/* Common Flash Interface probe code. (C) 2000 Red Hat. GPL'd. $Id: jedec_probe.c,v 1.66 2005/11/07 11:14:23 gleixner Exp $ See JEDEC (http://www.jedec.org/) standard JESD21C (section 3.5) for the standard this probe goes back to. Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Manufacturers */ #define MANUFACTURER_AMD 0x0001 #define MANUFACTURER_ATMEL 0x001f #define MANUFACTURER_FUJITSU 0x0004 #define MANUFACTURER_HYUNDAI 0x00AD #define MANUFACTURER_INTEL 0x0089 #define MANUFACTURER_MACRONIX 0x00C2 #define MANUFACTURER_NEC 0x0010 #define MANUFACTURER_PMC 0x009D #define MANUFACTURER_SHARP 0x00b0 #define MANUFACTURER_SST 0x00BF #define MANUFACTURER_ST 0x0020 #define MANUFACTURER_TOSHIBA 0x0098 #define MANUFACTURER_WINBOND 0x00da /* AMD */ #define AM29DL800BB 0x22C8 #define AM29DL800BT 0x224A #define AM29F800BB 0x2258 #define AM29F800BT 0x22D6 #define AM29LV400BB 0x22BA #define AM29LV400BT 0x22B9 #define AM29LV800BB 0x225B #define AM29LV800BT 0x22DA #define AM29LV160DT 0x22C4 #define AM29LV160DB 0x2249 #define AM29F017D 0x003D #define AM29F016D 0x00AD #define AM29F080 0x00D5 #define AM29F040 0x00A4 #define AM29LV040B 0x004F #define AM29F032B 0x0041 #define AM29F002T 0x00B0 /* Atmel */ #define AT49BV512 0x0003 #define AT29LV512 0x003d #define AT49BV16X 0x00C0 #define AT49BV16XT 0x00C2 #define AT49BV32X 0x00C8 #define AT49BV32XT 0x00C9 /* Fujitsu */ #define MBM29F040C 0x00A4 #define MBM29F800BA 0x2258 #define MBM29LV650UE 0x22D7 #define MBM29LV320TE 0x22F6 #define MBM29LV320BE 0x22F9 #define MBM29LV160TE 0x22C4 #define MBM29LV160BE 0x2249 #define MBM29LV800BA 0x225B #define MBM29LV800TA 0x22DA #define MBM29LV400TC 0x22B9 #define MBM29LV400BC 0x22BA /* Hyundai */ #define HY29F002T 0x00B0 /* Intel */ #define I28F004B3T 0x00d4 #define I28F004B3B 0x00d5 #define I28F400B3T 0x8894 #define I28F400B3B 0x8895 #define I28F008S5 0x00a6 #define I28F016S5 0x00a0 #define I28F008SA 0x00a2 #define I28F008B3T 0x00d2 #define I28F008B3B 0x00d3 #define I28F800B3T 0x8892 #define I28F800B3B 0x8893 #define I28F016S3 0x00aa #define I28F016B3T 0x00d0 #define I28F016B3B 0x00d1 #define I28F160B3T 0x8890 #define I28F160B3B 0x8891 #define I28F320B3T 0x8896 #define I28F320B3B 0x8897 #define I28F640B3T 0x8898 #define I28F640B3B 0x8899 #define I82802AB 0x00ad #define I82802AC 0x00ac /* Macronix */ #define MX29LV040C 0x004F #define MX29LV160T 0x22C4 #define MX29LV160B 0x2249 #define MX29F040 0x00A4 #define MX29F016 0x00AD #define MX29F002T 0x00B0 #define MX29F004T 0x0045 #define MX29F004B 0x0046 /* NEC */ #define UPD29F064115 0x221C /* PMC */ #define PM49FL002 0x006D #define PM49FL004 0x006E #define PM49FL008 0x006A /* Sharp */ #define LH28F640BF 0x00b0 /* ST - www.st.com */ #define M29F800AB 0x0058 #define M29W800DT 0x00D7 #define M29W800DB 0x005B #define M29W160DT 0x22C4 #define M29W160DB 0x2249 #define M29W040B 0x00E3 #define M50FW040 0x002C #define M50FW080 0x002D #define M50FW016 0x002E #define M50LPW080 0x002F /* SST */ #define SST29EE020 0x0010 #define SST29LE020 0x0012 #define SST29EE512 0x005d #define SST29LE512 0x003d #define SST39LF800 0x2781 #define SST39LF160 0x2782 #define SST39VF1601 0x234b #define SST39LF512 0x00D4 #define SST39LF010 0x00D5 #define SST39LF020 0x00D6 #define SST39LF040 0x00D7 #define SST39SF010A 0x00B5 #define SST39SF020A 0x00B6 #define SST49LF004B 0x0060 #define SST49LF040B 0x0050 #define SST49LF008A 0x005a #define SST49LF030A 0x001C #define SST49LF040A 0x0051 #define SST49LF080A 0x005B /* Toshiba */ #define TC58FVT160 0x00C2 #define TC58FVB160 0x0043 #define TC58FVT321 0x009A #define TC58FVB321 0x009C #define TC58FVT641 0x0093 #define TC58FVB641 0x0095 /* Winbond */ #define W49V002A 0x00b0 /* * Unlock address sets for AMD command sets. * Intel command sets use the MTD_UADDR_UNNECESSARY. * Each identifier, except MTD_UADDR_UNNECESSARY, and * MTD_UADDR_NO_SUPPORT must be defined below in unlock_addrs[]. * MTD_UADDR_NOT_SUPPORTED must be 0 so that structure * initialization need not require initializing all of the * unlock addresses for all bit widths. */ enum uaddr { MTD_UADDR_NOT_SUPPORTED = 0, /* data width not supported */ MTD_UADDR_0x0555_0x02AA, MTD_UADDR_0x0555_0x0AAA, MTD_UADDR_0x5555_0x2AAA, MTD_UADDR_0x0AAA_0x0555, MTD_UADDR_DONT_CARE, /* Requires an arbitrary address */ MTD_UADDR_UNNECESSARY, /* Does not require any address */ }; struct unlock_addr { u32 addr1; u32 addr2; }; /* * I don't like the fact that the first entry in unlock_addrs[] * exists, but is for MTD_UADDR_NOT_SUPPORTED - and, therefore, * should not be used. The problem is that structures with * initializers have extra fields initialized to 0. It is _very_ * desireable to have the unlock address entries for unsupported * data widths automatically initialized - that means that * MTD_UADDR_NOT_SUPPORTED must be 0 and the first entry here * must go unused. */ static const struct unlock_addr unlock_addrs[] = { [MTD_UADDR_NOT_SUPPORTED] = { .addr1 = 0xffff, .addr2 = 0xffff }, [MTD_UADDR_0x0555_0x02AA] = { .addr1 = 0x0555, .addr2 = 0x02aa }, [MTD_UADDR_0x0555_0x0AAA] = { .addr1 = 0x0555, .addr2 = 0x0aaa }, [MTD_UADDR_0x5555_0x2AAA] = { .addr1 = 0x5555, .addr2 = 0x2aaa }, [MTD_UADDR_0x0AAA_0x0555] = { .addr1 = 0x0AAA, .addr2 = 0x0555 }, [MTD_UADDR_DONT_CARE] = { .addr1 = 0x0000, /* Doesn't matter which address */ .addr2 = 0x0000 /* is used - must be last entry */ }, [MTD_UADDR_UNNECESSARY] = { .addr1 = 0x0000, .addr2 = 0x0000 } }; struct amd_flash_info { const __u16 mfr_id; const __u16 dev_id; const char *name; const int DevSize; const int NumEraseRegions; const int CmdSet; const __u8 uaddr[4]; /* unlock addrs for 8, 16, 32, 64 */ const ulong regions[6]; }; #define ERASEINFO(size,blocks) (size<<8)|(blocks-1) #define SIZE_64KiB 16 #define SIZE_128KiB 17 #define SIZE_256KiB 18 #define SIZE_512KiB 19 #define SIZE_1MiB 20 #define SIZE_2MiB 21 #define SIZE_4MiB 22 #define SIZE_8MiB 23 /* * Please keep this list ordered by manufacturer! * Fortunately, the list isn't searched often and so a * slow, linear search isn't so bad. */ static const struct amd_flash_info jedec_table[] = { { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29F032B, .name = "AMD AM29F032B", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_4MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,64) } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29LV160DT, .name = "AMD AM29LV160DT", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,31), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1) } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29LV160DB, .name = "AMD AM29LV160DB", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,31) } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29LV400BB, .name = "AMD AM29LV400BB", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,7) } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29LV400BT, .name = "AMD AM29LV400BT", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,7), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1) } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29LV800BB, .name = "AMD AM29LV800BB", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,15), } }, { /* add DL */ .mfr_id = MANUFACTURER_AMD, .dev_id = AM29DL800BB, .name = "AMD AM29DL800BB", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 6, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x08000,1), ERASEINFO(0x02000,4), ERASEINFO(0x08000,1), ERASEINFO(0x04000,1), ERASEINFO(0x10000,14) } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29DL800BT, .name = "AMD AM29DL800BT", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 6, .regions = { ERASEINFO(0x10000,14), ERASEINFO(0x04000,1), ERASEINFO(0x08000,1), ERASEINFO(0x02000,4), ERASEINFO(0x08000,1), ERASEINFO(0x04000,1) } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29F800BB, .name = "AMD AM29F800BB", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,15), } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29LV800BT, .name = "AMD AM29LV800BT", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,15), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1) } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29F800BT, .name = "AMD AM29F800BT", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,15), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1) } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29F017D, .name = "AMD AM29F017D", .uaddr = { [0] = MTD_UADDR_DONT_CARE /* x8 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,32), } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29F016D, .name = "AMD AM29F016D", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,32), } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29F080, .name = "AMD AM29F080", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,16), } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29F040, .name = "AMD AM29F040", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,8), } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29LV040B, .name = "AMD AM29LV040B", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,8), } }, { .mfr_id = MANUFACTURER_AMD, .dev_id = AM29F002T, .name = "AMD AM29F002T", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_256KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,3), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1), } }, { .mfr_id = MANUFACTURER_ATMEL, .dev_id = AT49BV512, .name = "Atmel AT49BV512", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_64KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,1) } }, { .mfr_id = MANUFACTURER_ATMEL, .dev_id = AT29LV512, .name = "Atmel AT29LV512", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_64KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x80,256), ERASEINFO(0x80,256) } }, { .mfr_id = MANUFACTURER_ATMEL, .dev_id = AT49BV16X, .name = "Atmel AT49BV16X", .uaddr = { [0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */ [1] = MTD_UADDR_0x0555_0x0AAA /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000,8), ERASEINFO(0x10000,31) } }, { .mfr_id = MANUFACTURER_ATMEL, .dev_id = AT49BV16XT, .name = "Atmel AT49BV16XT", .uaddr = { [0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */ [1] = MTD_UADDR_0x0555_0x0AAA /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000,31), ERASEINFO(0x02000,8) } }, { .mfr_id = MANUFACTURER_ATMEL, .dev_id = AT49BV32X, .name = "Atmel AT49BV32X", .uaddr = { [0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */ [1] = MTD_UADDR_0x0555_0x0AAA /* x16 */ }, .DevSize = SIZE_4MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000,8), ERASEINFO(0x10000,63) } }, { .mfr_id = MANUFACTURER_ATMEL, .dev_id = AT49BV32XT, .name = "Atmel AT49BV32XT", .uaddr = { [0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */ [1] = MTD_UADDR_0x0555_0x0AAA /* x16 */ }, .DevSize = SIZE_4MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000,63), ERASEINFO(0x02000,8) } }, { .mfr_id = MANUFACTURER_FUJITSU, .dev_id = MBM29F040C, .name = "Fujitsu MBM29F040C", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,8) } }, { .mfr_id = MANUFACTURER_FUJITSU, .dev_id = MBM29F800BA, .name = "Fujitsu MBM29F800BA", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,15), } }, { .mfr_id = MANUFACTURER_FUJITSU, .dev_id = MBM29LV650UE, .name = "Fujitsu MBM29LV650UE", .uaddr = { [0] = MTD_UADDR_DONT_CARE /* x16 */ }, .DevSize = SIZE_8MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,128) } }, { .mfr_id = MANUFACTURER_FUJITSU, .dev_id = MBM29LV320TE, .name = "Fujitsu MBM29LV320TE", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_4MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000,63), ERASEINFO(0x02000,8) } }, { .mfr_id = MANUFACTURER_FUJITSU, .dev_id = MBM29LV320BE, .name = "Fujitsu MBM29LV320BE", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_4MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000,8), ERASEINFO(0x10000,63) } }, { .mfr_id = MANUFACTURER_FUJITSU, .dev_id = MBM29LV160TE, .name = "Fujitsu MBM29LV160TE", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,31), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1) } }, { .mfr_id = MANUFACTURER_FUJITSU, .dev_id = MBM29LV160BE, .name = "Fujitsu MBM29LV160BE", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,31) } }, { .mfr_id = MANUFACTURER_FUJITSU, .dev_id = MBM29LV800BA, .name = "Fujitsu MBM29LV800BA", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,15) } }, { .mfr_id = MANUFACTURER_FUJITSU, .dev_id = MBM29LV800TA, .name = "Fujitsu MBM29LV800TA", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,15), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1) } }, { .mfr_id = MANUFACTURER_FUJITSU, .dev_id = MBM29LV400BC, .name = "Fujitsu MBM29LV400BC", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,7) } }, { .mfr_id = MANUFACTURER_FUJITSU, .dev_id = MBM29LV400TC, .name = "Fujitsu MBM29LV400TC", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,7), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1) } }, { .mfr_id = MANUFACTURER_HYUNDAI, .dev_id = HY29F002T, .name = "Hyundai HY29F002T", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_256KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,3), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F004B3B, .name = "Intel 28F004B3B", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000, 8), ERASEINFO(0x10000, 7), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F004B3T, .name = "Intel 28F004B3T", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000, 7), ERASEINFO(0x02000, 8), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F400B3B, .name = "Intel 28F400B3B", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ [1] = MTD_UADDR_UNNECESSARY, /* x16 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000, 8), ERASEINFO(0x10000, 7), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F400B3T, .name = "Intel 28F400B3T", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ [1] = MTD_UADDR_UNNECESSARY, /* x16 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000, 7), ERASEINFO(0x02000, 8), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F008B3B, .name = "Intel 28F008B3B", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000, 8), ERASEINFO(0x10000, 15), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F008B3T, .name = "Intel 28F008B3T", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000, 15), ERASEINFO(0x02000, 8), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F008S5, .name = "Intel 28F008S5", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_INTEL_EXT, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,16), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F016S5, .name = "Intel 28F016S5", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_INTEL_EXT, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,32), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F008SA, .name = "Intel 