "Disable use nfc sram for data transfer.\n"); } } /* second phase scan */ if (nand_scan_tail(mtd)) { res = -ENXIO; goto err_scan_tail; } mtd->name = "atmel_nand"; ppdata.of_node = pdev->dev.of_node; res = mtd_device_parse_register(mtd, NULL, &ppdata, host->board.parts, host->board.num_parts); if (!res) return res; err_scan_tail: if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); err_hw_ecc: err_scan_ident: err_no_card: atmel_nand_disable(host); if (host->dma_chan) dma_release_channel(host->dma_chan); err_nand_ioremap: platform_driver_unregister(&atmel_nand_nfc_driver); return res; } /* * Remove a NAND device. */ static int __exit atmel_nand_remove(struct platform_device *pdev) { struct atmel_nand_host *host = platform_get_drvdata(pdev); struct mtd_info *mtd = &host->mtd; nand_release(mtd); atmel_nand_disable(host); if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) { pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE); } if (host->dma_chan) dma_release_channel(host->dma_chan); platform_driver_unregister(&atmel_nand_nfc_driver); return 0; } static const struct of_device_id atmel_nand_dt_ids[] = { { .compatible = "atmel,at91rm9200-nand" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids); static int atmel_nand_nfc_probe(struct platform_device *pdev) { struct atmel_nfc *nfc = &nand_nfc; struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram; nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs); if (IS_ERR(nfc->base_cmd_regs)) return PTR_ERR(nfc->base_cmd_regs); nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs); if (IS_ERR(nfc->hsmc_regs)) return PTR_ERR(nfc->hsmc_regs); nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2); if (nfc_sram) { nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram); if (IS_ERR(nfc->sram_bank0)) { dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n", PTR_ERR(nfc->sram_bank0)); } else { nfc->use_nfc_sram = true; nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start; if (pdev->dev.of_node) nfc->write_by_sram = of_property_read_bool( pdev->dev.of_node, "atmel,write-by-sram"); } } nfc->is_initialized = true; dev_info(&pdev->dev, "NFC is probed.\n"); return 0; } static struct of_device_id atmel_nand_nfc_match[] = { { .compatible = "atmel,sama5d3-nfc" }, { /* sentinel */ } }; static struct platform_driver atmel_nand_nfc_driver = { .driver = { .name = "atmel_nand_nfc", .owner = THIS_MODULE, .of_match_table = of_match_ptr(atmel_nand_nfc_match), }, .probe = atmel_nand_nfc_probe, }; static struct platform_driver atmel_nand_driver = { .remove = __exit_p(atmel_nand_remove), .driver = { .name = "atmel_nand", .owner = THIS_MODULE, .of_match_table = of_match_ptr(atmel_nand_dt_ids), }, }; module_platform_driver_probe(atmel_nand_driver, atmel_nand_probe); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Rick Bronson"); MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32"); MODULE_ALIAS("platform:atmel_nand");