/* * USB RedRat3 IR Transceiver rc-core driver * * Copyright (c) 2011 by Jarod Wilson * based heavily on the work of Stephen Cox, with additional * help from RedRat Ltd. * * This driver began life based an an old version of the first-generation * lirc_mceusb driver from the lirc 0.7.2 distribution. It was then * significantly rewritten by Stephen Cox with the aid of RedRat Ltd's * Chris Dodge. * * The driver was then ported to rc-core and significantly rewritten again, * by Jarod, using the in-kernel mceusb driver as a guide, after an initial * port effort was started by Stephen. * * TODO LIST: * - fix lirc not showing repeats properly * -- * * The RedRat3 is a USB transceiver with both send & receive, * with 2 separate sensors available for receive to enable * both good long range reception for general use, and good * short range reception when required for learning a signal. * * http://www.redrat.co.uk/ * * It uses its own little protocol to communicate, the required * parts of which are embedded within this driver. * -- * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include /* Driver Information */ #define DRIVER_VERSION "0.70" #define DRIVER_AUTHOR "Jarod Wilson " #define DRIVER_AUTHOR2 "The Dweller, Stephen Cox" #define DRIVER_DESC "RedRat3 USB IR Transceiver Driver" #define DRIVER_NAME "redrat3" /* module parameters */ #ifdef CONFIG_USB_DEBUG static int debug = 1; #else static int debug; #endif #define RR3_DEBUG_STANDARD 0x1 #define RR3_DEBUG_FUNCTION_TRACE 0x2 #define rr3_dbg(dev, fmt, ...) \ do { \ if (debug & RR3_DEBUG_STANDARD) \ dev_info(dev, fmt, ## __VA_ARGS__); \ } while (0) #define rr3_ftr(dev, fmt, ...) \ do { \ if (debug & RR3_DEBUG_FUNCTION_TRACE) \ dev_info(dev, fmt, ## __VA_ARGS__); \ } while (0) /* bulk data transfer types */ #define RR3_ERROR 0x01 #define RR3_MOD_SIGNAL_IN 0x20 #define RR3_MOD_SIGNAL_OUT 0x21 /* Get the RR firmware version */ #define RR3_FW_VERSION 0xb1 #define RR3_FW_VERSION_LEN 64 /* Send encoded signal bulk-sent earlier*/ #define RR3_TX_SEND_SIGNAL 0xb3 #define RR3_SET_IR_PARAM 0xb7 #define RR3_GET_IR_PARAM 0xb8 /* Blink the red LED on the device */ #define RR3_BLINK_LED 0xb9 /* Read serial number of device */ #define RR3_READ_SER_NO 0xba #define RR3_SER_NO_LEN 4 /* Start capture with the RC receiver */ #define RR3_RC_DET_ENABLE 0xbb /* Stop capture with the RC receiver */ #define RR3_RC_DET_DISABLE 0xbc /* Return the status of RC detector capture */ #define RR3_RC_DET_STATUS 0xbd /* Reset redrat */ #define RR3_RESET 0xa0 /* Max number of lengths in the signal. */ #define RR3_IR_IO_MAX_LENGTHS 0x01 /* Periods to measure mod. freq. */ #define RR3_IR_IO_PERIODS_MF 0x02 /* Size of memory for main signal data */ #define RR3_IR_IO_SIG_MEM_SIZE 0x03 /* Delta value when measuring lengths */ #define RR3_IR_IO_LENGTH_FUZZ 0x04 /* Timeout for end of signal detection */ #define RR3_IR_IO_SIG_TIMEOUT 0x05 /* Minumum value for pause recognition. */ #define RR3_IR_IO_MIN_PAUSE 0x06 /* Clock freq. of EZ-USB chip */ #define RR3_CLK 24000000 /* Clock periods per timer count */ #define RR3_CLK_PER_COUNT 12 /* (RR3_CLK / RR3_CLK_PER_COUNT) */ #define RR3_CLK_CONV_FACTOR 2000000 /* USB bulk-in IR data endpoint address */ #define RR3_BULK_IN_EP_ADDR 0x82 /* Raw Modulated signal data value offsets */ #define RR3_PAUSE_OFFSET 0 #define RR3_FREQ_COUNT_OFFSET 4 #define RR3_NUM_PERIOD_OFFSET 6 #define RR3_MAX_LENGTHS_OFFSET 8 #define RR3_NUM_LENGTHS_OFFSET 9 #define RR3_MAX_SIGS_OFFSET 10 #define RR3_NUM_SIGS_OFFSET 12 #define RR3_REPEATS_OFFSET 14 /* Size of the fixed-length portion of the signal */ #define RR3_HEADER_LENGTH 15 #define RR3_DRIVER_MAXLENS 128 #define RR3_MAX_SIG_SIZE 512 #define RR3_MAX_BUF_SIZE \ ((2 * RR3_HEADER_LENGTH) + RR3_DRIVER_MAXLENS + RR3_MAX_SIG_SIZE) #define RR3_TIME_UNIT 50 #define RR3_END_OF_SIGNAL 0x7f #define RR3_TX_HEADER_OFFSET 4 #define RR3_TX_TRAILER_LEN 2 #define RR3_RX_MIN_TIMEOUT 5 #define RR3_RX_MAX_TIMEOUT 2000 /* The 8051's CPUCS Register address */ #define RR3_CPUCS_REG_ADDR 0x7f92 #define USB_RR3USB_VENDOR_ID 0x112a #define