28F008SA", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000, 16), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F800B3B, .name = "Intel 28F800B3B", .uaddr = { [1] = MTD_UADDR_UNNECESSARY, /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000, 8), ERASEINFO(0x10000, 15), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F800B3T, .name = "Intel 28F800B3T", .uaddr = { [1] = MTD_UADDR_UNNECESSARY, /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000, 15), ERASEINFO(0x02000, 8), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F016B3B, .name = "Intel 28F016B3B", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000, 8), ERASEINFO(0x10000, 31), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F016S3, .name = "Intel I28F016S3", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000, 32), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F016B3T, .name = "Intel 28F016B3T", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000, 31), ERASEINFO(0x02000, 8), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F160B3B, .name = "Intel 28F160B3B", .uaddr = { [1] = MTD_UADDR_UNNECESSARY, /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000, 8), ERASEINFO(0x10000, 31), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F160B3T, .name = "Intel 28F160B3T", .uaddr = { [1] = MTD_UADDR_UNNECESSARY, /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000, 31), ERASEINFO(0x02000, 8), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F320B3B, .name = "Intel 28F320B3B", .uaddr = { [1] = MTD_UADDR_UNNECESSARY, /* x16 */ }, .DevSize = SIZE_4MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000, 8), ERASEINFO(0x10000, 63), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F320B3T, .name = "Intel 28F320B3T", .uaddr = { [1] = MTD_UADDR_UNNECESSARY, /* x16 */ }, .DevSize = SIZE_4MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000, 63), ERASEINFO(0x02000, 8), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F640B3B, .name = "Intel 28F640B3B", .uaddr = { [1] = MTD_UADDR_UNNECESSARY, /* x16 */ }, .DevSize = SIZE_8MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000, 8), ERASEINFO(0x10000, 127), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I28F640B3T, .name = "Intel 28F640B3T", .uaddr = { [1] = MTD_UADDR_UNNECESSARY, /* x16 */ }, .DevSize = SIZE_8MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000, 127), ERASEINFO(0x02000, 8), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I82802AB, .name = "Intel 82802AB", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_INTEL_EXT, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,8), } }, { .mfr_id = MANUFACTURER_INTEL, .dev_id = I82802AC, .name = "Intel 82802AC", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_INTEL_EXT, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,16), } }, { .mfr_id = MANUFACTURER_MACRONIX, .dev_id = MX29LV040C, .name = "Macronix MX29LV040C", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA, /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,8), } }, { .mfr_id = MANUFACTURER_MACRONIX, .dev_id = MX29LV160T, .name = "MXIC MX29LV160T", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,31), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1) } }, { .mfr_id = MANUFACTURER_NEC, .dev_id = UPD29F064115, .name = "NEC uPD29F064115", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_8MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 3, .regions = { ERASEINFO(0x2000,8), ERASEINFO(0x10000,126), ERASEINFO(0x2000,8), } }, { .mfr_id = MANUFACTURER_MACRONIX, .dev_id = MX29LV160B, .name = "MXIC MX29LV160B", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,31) } }, { .mfr_id = MANUFACTURER_MACRONIX, .dev_id = MX29F040, .name = "Macronix MX29F040", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,8), } }, { .mfr_id = MANUFACTURER_MACRONIX, .dev_id = MX29F016, .name = "Macronix MX29F016", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,32), } }, { .mfr_id = MANUFACTURER_MACRONIX, .dev_id = MX29F004T, .name = "Macronix MX29F004T", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,7), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1), } }, { .mfr_id = MANUFACTURER_MACRONIX, .dev_id = MX29F004B, .name = "Macronix MX29F004B", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,7), } }, { .mfr_id = MANUFACTURER_MACRONIX, .dev_id = MX29F002T, .name = "Macronix MX29F002T", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_256KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,3), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1), } }, { .mfr_id = MANUFACTURER_PMC, .dev_id = PM49FL002, .name = "PMC Pm49FL002", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_256KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO( 0x01000, 64 ) } }, { .mfr_id = MANUFACTURER_PMC, .dev_id = PM49FL004, .name = "PMC Pm49FL004", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO( 0x01000, 128 ) } }, { .mfr_id = MANUFACTURER_PMC, .dev_id = PM49FL008, .name = "PMC Pm49FL008", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO( 0x01000, 256 ) } }, { .mfr_id = MANUFACTURER_SHARP, .dev_id = LH28F640BF, .name = "LH28F640BF", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_4MiB, .CmdSet = P_ID_INTEL_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x40000,16), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST39LF512, .name = "SST 39LF512", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_64KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x01000,16), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST39LF010, .name = "SST 39LF010", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_128KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x01000,32), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST29EE020, .name = "SST 29EE020", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_256KiB, .CmdSet = P_ID_SST_PAGE, .NumEraseRegions= 1, .regions = {ERASEINFO(0x01000,64), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST29LE020, .name = "SST 29LE020", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_256KiB, .CmdSet = P_ID_SST_PAGE, .NumEraseRegions= 1, .regions = {ERASEINFO(0x01000,64), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST39LF020, .name = "SST 39LF020", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_256KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x01000,64), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST39LF040, .name = "SST 39LF040", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x01000,128), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST39SF010A, .name = "SST 39SF010A", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_128KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x01000,32), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST39SF020A, .name = "SST 39SF020A", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_256KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x01000,64), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST49LF040B, .name = "SST 49LF040B", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x01000,128), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST49LF004B, .name = "SST 49LF004B", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x01000,128), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST49LF008A, .name = "SST 49LF008A", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x01000,256), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST49LF030A, .name = "SST 49LF030A", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x01000,96), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST49LF040A, .name = "SST 49LF040A", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x01000,128), } }, { .mfr_id = MANUFACTURER_SST, .dev_id = SST49LF080A, .name = "SST 49LF080A", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x01000,256), } }, { .mfr_id = MANUFACTURER_SST, /* should be CFI */ .dev_id = SST39LF160, .name = "SST 39LF160", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */ [1] = MTD_UADDR_0x5555_0x2AAA /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x1000,256), ERASEINFO(0x1000,256) } }, { .mfr_id = MANUFACTURER_SST, /* should be CFI */ .dev_id = SST39VF1601, .name = "SST 39VF1601", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */ [1] = MTD_UADDR_0x5555_0x2AAA /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x1000,256), ERASEINFO(0x1000,256) } }, { .mfr_id = MANUFACTURER_ST, .dev_id = M29F800AB, .name = "ST M29F800AB", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,15), } }, { .mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */ .dev_id = M29W800DT, .name = "ST M29W800DT", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */ [1] = MTD_UADDR_0x5555_0x2AAA /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,15), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1) } }, { .mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */ .dev_id = M29W800DB, .name = "ST M29W800DB", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */ [1] = MTD_UADDR_0x5555_0x2AAA /* x16 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,15) } }, { .mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */ .dev_id = M29W160DT, .name = "ST M29W160DT", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,31), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1) } }, { .mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */ .dev_id = M29W160DB, .name = "ST M29W160DB", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,31) } }, { .mfr_id = MANUFACTURER_ST, .dev_id = M29W040B, .name = "ST M29W040B", .uaddr = { [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,8), } }, { .mfr_id = MANUFACTURER_ST, .dev_id = M50FW040, .name = "ST M50FW040", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_512KiB, .CmdSet = P_ID_INTEL_EXT, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,8), } }, { .mfr_id = MANUFACTURER_ST, .dev_id = M50FW080, .name = "ST M50FW080", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_INTEL_EXT, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,16), } }, { .mfr_id = MANUFACTURER_ST, .dev_id = M50FW016, .name = "ST M50FW016", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_INTEL_EXT, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,32), } }, { .mfr_id = MANUFACTURER_ST, .dev_id = M50LPW080, .name = "ST M50LPW080", .uaddr = { [0] = MTD_UADDR_UNNECESSARY, /* x8 */ }, .DevSize = SIZE_1MiB, .CmdSet = P_ID_INTEL_EXT, .NumEraseRegions= 1, .regions = { ERASEINFO(0x10000,16), } }, { .mfr_id = MANUFACTURER_TOSHIBA, .dev_id = TC58FVT160, .name = "Toshiba TC58FVT160", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000,31), ERASEINFO(0x08000,1), ERASEINFO(0x02000,2), ERASEINFO(0x04000,1) } }, { .mfr_id = MANUFACTURER_TOSHIBA, .dev_id = TC58FVB160, .name = "Toshiba TC58FVB160", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ }, .DevSize = SIZE_2MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x04000,1), ERASEINFO(0x02000,2), ERASEINFO(0x08000,1), ERASEINFO(0x10000,31) } }, { .mfr_id = MANUFACTURER_TOSHIBA, .dev_id = TC58FVB321, .name = "Toshiba TC58FVB321", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ }, .DevSize = SIZE_4MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000,8), ERASEINFO(0x10000,63) } }, { .mfr_id = MANUFACTURER_TOSHIBA, .dev_id = TC58FVT321, .name = "Toshiba TC58FVT321", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ }, .DevSize = SIZE_4MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000,63), ERASEINFO(0x02000,8) } }, { .mfr_id = MANUFACTURER_TOSHIBA, .dev_id = TC58FVB641, .name = "Toshiba TC58FVB641", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_8MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x02000,8), ERASEINFO(0x10000,127) } }, { .mfr_id = MANUFACTURER_TOSHIBA, .dev_id = TC58FVT641, .name = "Toshiba TC58FVT641", .uaddr = { [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ }, .DevSize = SIZE_8MiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 2, .regions = { ERASEINFO(0x10000,127), ERASEINFO(0x02000,8) } }, { .mfr_id = MANUFACTURER_WINBOND, .dev_id = W49V002A, .name = "Winbond W49V002A", .uaddr = { [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ }, .DevSize = SIZE_256KiB, .CmdSet = P_ID_AMD_STD, .NumEraseRegions= 4, .regions = { ERASEINFO(0x10000, 3), ERASEINFO(0x08000, 1), ERASEINFO(0x02000, 2), ERASEINFO(0x04000, 1), } } }; static int cfi_jedec_setup(struct cfi_private *p_cfi, int index); static int jedec_probe_chip(struct map_info *map, __u32 base, unsigned long *chip_map, struct cfi_private *cfi); static struct mtd_info *jedec_probe(struct map_info *map); static inline u32 jedec_read_mfr(struct map_info *map, __u32 base, struct cfi_private *cfi) { map_word result; unsigned long mask; u32 ofs = cfi_build_cmd_addr(0, cfi_interleave(cfi), cfi->device_type); mask = (1 << (cfi->device_type * 8)) -1; result = map_read(map, base + ofs); return result.x[0] & mask; } static inline u32 jedec_read_id(struct map_info *map, __u32 base, struct cfi_private *cfi) { map_word result; unsigned long mask; u32 ofs = cfi_build_cmd_addr(1, cfi_interleave(cfi), cfi->device_type); mask = (1 << (cfi->device_type * 8)) -1; result = map_read(map, base + ofs); return result.x[0] & mask; } static inline void jedec_reset(u32 base, struct map_info *map, struct cfi_private *cfi) { /* Reset */ /* after checking the datasheets for SST, MACRONIX and ATMEL * (oh and incidentaly the jedec spec - 3.5.3.3) the reset * sequence is *supposed* to be 0xaa at 0x5555, 0x55 at * 0x2aaa, 0xF0 at 0x5555 this will not affect the AMD chips * as they will ignore the writes and dont care what address * the F0 is written to */ if(cfi->addr_unlock1) { DEBUG( MTD_DEBUG_LEVEL3, "reset unlock called %x %x \n", cfi->addr_unlock1,cfi->addr_unlock2); cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); } cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); /* Some misdesigned intel chips do not respond for 0xF0 for a reset, * so ensure we're in read mode. Send both the Intel and the AMD command * for this. Intel uses 0xff for this, AMD uses 0xff for NOP, so * this should be safe. */ cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); /* FIXME - should have reset delay before continuing */ } static inline __u8 finfo_uaddr(const struct amd_flash_info *finfo, int device_type) { int uaddr_idx; __u8 uaddr = MTD_UADDR_NOT_SUPPORTED; switch ( device_type ) { case CFI_DEVICETYPE_X8: uaddr_idx = 0; break; case CFI_DEVICETYPE_X16: uaddr_idx = 1; break; case CFI_DEVICETYPE_X32: uaddr_idx = 2; break; default: printk(KERN_NOTICE "MTD: %s(): unknown device_type %d\n", __func__, device_type); goto uaddr_done; } uaddr = finfo->uaddr[uaddr_idx]; if (uaddr != MTD_UADDR_NOT_SUPPORTED ) { /* ASSERT("The unlock addresses for non-8-bit mode are bollocks. We don't really need an array."); */ uaddr = finfo->uaddr[0]; } uaddr_done: return uaddr; } static int cfi_jedec_setup(struct cfi_private *p_cfi, int index) { int i,num_erase_regions; __u8 uaddr; printk("Found: %s\n",jedec_table[index].name); num_erase_regions = jedec_table[index].NumEraseRegions; p_cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); if (!p_cfi->cfiq) { //xx printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name); return 0; } memset(p_cfi->cfiq,0,sizeof(struct cfi_ident)); p_cfi->cfiq->P_ID = jedec_table[index].CmdSet; p_cfi->cfiq->NumEraseRegions = jedec_table[index].NumEraseRegions; p_cfi->cfiq->DevSize = jedec_table[index].DevSize; p_cfi->cfi_mode = CFI_MODE_JEDEC; for (i=0; icfiq->EraseRegionInfo[i] = jedec_table[index].regions[i]; } p_cfi->cmdset_priv = NULL; /* This may be redundant for some cases, but it doesn't hurt */ p_cfi->mfr = jedec_table[index].mfr_id; p_cfi->id = jedec_table[index].dev_id; uaddr = finfo_uaddr(&jedec_table[index], p_cfi->device_type); if ( uaddr == MTD_UADDR_NOT_SUPPORTED ) { kfree( p_cfi->cfiq ); return 0; } p_cfi->addr_unlock1 = unlock_addrs[uaddr].addr1; p_cfi->addr_unlock2 = unlock_addrs[uaddr].addr2; return 1; /* ok */ } /* * There is a BIG problem properly ID'ing the JEDEC device and guaranteeing * the mapped address, unlock addresses, and proper chip ID. This function * attempts to minimize errors. It is doubtfull that this probe will ever * be perfect - consequently there should be some module parameters that * could be manually specified to force the chip info. */ static inline int jedec_match( __u32 base, struct map_info *map, struct cfi_private *cfi, const struct amd_flash_info *finfo ) { int rc = 0; /* failure until all tests pass */ u32 mfr, id; __u8 uaddr; /* * The IDs must match. For X16 and X32 devices operating in * a lower width ( X8 or X16 ), the device ID's are usually just * the lower byte(s) of the larger device ID for wider mode. If * a part is found that doesn't fit this assumption (device id for * smaller width mode is completely unrealated to full-width mode) * then the jedec_table[] will have to be augmented with the IDs * for different widths. */ switch (cfi->device_type) { case CFI_DEVICETYPE_X8: mfr = (__u8)finfo->mfr_id; id = (__u8)finfo->dev_id; /* bjd: it seems that if we do this, we can end up * detecting 16bit flashes as an 8bit device, even though * there aren't. */ if (finfo->dev_id > 0xff) { DEBUG( MTD_DEBUG_LEVEL3, "%s(): ID is not 8bit\n", __func__); goto match_done; } break; case CFI_DEVICETYPE_X16: mfr = (__u16)finfo->mfr_id; id = (__u16)finfo->dev_id; break; case CFI_DEVICETYPE_X32: mfr = (__u16)finfo->mfr_id; id = (__u32)finfo->dev_id; break; default: printk(KERN_WARNING "MTD %s(): Unsupported device type %d\n", __func__, cfi->device_type); goto match_done; } if ( cfi->mfr != mfr || cfi->id != id ) { goto match_done; } /* the part size must fit in the memory window */ DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): Check fit 0x%.8x + 0x%.8x = 0x%.8x\n", __func__, base, 1 << finfo->DevSize, base + (1 << finfo->DevSize) ); if ( base + cfi_interleave(cfi) * ( 1 << finfo->DevSize ) > map->size ) { DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): 0x%.4x 0x%.4x %dKiB doesn't fit\n", __func__, finfo->mfr_id, finfo->dev_id, 1 << finfo->DevSize ); goto match_done; } uaddr = finfo_uaddr(finfo, cfi->device_type); if ( uaddr == MTD_UADDR_NOT_SUPPORTED ) { goto match_done; } DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): check unlock addrs 0x%.4x 0x%.4x\n", __func__, cfi->addr_unlock1, cfi->addr_unlock2 ); if ( MTD_UADDR_UNNECESSARY != uaddr && MTD_UADDR_DONT_CARE != uaddr && ( unlock_addrs[uaddr].addr1 != cfi->addr_unlock1 || unlock_addrs[uaddr].addr2 != cfi->addr_unlock2 ) ) { DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): 0x%.4x 0x%.4x did not match\n", __func__, unlock_addrs[uaddr].addr1, unlock_addrs[uaddr].addr2); goto match_done; } /* * Make sure the ID's dissappear when the device is taken out of * ID mode. The only time this should fail when it should succeed * is when the ID's are written as data to the same * addresses. For this rare and unfortunate case the chip * cannot be probed correctly. * FIXME - write a driver that takes all of the chip info as * module parameters, doesn't probe but forces a load. */ DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): check ID's disappear when not in ID mode\n", __func__ ); jedec_reset( base, map, cfi ); mfr = jedec_read_mfr( map, base, cfi ); id = jedec_read_id( map, base, cfi ); if ( mfr == cfi->mfr && id == cfi->id ) { DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ID 0x%.2x:0x%.2x did not change after reset:\n" "You might need to manually specify JEDEC parameters.