USB_RR3USB_PRODUCT_ID 0x0001 #define USB_RR3IIUSB_PRODUCT_ID 0x0005 /* table of devices that work with this driver */ static struct usb_device_id redrat3_dev_table[] = { /* Original version of the RedRat3 */ {USB_DEVICE(USB_RR3USB_VENDOR_ID, USB_RR3USB_PRODUCT_ID)}, /* Second Version/release of the RedRat3 - RetRat3-II */ {USB_DEVICE(USB_RR3USB_VENDOR_ID, USB_RR3IIUSB_PRODUCT_ID)}, {} /* Terminating entry */ }; /* Structure to hold all of our device specific stuff */ struct redrat3_dev { /* core device bits */ struct rc_dev *rc; struct device *dev; /* save off the usb device pointer */ struct usb_device *udev; /* the receive endpoint */ struct usb_endpoint_descriptor *ep_in; /* the buffer to receive data */ unsigned char *bulk_in_buf; /* urb used to read ir data */ struct urb *read_urb; /* the send endpoint */ struct usb_endpoint_descriptor *ep_out; /* the buffer to send data */ unsigned char *bulk_out_buf; /* the urb used to send data */ struct urb *write_urb; /* usb dma */ dma_addr_t dma_in; dma_addr_t dma_out; /* true if write urb is busy */ bool write_busy; /* wait for the write to finish */ struct completion write_finished; /* locks this structure */ struct mutex lock; /* rx signal timeout timer */ struct timer_list rx_timeout; /* Is the device currently receiving? */ bool recv_in_progress; /* is the detector enabled*/ bool det_enabled; /* Is the device currently transmitting?*/ bool transmitting; /* store for current packet */ char pbuf[RR3_MAX_BUF_SIZE]; u16 pktlen; u16 pkttype; u16 bytes_read; /* indicate whether we are going to reprocess * the USB callback with a bigger buffer */ int buftoosmall; char *datap; u32 carrier; char name[128]; char phys[64]; }; /* All incoming data buffers adhere to a very specific data format */ struct redrat3_signal_header { u16 length; /* Length of data being transferred */ u16 transfer_type; /* Type of data transferred */ u32 pause; /* Pause between main and repeat signals */ u16 mod_freq_count; /* Value of timer on mod. freq. measurement */ u16 no_periods; /* No. of periods over which mod. freq. is measured */ u8 max_lengths; /* Max no. of lengths (i.e. size of array) */ u8 no_lengths; /* Actual no. of elements in lengths array */ u16 max_sig_size; /* Max no. of values in signal data array */ u16 sig_size; /* Acuto no. of values in signal data array */ u8 no_repeats; /* No. of repeats of repeat signal section */ /* Here forward is the lengths and signal data */ }; static void redrat3_dump_signal_header(struct redrat3_signal_header *header) { pr_info("%s:\n", __func__); pr_info(" * length: %u, transfer_type: 0x%02x\n", header->length, header->transfer_type); pr_info(" * pause: %u, freq_count: %u, no_periods: %u\n", header->pause, header->mod_freq_count, header->no_periods); pr_info(" * lengths: %u (max: %u)\n", header->no_lengths, header->max_lengths); pr_info(" * sig_size: %u (max: %u)\n", header->sig_size, header->max_sig_size); pr_info(" * repeats: %u\n", header->no_repeats); } static void redrat3_dump_signal_data(char *buffer, u16 len) { int offset, i; char *data_vals; pr_info("%s:", __func__); offset = RR3_TX_HEADER_OFFSET + RR3_HEADER_LENGTH + (RR3_DRIVER_MAXLENS * sizeof(u16)); /* read RR3_DRIVER_MAXLENS from ctrl msg */ data_vals = buffer + offset; for (i = 0; i < len; i++) { if (i % 10 == 0) pr_cont("\n * "); pr_cont("%02x ", *data_vals++); } pr_cont("\n"); } /* * redrat3_issue_async * * Issues an async read to the ir data in port.. * sets the callback to be redrat3_handle_async */ static void redrat3_issue_async(struct redrat3_dev *rr3) { int res; rr3_ftr(rr3->dev, "Entering %s\n", __func__); if (!rr3->det_enabled) { dev_warn(rr3->dev, "not issuing async read, " "detector not enabled\n"); return; } memset(rr3->bulk_in_buf, 0, rr3->ep_in->wMaxPacketSize); res = usb_submit_urb(rr3->read_urb, GFP_ATOMIC); if (res) rr3_dbg(rr3->dev, "%s: receive request FAILED! " "(res %d, len %d)\n", __func__, res, rr3->read_urb->transfer_buffer_length); } static void redrat3_dump_fw_error(struct redrat3_dev *rr3, int code) { if (!rr3->transmitting && (code != 0x40)) dev_info(rr3->dev, "fw error code 0x%02x: ", code); switch (code) { case 0x00: pr_cont("No Error\n"); break; /* Codes 0x20 through 0x2f are IR Firmware Errors */ case 0x20: pr_cont("Initial signal pulse not long enough " "to measure carrier frequency\n"); break; case 0x21: pr_cont("Not enough length values allocated for signal\n"); break; case 0x22: pr_cont("Not enough memory allocated for signal data\n"); break; case 0x23: pr_cont("Too many signal repeats\n"); break; case 0x28: pr_cont("Insufficient memory available for IR signal " "data memory allocation\n"); break; case 0x29: pr_cont("Insufficient memory available " "for IrDa signal data memory allocation\n"); break; /* Codes 0x30 through 0x3f are USB Firmware Errors */ case 0x30: pr_cont("Insufficient memory available for bulk " "transfer structure\n"); break; /* * Other error codes... These are primarily errors that can occur in * the control messages sent to the redrat */ case 0x40: if (!rr3->transmitting) pr_cont("Signal capture has been terminated\n"); break; case 0x41: pr_cont("Attempt to set/get and unknown signal I/O " "algorithm parameter\n"); break; case 0x42: pr_cont("Signal capture already started\n"); break; default: pr_cont("Unknown Error\n"); break; } } static u32 redrat3_val_to_mod_freq(struct redrat3_signal_header *ph) { u32 mod_freq = 0; if (ph->mod_freq_count != 0) mod_freq = (RR3_CLK * ph->no_periods) / (ph->mod_freq_count * RR3_CLK_PER_COUNT); return mod_freq; } /* this function scales down the figures for the same result... */ static u32 redrat3_len_to_us(u32 length) { u32 biglen = length * 1000; u32 divisor = (RR3_CLK_CONV_FACTOR) / 1000; u32 result = (u32) (biglen / divisor); /* don't allow zero lengths to go back, breaks lirc */ return result ? result : 1; } /* * convert us back into redrat3 lengths * * length * 1000 length * 1000000 * ------------- = ---------------- = micro * rr3clk / 1000 rr3clk * 6 * 2 4 * 3 micro * rr3clk micro * rr3clk / 1000 * ----- = 4 ----- = 6 -------------- = len --------------------- * 3 2 1000000 1000 */ static u32 redrat3_us_to_len(u32 microsec) { u32 result; u32 divisor; microsec &= IR_MAX_DURATION; divisor = (RR3_CLK_CONV_FACTOR / 1000); result = (u32)(microsec * divisor) / 1000; /* don't allow zero lengths to go back, breaks lirc */ return result ? result : 1; } /* timer callback to send reset event */ static void redrat3_rx_timeout(unsigned long data) { struct redrat3_dev *rr3 = (struct redrat3_dev *)data; rr3_dbg(rr3->dev, "calling ir_raw_event_reset\n"); ir_raw_event_reset(rr3->rc); } static void redrat3_process_ir_data(struct redrat3_dev *rr3) { DEFINE_IR_RAW_EVENT(rawir); struct redrat3_signal_header header; struct device *dev; int i; unsigned long delay; u32 mod_freq, single_len; u16 *len_vals; u8 *data_vals; u32 tmp32; u16 tmp16; char *sig_data; if (!rr3) { pr_err("%s called with no context!\n", __func__); return; } rr3_ftr(rr3->dev, "Entered %s\n", __func__); dev = rr3->dev; sig_data = rr3->pbuf; header.length = rr3->pktlen; header.transfer_type = rr3->pkttype; /* Sanity check */ if (!(header.length >= RR3_HEADER_LENGTH)) dev_warn(dev, "read returned less than rr3 header len\n"); delay = usecs_to_jiffies(rr3->rc->timeout / 1000); mod_timer(&rr3->rx_timeout, jiffies + delay); memcpy(&tmp32, sig_data + RR3_PAUSE_OFFSET, sizeof(tmp32)); header.pause = be32_to_cpu(tmp32); memcpy(&tmp16, sig_data + RR3_FREQ_COUNT_OFFSET, sizeof(tmp16)); header.mod_freq_count = be16_to_cpu(tmp16); memcpy(&tmp16, sig_data + RR3_NUM_PERIOD_OFFSET, sizeof(tmp16)); header.no_periods = be16_to_cpu(tmp16); header.max_lengths = sig_data[RR3_MAX_LENGTHS_OFFSET]; header.no_lengths = sig_data[RR3_NUM_LENGTHS_OFFSET]; memcpy(&tmp16, sig_data + RR3_MAX_SIGS_OFFSET, sizeof(tmp16)); header.max_sig_size = be16_to_cpu(tmp16); memcpy(&tmp16, sig_data + RR3_NUM_SIGS_OFFSET, sizeof(tmp16)); header.sig_size = be16_to_cpu(tmp16); header.no_repeats= sig_data[RR3_REPEATS_OFFSET]; if (debug) { redrat3_dump_signal_header(&header); redrat3_dump_signal_data(sig_data, header.sig_size); } mod_freq = redrat3_val_to_mod_freq(&header); rr3_dbg(dev, "Got