\n", __func__, cfi->mfr, cfi->id ); goto match_done; } /* all tests passed - mark as success */ rc = 1; /* * Put the device back in ID mode - only need to do this if we * were truly frobbing a real device. */ DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): return to ID mode\n", __func__ ); if(cfi->addr_unlock1) { cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); } cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); /* FIXME - should have a delay before continuing */ match_done: return rc; } static int jedec_probe_chip(struct map_info *map, __u32 base, unsigned long *chip_map, struct cfi_private *cfi) { int i; enum uaddr uaddr_idx = MTD_UADDR_NOT_SUPPORTED; u32 probe_offset1, probe_offset2; retry: if (!cfi->numchips) { uaddr_idx++; if (MTD_UADDR_UNNECESSARY == uaddr_idx) return 0; cfi->addr_unlock1 = unlock_addrs[uaddr_idx].addr1; cfi->addr_unlock2 = unlock_addrs[uaddr_idx].addr2; } /* Make certain we aren't probing past the end of map */ if (base >= map->size) { printk(KERN_NOTICE "Probe at base(0x%08x) past the end of the map(0x%08lx)\n", base, map->size -1); return 0; } /* Ensure the unlock addresses we try stay inside the map */ probe_offset1 = cfi_build_cmd_addr( cfi->addr_unlock1, cfi_interleave(cfi), cfi->device_type); probe_offset2 = cfi_build_cmd_addr( cfi->addr_unlock1, cfi_interleave(cfi), cfi->device_type); if ( ((base + probe_offset1 + map_bankwidth(map)) >= map->size) || ((base + probe_offset2 + map_bankwidth(map)) >= map->size)) { goto retry; } /* Reset */ jedec_reset(base, map, cfi); /* Autoselect Mode */ if(cfi->addr_unlock1) { cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); } cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); /* FIXME - should have a delay before continuing */ if (!cfi->numchips) { /* This is the first time we're called. Set up the CFI stuff accordingly and return */ cfi->mfr = jedec_read_mfr(map, base, cfi); cfi->id = jedec_read_id(map, base, cfi); DEBUG(MTD_DEBUG_LEVEL3, "Search for id:(%02x %02x) interleave(%d) type(%d)\n", cfi->mfr, cfi->id, cfi_interleave(cfi), cfi->device_type); for (i = 0; i < ARRAY_SIZE(jedec_table); i++) { if ( jedec_match( base, map, cfi, &jedec_table[i] ) ) { DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): matched device 0x%x,0x%x unlock_addrs: 0x%.4x 0x%.4x\n", __func__, cfi->mfr, cfi->id, cfi->addr_unlock1, cfi->addr_unlock2 ); if (!cfi_jedec_setup(cfi, i)) return 0; goto ok_out; } } goto retry; } else { __u16 mfr; __u16 id; /* Make sure it is a chip of the same manufacturer and id */ mfr = jedec_read_mfr(map, base, cfi); id = jedec_read_id(map, base, cfi); if ((mfr != cfi->mfr) || (id != cfi->id)) { printk(KERN_DEBUG "%s: Found different chip or no chip at all (mfr 0x%x, id 0x%x) at 0x%x\n", map->name, mfr, id, base); jedec_reset(base, map, cfi); return 0; } } /* Check each previous chip locations to see if it's an alias */ for (i=0; i < (base >> cfi->chipshift); i++) { unsigned long start; if(!test_bit(i, chip_map)) { continue; /* Skip location; no valid chip at this address */ } start = i << cfi->chipshift; if (jedec_read_mfr(map, start, cfi) == cfi->mfr && jedec_read_id(map, start, cfi) == cfi->id) { /* Eep. This chip also looks like it's in autoselect mode. Is it an alias for the new one? */ jedec_reset(start, map, cfi); /* If the device IDs go away, it's an alias */ if (jedec_read_mfr(map, base, cfi) != cfi->mfr || jedec_read_id(map, base, cfi) != cfi->id) { printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", map->name, base, start); return 0; } /* Yes, it's actually got the device IDs as data. Most * unfortunate. Stick the new chip in read mode * too and if it's the same, assume it's an alias. */ /* FIXME: Use other modes to do a proper check */ jedec_reset(base, map, cfi); if (jedec_read_mfr(map, base, cfi) == cfi->mfr && jedec_read_id(map, base, cfi) == cfi->id) { printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", map->name, base, start); return 0; } } } /* OK, if we got to here, then none of the previous chips appear to be aliases for the current one. */ set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */ cfi->numchips++; ok_out: /* Put it back into Read Mode */ jedec_reset(base, map, cfi); printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", map->name, cfi_interleave(cfi), cfi->device_type*8, base, map->bankwidth*8); return 1; } static struct chip_probe jedec_chip_probe = { .name = "JEDEC", .probe_chip = jedec_probe_chip }; static struct mtd_info *jedec_probe(struct map_info *map) { /* * Just use the generic probe stuff to call our CFI-specific * chip_probe routine in all the possible permutations, etc. */ return mtd_do_chip_probe(map, &jedec_chip_probe); } static struct mtd_chip_driver jedec_chipdrv = { .probe = jedec_probe, .name = "jedec_probe", .module = THIS_MODULE }; static int __init jedec_probe_init(void) { register_mtd_chip_driver(&jedec_chipdrv); return 0; } static void __exit jedec_probe_exit(void) { unregister_mtd_chip_driver(&jedec_chipdrv); } module_init(jedec_probe_init); module_exit(jedec_probe_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Erwin Authried et al."); MODULE_DESCRIPTION("Probe code for JEDEC-compliant flash chips");