mod_freq of %u\n", mod_freq); /* Here we pull out the 'length' values from the signal */ len_vals = (u16 *)(sig_data + RR3_HEADER_LENGTH); data_vals = sig_data + RR3_HEADER_LENGTH + (header.max_lengths * sizeof(u16)); /* process each rr3 encoded byte into an int */ for (i = 0; i < header.sig_size; i++) { u16 val = len_vals[data_vals[i]]; single_len = redrat3_len_to_us((u32)be16_to_cpu(val)); /* we should always get pulse/space/pulse/space samples */ if (i % 2) rawir.pulse = false; else rawir.pulse = true; rawir.duration = US_TO_NS(single_len); /* cap the value to IR_MAX_DURATION */ rawir.duration &= IR_MAX_DURATION; rr3_dbg(dev, "storing %s with duration %d (i: %d)\n", rawir.pulse ? "pulse" : "space", rawir.duration, i); ir_raw_event_store_with_filter(rr3->rc, &rawir); } /* add a trailing space, if need be */ if (i % 2) { rawir.pulse = false; /* this duration is made up, and may not be ideal... */ rawir.duration = rr3->rc->timeout / 2; rr3_dbg(dev, "storing trailing space with duration %d\n", rawir.duration); ir_raw_event_store_with_filter(rr3->rc, &rawir); } rr3_dbg(dev, "calling ir_raw_event_handle\n"); ir_raw_event_handle(rr3->rc); return; } /* Util fn to send rr3 cmds */ static u8 redrat3_send_cmd(int cmd, struct redrat3_dev *rr3) { struct usb_device *udev; u8 *data; int res; data = kzalloc(sizeof(u8), GFP_KERNEL); if (!data) return -ENOMEM; udev = rr3->udev; res = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), cmd, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, 0x0000, 0x0000, data, sizeof(u8), HZ * 10); if (res < 0) { dev_err(rr3->dev, "%s: Error sending rr3 cmd res %d, data %d", __func__, res, *data); res = -EIO; } else res = (u8)data[0]; kfree(data); return res; } /* Enables the long range detector and starts async receive */ static int redrat3_enable_detector(struct redrat3_dev *rr3) { struct device *dev = rr3->dev; u8 ret; rr3_ftr(dev, "Entering %s\n", __func__); ret = redrat3_send_cmd(RR3_RC_DET_ENABLE, rr3); if (ret != 0) dev_dbg(dev, "%s: unexpected ret of %d\n", __func__, ret); ret = redrat3_send_cmd(RR3_RC_DET_STATUS, rr3); if (ret != 1) { dev_err(dev, "%s: detector status: %d, should be 1\n", __func__, ret); return -EIO; } rr3->det_enabled = true; redrat3_issue_async(rr3); return 0; } /* Disables the rr3 long range detector */ static void redrat3_disable_detector(struct redrat3_dev *rr3) { struct device *dev = rr3->dev; u8 ret; rr3_ftr(dev, "Entering %s\n", __func__); ret = redrat3_send_cmd(RR3_RC_DET_DISABLE, rr3); if (ret != 0) dev_err(dev, "%s: failure!\n", __func__); ret = redrat3_send_cmd(RR3_RC_DET_STATUS, rr3); if (ret != 0) dev_warn(dev, "%s: detector status: %d, should be 0\n", __func__, ret); rr3->det_enabled = false; } static inline void redrat3_delete(struct redrat3_dev *rr3, struct usb_device *udev) { rr3_ftr(rr3->dev, "%s cleaning up\n", __func__); usb_kill_urb(rr3->read_urb); usb_kill_urb(rr3->write_urb); usb_free_urb(rr3->read_urb); usb_free_urb(rr3->write_urb); usb_free_coherent(udev, rr3->ep_in->wMaxPacketSize, rr3->bulk_in_buf, rr3->dma_in); usb_free_coherent(udev, rr3->ep_out->wMaxPacketSize, rr3->bulk_out_buf, rr3->dma_out); kfree(rr3); } static u32 redrat3_get_timeout(struct device *dev, struct rc_dev *rc, struct usb_device *udev) { u32 *tmp; u32 timeout = MS_TO_NS(150); /* a sane default, if things go haywire */ int len, ret, pipe; len = sizeof(*tmp); tmp = kzalloc(len, GFP_KERNEL); if (!tmp) { dev_warn(dev, "Memory allocation faillure\n"); return timeout; } pipe = usb_rcvctrlpipe(udev, 0); ret = usb_control_msg(udev, pipe, RR3_GET_IR_PARAM, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, RR3_IR_IO_SIG_TIMEOUT, 0, tmp, len, HZ * 5); if (ret != len) { dev_warn(dev, "Failed to read timeout from hardware\n"); return timeout; } timeout = US_TO_NS(redrat3_len_to_us(be32_to_cpu(*tmp))); if (timeout < rc->min_timeout) timeout = rc->min_timeout; else if (timeout > rc->max_timeout) timeout = rc->max_timeout; rr3_dbg(dev, "Got timeout of %d ms\n", timeout / (1000 * 1000)); return timeout; } static void redrat3_reset(struct redrat3_dev *rr3) { struct usb_device *udev = rr3->udev; struct device *dev = rr3->dev; int rc, rxpipe, txpipe; u8 *val; int len = sizeof(u8); rr3_ftr(dev, "Entering %s\n", __func__); rxpipe = usb_rcvctrlpipe(udev, 0); txpipe = usb_sndctrlpipe(udev, 0); val = kzalloc(len, GFP_KERNEL); if (!val) { dev_err(dev, "Memory allocation failure\n"); return; } *val = 0x01; rc = usb_control_msg(udev, rxpipe, RR3_RESET, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, RR3_CPUCS_REG_ADDR, 0, val, len, HZ * 25); rr3_dbg(dev, "reset returned 0x%02x\n", rc); *val = 5; rc = usb_control_msg(udev, txpipe, RR3_SET_IR_PARAM, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT, RR3_IR_IO_LENGTH_FUZZ, 0, val, len, HZ * 25); rr3_dbg(dev, "set ir parm len fuzz %d rc 0x%02x\n", *val, rc); *val = RR3_DRIVER_MAXLENS; rc = usb_control_msg(udev, txpipe, RR3_SET_IR_PARAM, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT, RR3_IR_IO_MAX_LENGTHS, 0, val, len, HZ * 25); rr3_dbg(dev, "set ir parm max lens %d rc 0x%02x\n", *val, rc); kfree(val); } static void redrat3_get_firmware_rev(struct redrat3_dev *rr3) { int rc = 0; char *buffer; rr3_ftr(rr3->dev, "Entering %s\n", __func__); buffer = kzalloc(sizeof(char) * (RR3_FW_VERSION_LEN + 1), GFP_KERNEL); if (!buffer) { dev_err(rr3->dev, "Memory allocation failure\n"); return; } rc = usb_control_msg(rr3->udev, usb_rcvctrlpipe(rr3->udev, 0), RR3_FW_VERSION, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, 0, 0, buffer, RR3_FW_VERSION_LEN, HZ * 5); if (rc >= 0) dev_info(rr3->dev, "Firmware rev: %s", buffer); else dev_err(rr3->dev, "Problem fetching firmware ID\n"); kfree(buffer); rr3_ftr(rr3->dev, "Exiting %s\n", __func__); } static void redrat3_read_packet_start(struct redrat3_dev *rr3, int len) { u16 tx_error; u16 hdrlen; rr3_ftr(rr3->dev, "Entering %s\n", __func__); /* grab the Length and type of transfer */ memcpy(&(rr3->pktlen), (unsigned char *) rr3->bulk_in_buf, sizeof(rr3->pktlen)); memcpy(&(rr3->pkttype), ((unsigned char *) rr3->bulk_in_buf + sizeof(rr3->pktlen)), sizeof(rr3->pkttype)); /*data needs conversion to know what its real values are*/ rr3->pktlen = be16_to_cpu(rr3->pktlen); rr3->pkttype = be16_to_cpu(rr3->pkttype); switch (rr3->pkttype) { case RR3_ERROR: memcpy(&tx_error, ((unsigned char *)rr3->bulk_in_buf + (sizeof(rr3->pktlen) + sizeof(rr3->pkttype))), sizeof(tx_error)); tx_error = be16_to_cpu(tx_error); redrat3_dump_fw_error(rr3, tx_error); break; case RR3_MOD_SIGNAL_IN: hdrlen = sizeof(rr3->pktlen) + sizeof(rr3->pkttype); rr3->bytes_read = len; rr3->bytes_read -= hdrlen; rr3->datap = &(rr3->pbuf[0]); memcpy(rr3->datap, ((unsigned char *)rr3->bulk_in_buf + hdrlen), rr3->bytes_read); rr3->datap += rr3->bytes_read; rr3_dbg(rr3->dev, "bytes_read %d, pktlen %d\n", rr3->bytes_read, rr3->pktlen); break; default: rr3_dbg(rr3->dev, "ignoring packet with type 0x%02x, " "len of %d, 0x%02x\n", rr3->pkttype, len, rr3->pktlen); break; } } static void redrat3_read_packet_continue(struct redrat3_dev *rr3, int len) { rr3_ftr(rr3->dev, "Entering %s\n", __func__); memcpy(rr3->datap, (unsigned char *)rr3->bulk_in_buf, len); rr3->datap += len; rr3->bytes_read += len; rr3_dbg(rr3->dev, "bytes_read %d, pktlen %d\n", rr3->bytes_read, rr3->pktlen); } /* gather IR data from incoming urb, process it when we have enough */ static int redrat3_get_ir_data(struct redrat3_dev *rr3, int len) { struct device *dev = rr3->dev; int ret = 0; rr3_ftr(dev, "Entering %s\n", __func__); if (rr3->pktlen > RR3_MAX_BUF_SIZE) { dev_err(rr3->dev, "error: packet larger than buffer\n"); ret = -EINVAL; goto out; } if ((rr3->bytes_read == 0) && (len >= (sizeof(rr3->pkttype) + sizeof(rr3->pktlen)))) { redrat3_read_packet_start(rr3, len); } else if (rr3->bytes_read != 0) { redrat3_read_packet_continue(rr3, len); } else if (rr3->bytes_read == 0) { dev_err(dev, "error: no packet data read\n"); ret = -ENODATA; goto out; } if (rr3->bytes_read > rr3->pktlen) { dev_err(dev, "bytes_read (%d) greater than pktlen (%d)\n", rr3->bytes_read, rr3->pktlen); ret = -EINVAL; goto out; } else if (rr3->bytes_read < rr3->pktlen) /* we're still accumulating data */ return 0; /* if we get here, we've got IR data to decode */ if (rr3->pkttype == RR3_MOD_SIGNAL_IN) redrat3_process_ir_data(rr3); else rr3_dbg(dev, "discarding non-signal data packet " "(type 0x%02x)\n", rr3->pkttype); out: rr3->bytes_read = 0; rr3->pktlen = 0; rr3->pkttype = 0; return ret; } /* callback function from USB when async USB request has completed */ static void redrat3_handle_async(struct urb *urb, struct pt_regs *regs) { struct redrat3_dev *rr3; if (!urb) return; rr3 = urb->context; if (!rr3) { pr_err("%s called with invalid context!\n", __func__); usb_unlink_urb(urb); return; } rr3_ftr(rr3->dev, "Entering %s\n", __func__); if (!rr3->det_enabled) { rr3_dbg(rr3->dev, "received a read callback but detector " "disabled - ignoring\n"); return; } switch (urb->status) { case 0: redrat3_get_ir_data(rr3, urb->actual_length); break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: usb_unlink_urb(urb); return; case -EPIPE: default: dev_warn(rr3->dev, "Error: urb status = %d\n", urb->status); rr3->bytes_read = 0; rr3->pktlen = 0; rr3->pkttype = 0; break; } if (!rr3->transmitting) redrat3_issue_async(rr3); else rr3_dbg(rr3->dev, "IR transmit in progress\n"); } static void redrat3_write_bulk_callback(struct urb *urb, struct pt_regs *regs) { struct redrat3_dev *rr3; int len; if (!urb) return; rr3 = urb->context; if (rr3) { len = urb->actual_length; rr3_ftr(rr3->dev, "%s: called (status=%d len=%d)\n", __func__, urb->status, len); } } static u16 mod_freq_to_val(unsigned int mod_freq) { int mult = 6000000; /* Clk used in mod. freq. generation is CLK24/4. */ return (u16)(65536 - (mult / mod_freq)); } static int redrat3_set_tx_carrier(struct rc_dev *dev, u32 carrier) { struct redrat3_dev *rr3 = dev->priv; rr3->carrier = carrier; return carrier; } static int redrat3_transmit_ir(struct rc_dev *rcdev, int *txbuf, u32 n) { struct redrat3_dev *rr3 = rcdev->priv; struct device *dev = rr3->dev; struct redrat3_signal_header header; int i, j, count, ret, ret_len, offset; int lencheck, cur_sample_len, pipe; char *buffer = NULL, *sigdata = NULL; int *sample_lens = NULL; u32 tmpi; u16 tmps; u8 *datap; u8 curlencheck = 0; u16 *lengths_ptr; int sendbuf_len; rr3_ftr(dev, "Entering %s\n", __func__); if (rr3->transmitting) { dev_warn(dev, "%s: transmitter already in use\n", __func__); return -EAGAIN; } count = n / sizeof(int); if (count > (RR3_DRIVER_MAXLENS * 2)) return -EINVAL; rr3->transmitting = true; redrat3_disable_detector(rr3); if (rr3->det_enabled) { dev_err(dev, "%s: cannot tx while rx is enabled\n", __func__); ret = -EIO; goto out; } sample_lens = kzalloc(sizeof(int) * RR3_DRIVER_MAXLENS, GFP_KERNEL); if (!sample_lens) { ret = -ENOMEM; goto out; } for (i = 0; i < count; i++) { for (lencheck = 0; lencheck < curlencheck; lencheck++) { cur_sample_len = redrat3_us_to_len(txbuf[i]); if (sample_lens[lencheck] == cur_sample_len) break; } if (lencheck == curlencheck) { cur_sample_len = redrat3_us_to_len(txbuf[i]); rr3_dbg(dev, "txbuf[%d]=%u, pos %d, enc %u\n", i, txbuf[i], curlencheck, cur_sample_len); if (curlencheck < 255) { /* now convert the value to a proper * rr3 value.. */ sample_lens[curlencheck] = cur_sample_len; curlencheck++; } else { dev_err(dev, "signal too long\n"); ret = -EINVAL; goto out; } } } sigdata = kzalloc((count + RR3_TX_TRAILER_LEN), GFP_KERNEL); if (!sigdata) { ret = -ENOMEM; goto out; } sigdata[count] = RR3_END_OF_SIGNAL; sigdata[count + 1] = RR3_END_OF_SIGNAL; for (i = 0; i < count; i++) { for (j = 0; j < curlencheck; j++) { if (sample_lens[j] == redrat3_us_to_len(txbuf[i])) sigdata[i] = j; } } offset = RR3_TX_HEADER_OFFSET; sendbuf_len = RR3_HEADER_LENGTH + (sizeof(u16) * RR3_DRIVER_MAXLENS) + count + RR3_TX_TRAILER_LEN + offset; buffer = kzalloc(sendbuf_len, GFP_KERNEL); if (!buffer) { ret = -ENOMEM; goto out; } /* fill in our packet header */ header.length = sendbuf_len - offset; header.transfer_type = RR3_MOD_SIGNAL_OUT; header.pause = redrat3_len_to_us(100); header.mod_freq_count = mod_freq_to_val(rr3->carrier); header.no_periods = 0; /* n/a to transmit */ header.max_lengths = RR3_DRIVER_MAXLENS; header.no_lengths = curlencheck; header.max_sig_size = RR3_MAX_SIG_SIZE; header.sig_size = count + RR3_TX_TRAILER_LEN; /* we currently rely on repeat handling in the IR encoding source */ header.no_repeats = 0; tmps = cpu_to_be16(header.length); memcpy(buffer, &tmps, 2); tmps = cpu_to_be16(header.transfer_type); memcpy(buffer + 2, &tmps, 2); tmpi = cpu_to_be32(header.pause); memcpy(buffer + offset, &tmpi, sizeof(tmpi)); tmps = cpu_to_be16(header.mod_freq_count); memcpy(buffer + offset + RR3_FREQ_COUNT_OFFSET, &tmps, 2); buffer[offset + RR3_NUM_LENGTHS_OFFSET] = header.no_lengths; tmps = cpu_to_be16(header.sig_size); memcpy(buffer + offset + RR3_NUM_SIGS_OFFSET, &tmps, 2); buffer[offset + RR3_REPEATS_OFFSET] = header.no_repeats; lengths_ptr = (u16 *)(buffer + offset + RR3_HEADER_LENGTH); for (i = 0; i < curlencheck; ++i) lengths_ptr[i] = cpu_to_be16(sample_lens[i]); datap = (u8 *)(buffer + offset + RR3_HEADER_LENGTH + (sizeof(u16) * RR3_DRIVER_MAXLENS)); memcpy(datap, sigdata, (count + RR3_TX_TRAILER_LEN)); if (debug) { redrat3_dump_signal_header(&header); redrat3_dump_signal_data(buffer, header.sig_size); } pipe = usb_sndbulkpipe(rr3->udev, rr3->ep_out->bEndpointAddress); tmps = usb_bulk_msg(rr3->udev, pipe, buffer, sendbuf_len, &ret_len, 10 * HZ); rr3_dbg(dev, "sent %d bytes, (ret %d)\n", ret_len, tmps); /* now tell the hardware to transmit what we sent it */ pipe = usb_rcvctrlpipe(rr3->udev, 0); ret = usb_control_msg(rr3->udev, pipe, RR3_TX_SEND_SIGNAL, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, 0, 0, buffer, 2, HZ * 10); if (ret < 0) dev_err(dev, "Error: control msg send failed, rc %d\n", ret); else ret = n; out: kfree(sample_lens); kfree(buffer); kfree(sigdata); rr3->transmitting = false; redrat3_enable_detector(rr3); return ret; } static struct rc_dev *redrat3_init_rc_dev(struct redrat3_dev *rr3) { struct device *dev = rr3->dev; struct rc_dev *rc; int ret = -ENODEV; u16 prod = le16_to_cpu(rr3->udev->descriptor.idProduct); rc = rc_allocate_device(); if (!rc) { dev_err(dev, "remote input dev allocation failed\n"); goto out; } snprintf(rr3->name, sizeof(rr3->name), "RedRat3%s " "Infrared Remote Transceiver (%04x:%04x)", prod == USB_RR3IIUSB_PRODUCT_ID ? "-II" : "", le16_to_cpu(rr3->udev->descriptor.idVendor), prod); usb_make_path(rr3->udev, rr3->phys, sizeof(rr3->phys)); rc->input_name = rr3->name; rc->input_phys = rr3->phys; usb_to_input_id(rr3->udev, &rc->input_id); rc->dev.parent = dev; rc->priv = rr3; rc->driver_type = RC_DRIVER_IR_RAW; rc->allowed_protos = RC_TYPE_ALL; rc->min_timeout = MS_TO_NS(RR3_RX_MIN_TIMEOUT); rc->max_timeout = MS_TO_NS(RR3_RX_MAX_TIMEOUT); rc->timeout = redrat3_get_timeout(dev, rc, rr3->udev); rc->tx_ir = redrat3_transmit_ir; rc->s_tx_carrier = redrat3_set_tx_carrier; rc->driver_name = DRIVER_NAME; rc->map_name = RC_MAP_HAUPPAUGE; ret = rc_register_device(rc); if (ret < 0) { dev_err(dev, "remote dev registration failed\n"); goto out; } return rc; out: rc_free_device(rc); return NULL; } static int __devinit redrat3_dev_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct device *dev = &intf->dev; struct usb_host_interface *uhi; struct redrat3_dev *rr3; struct usb_endpoint_descriptor *ep; struct usb_endpoint_descriptor *ep_in = NULL; struct usb_endpoint_descriptor *ep_out = NULL; u8 addr, attrs; int pipe, i; int retval = -ENOMEM; rr3_ftr(dev, "%s called\n", __func__); uhi = intf->cur_altsetting; /* find our bulk-in and bulk-out endpoints */ for (i = 0; i < uhi->desc.bNumEndpoints; ++i) { ep = &uhi->endpoint[i].desc; addr = ep->bEndpointAddress; attrs = ep->bmAttributes; if ((ep_in == NULL) && ((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) && ((attrs & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK)) { rr3_dbg(dev, "found bulk-in endpoint at 0x%02x\n", ep->bEndpointAddress); /* data comes in on 0x82, 0x81 is for other data... */ if (ep->bEndpointAddress == RR3_BULK_IN_EP_ADDR) ep_in = ep; } if ((ep_out == NULL) && ((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) && ((attrs & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK)) { rr3_dbg(dev, "found bulk-out endpoint at 0x%02x\n", ep->bEndpointAddress); ep_out = ep; } } if (!ep_in || !ep_out) { dev_err(dev, "Couldn't find both in and out endpoints\n"); retval = -ENODEV; goto no_endpoints; } /* allocate memory for our device state and initialize it */ rr3 = kzalloc(sizeof(*rr3), GFP_KERNEL); if (rr3 == NULL) { dev_err(dev, "Memory allocation failure\n"); goto no_endpoints; } rr3->dev = &intf->dev; /* set up bulk-in endpoint */ rr3->read_urb = usb_alloc_urb(0, GFP_KERNEL); if (!rr3->read_urb) { dev_err(dev, "Read urb allocation failure\n"); goto error; } rr3->ep_in = ep_in; rr3->bulk_in_buf = usb_alloc_coherent(udev, ep_in->wMaxPacketSize, GFP_ATOMIC, &rr3->dma_in); if (!rr3->bulk_in_buf) { dev_err(dev, "Read buffer allocation failure\n"); goto error; } pipe = usb_rcvbulkpipe(udev, ep_in->bEndpointAddress); usb_fill_bulk_urb(rr3->read_urb, udev, pipe, rr3->bulk_in_buf, ep_in->wMaxPacketSize, (usb_complete_t)redrat3_handle_async, rr3); /* set up bulk-out endpoint*/ rr3->write_urb = usb_alloc_urb(0, GFP_KERNEL); if (!rr3->write_urb) { dev_err(dev, "Write urb allocation failure\n"); goto error; } rr3->ep_out = ep_out; rr3->bulk_out_buf = usb_alloc_coherent(udev, ep_out->wMaxPacketSize, GFP_ATOMIC, &rr3->dma_out); if (!rr3->bulk_out_buf) { dev_err(dev, "Write buffer allocation failure\n"); goto error; } pipe = usb_sndbulkpipe(udev, ep_out->bEndpointAddress); usb_fill_bulk_urb(rr3->write_urb, udev, pipe, rr3->bulk_out_buf, ep_out->wMaxPacketSize, (usb_complete_t)redrat3_write_bulk_callback, rr3); mutex_init(&rr3->lock); rr3->udev = udev; redrat3_reset(rr3); redrat3_get_firmware_rev(rr3); /* might be all we need to do? */ retval = redrat3_enable_detector(rr3); if (retval < 0) goto error; /* default.. will get overridden by any sends with a freq defined */ rr3->carrier = 38000; rr3->rc = redrat3_init_rc_dev(rr3); if (!rr3->rc) goto error; setup_timer(&rr3->rx_timeout, redrat3_rx_timeout, (unsigned long)rr3); /* we can register the device now, as it is ready */ usb_set_intfdata(intf, rr3); rr3_ftr(dev, "Exiting %s\n", __func__); return 0; error: redrat3_delete(rr3, rr3->udev); no_endpoints: dev_err(dev, "%s: retval = %x", __func__, retval); return retval; } static void __devexit redrat3_dev_disconnect(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); struct redrat3_dev *rr3 = usb_get_intfdata(intf); rr3_ftr(&intf->dev, "Entering %s\n", __func__); if (!rr3) return; redrat3_disable_detector(rr3); usb_set_intfdata(intf, NULL); rc_unregister_device(rr3->rc); redrat3_delete(rr3, udev); rr3_ftr(&intf->dev, "RedRat3 IR Transceiver now disconnected\n"); } static int redrat3_dev_suspend(struct usb_interface *intf, pm_message_t message) { struct redrat3_dev *rr3 = usb_get_intfdata(intf); rr3_ftr(rr3->dev, "suspend\n"); usb_kill_urb(rr3->read_urb); return 0; } static int redrat3_dev_resume(struct usb_interface *intf) { struct redrat3_dev *rr3 = usb_get_intfdata(intf); rr3_ftr(rr3->dev, "resume\n"); if (usb_submit_urb(rr3->read_urb, GFP_ATOMIC)) return -EIO; return 0; } static struct usb_driver redrat3_dev_driver = { .name = DRIVER_NAME, .probe = redrat3_dev_probe, .disconnect = redrat3_dev_disconnect, .suspend = redrat3_dev_suspend, .resume = redrat3_dev_resume, .reset_resume = redrat3_dev_resume, .id_table = redrat3_dev_table }; static int __init redrat3_dev_init(void) { int ret; ret = usb_register(&redrat3_dev_driver); if (ret < 0) pr_err(DRIVER_NAME ": usb register failed, result = %d\n", ret); return ret; } static void __exit redrat3_dev_exit(void) { usb_deregister(&redrat3_dev_driver); } module_init(redrat3_dev_init); module_exit(redrat3_dev_exit); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_AUTHOR(DRIVER_AUTHOR2); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(usb, redrat3_dev_table); module_param(debug, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(debug, "Enable module debug spew. 0 = no debugging (default) " "0x1 = standard debug messages, 0x2 = function tracing debug. " "Flag bits are addative (i.e., 0x3 for both debug types).");