/* * raid10.c : Multiple Devices driver for Linux * * Copyright (C) 2000-2004 Neil Brown * * RAID-10 support for md. * * Base on code in raid1.c. See raid1.c for further copyright information. * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * You should have received a copy of the GNU General Public License * (for example /usr/src/linux/COPYING); if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/slab.h> #include <linux/delay.h> #include <linux/blkdev.h> #include <linux/module.h> #include <linux/seq_file.h> #include <linux/ratelimit.h> #include <linux/kthread.h> #include "md.h" #include "raid10.h" #include "raid0.h" #include "bitmap.h" /* * RAID10 provides a combination of RAID0 and RAID1 functionality. * The layout of data is defined by * chunk_size * raid_disks * near_copies (stored in low byte of layout) * far_copies (stored in second byte of layout) * far_offset (stored in bit 16 of layout ) * use_far_sets (stored in bit 17 of layout ) * * The data to be stored is divided into chunks using chunksize. Each device * is divided into far_copies sections. In each section, chunks are laid out * in a style similar to raid0, but near_copies copies of each chunk is stored * (each on a different drive). The starting device for each section is offset * near_copies from the starting device of the previous section. Thus there * are (near_copies * far_copies) of each chunk, and each is on a different * drive. near_copies and far_copies must be at least one, and their product * is at most raid_disks. * * If far_offset is true, then the far_copies are handled a bit differently. * The copies are still in different stripes, but instead of being very far * apart on disk, there are adjacent stripes. * * The far and offset algorithms are handled slightly differently if * 'use_far_sets' is true. In this case, the array's devices are grouped into * sets that are (near_copies * far_copies) in size. The far copied stripes * are still shifted by 'near_copies' devices, but this shifting stays confined * to the set rather than the entire array. This is done to improve the number * of device combinations that can fail without causing the array to fail. * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk * on a device): * A B C D A B C D E * ... ... * D A B C E A B C D * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): * [A B] [C D] [A B] [C D E] * |...| |...| |...| | ... | * [B A] [D C] [B A] [E C D] */ /* * Number of guaranteed r10bios in case of extreme VM load: */ #define NR_RAID10_BIOS 256 /* when we get a read error on a read-only array, we redirect to another * device without failing the first device, or trying to over-write to * correct the read error. To keep track of bad blocks on a per-bio * level, we store IO_BLOCKED in the appropriate 'bios' pointer */ #define IO_BLOCKED ((struct bio *)1) /* When we successfully write to a known bad-block, we need to remove the * bad-block marking which must be done from process context. So we record * the success by setting devs[n].bio to IO_MADE_GOOD */ #define IO_MADE_GOOD ((struct bio *)2) #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) /* When there are this many requests queued to be written by * the raid10 thread, we become 'congested' to provide back-pressure * for writeback. */ static int max_queued_requests = 1024; static void allow_barrier(struct r10conf *conf); static void lower_barrier(struct r10conf *conf); static int enough(struct r10conf *conf, int ignore); static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped); static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); static void end_reshape_write(struct bio *bio, int error); static void end_reshape(struct r10conf *conf); static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) { struct r10conf *conf = data; int size = offsetof(struct r10bio, devs[conf->copies]); /* allocate a r10bio with room for raid_disks entries in the * bios array */ return kzalloc(size, gfp_flags); } static void r10bio_pool_free(void *r10_bio, void *data) { kfree(r10_bio); } /* Maximum size of each resync request */ #define RESYNC_BLOCK_SIZE (64*1024) #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) /* amount of memory to reserve for resync requests */ #define RESYNC_WINDOW (1024*1024) /* maximum number of concurrent requests, memory permitting */ #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) /* * When performing a resync, we need to read and compare, so * we need as many pages are there are copies. * When performing a recovery, we need 2 bios, one for read, * one for write (we recover only one drive per r10buf) * */ static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) { struct r10conf *conf = data; struct page *page; struct r10bio *r10_bio; struct bio *bio; int i, j; int nalloc; r10_bio = r10bio_pool_alloc(gfp_flags, conf); if (!r10_bio) return NULL; if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) nalloc = conf->copies; /* resync */ else nalloc = 2; /* recovery */ /* * Allocate bios. */ for (j = nalloc ; j-- ; ) { bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); if (!bio) goto out_free_bio; r10_bio->devs[j].bio = bio; if (!conf->have_replacement) continue; bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); if (!bio) goto out_free_bio; r10_bio->devs[j].repl_bio = bio; } /* * Allocate RESYNC_PAGES data pages and attach them * where needed. */ for (j = 0 ; j < nalloc; j++) { struct bio *rbio = r10_bio->devs[j].repl_bio; bio = r10_bio->devs[j].bio; for (i = 0; i < RESYNC_PAGES; i++) { if (j > 0 && !test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) { /* we can share bv_page's during recovery * and reshape */ struct bio *rbio = r10_bio->devs[0].bio; page = rbio->bi_io_vec[i].bv_page; get_page(page); } else page = alloc_page(gfp_flags); if (unlikely(!page)) goto out_free_pages; bio->bi_io_vec[i].bv_page = page; if (rbio) rbio->bi_io_vec[i].bv_page = page; } } return r10_bio; out_free_pages: for ( ; i > 0 ; i--) safe_put_page(bio->bi_io_vec[i-1].bv_page); while (j--) for (i = 0; i < RESYNC_PAGES ; i++) safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); j = 0; out_free_bio: for ( ; j < nalloc; j++) { if (r10_bio->devs[j].bio) bio_put(r10_bio->devs[j].bio); if (r10_bio->devs[j].repl_bio) bio_put(r10_bio->devs[j].repl_bio); } r10bio_pool_free(r10_bio, conf); return NULL; } static void r10buf_pool_free(void *__r10_bio, void *data) { int i; struct r10conf *conf = data; struct r10bio *r10bio = __r10_bio; int j; for (j=0; j < conf->copies; j++) { struct bio *bio = r10bio->devs[j].bio; if (bio) { for (i = 0; i < RESYNC_PAGES; i++) { safe_put_page(bio->bi_io_vec[i].bv_page); bio->bi_io_vec[i].bv_page = NULL; } bio_put(bio); } bio = r10bio->devs[j].repl_bio; if (bio) bio_put(bio); } r10bio_pool_free(r10bio, conf); } static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) { int i; for (i = 0; i < conf->copies; i++) { struct bio **bio = & r10_bio->devs[i].bio; if (!BIO_SPECIAL(*bio)) bio_put(*bio); *bio = NULL; bio = &r10_bio->devs[i].repl_bio; if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) bio_put(*bio); *bio = NULL; } } static void free_r10bio(struct r10bio *r10_bio) { struct r10conf *conf = r10_bio->mddev->private; put_all_bios(conf, r10_bio); mempool_free(r10_bio, conf->r10bio_pool); } static void put_buf(struct r10bio *r10_bio) { struct r10conf *conf = r10_bio->mddev->private; mempool_free(r10_bio, conf->r10buf_pool); lower_barrier(conf); } static void reschedule_retry(struct r10bio *r10_bio) { unsigned long flags; struct mddev *mddev = r10_bio->mddev; struct r10conf *conf = mddev->private; spin_lock_irqsave(&conf->device_lock, flags); list_add(&r10_bio->retry_list, &conf->retry_list); conf->nr_queued ++; spin_unlock_irqrestore(&conf->device_lock, flags); /* wake up frozen array... */ wake_up(&conf->wait_barrier); md_wakeup_thread(mddev->thread); } /* * raid_end_bio_io() is called when we have finished servicing a mirrored * operation and are ready to return a success/failure code to the buffer * cache layer. */ static void raid_end_bio_io(struct r10bio *r10_bio) { struct bio *bio = r10_bio->master_bio; int done; struct r10conf *conf = r10_bio->mddev->private; if (bio->bi_phys_segments) { unsigned long flags; spin_lock_irqsave(&conf->device_lock, flags); bio->bi_phys_segments--; done = (bio->bi_phys_segments == 0); spin_unlock_irqrestore(&conf->device_lock, flags); } else done = 1; if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) clear_bit(BIO_UPTODATE, &bio->bi_flags); if (done) { bio_endio(bio, 0); /* * Wake up any possible resync thread that waits for the device * to go idle. */ allow_barrier(conf); } free_r10bio(r10_bio); } /* * Update disk head position estimator based on IRQ completion info. */ static inline void update_head_pos(int slot, struct r10bio *r10_bio) { struct r10conf *conf = r10_bio->mddev->private; conf->mirrors[r10_bio->devs[slot].devnum].head_position = r10_bio->devs[slot].addr + (r10_bio->sectors); } /* * Find the disk number which triggered given bio */ static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, struct bio *bio, int *slotp, int *replp) { int slot; int repl = 0; for (slot = 0; slot < conf->copies; slot++) { if (r10_bio->devs[slot].bio == bio) break; if (r10_bio->devs[slot].repl_bio == bio) { repl = 1; break; } } BUG_ON(slot == conf->copies); update_head_pos(slot, r10_bio); if (slotp) *slotp = slot; if (replp) *replp = repl; return r10_bio->devs[slot].devnum; } static void raid10_end_read_request(struct bio *bio, int error) { int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); struct r10bio *r10_bio = bio->bi_private; int slot, dev; struct md_rdev *rdev; struct r10conf *conf = r10_bio->mddev->private; slot = r10_bio->read_slot; dev = r10_bio->devs[slot].devnum; rdev = r10_bio->devs[slot].rdev; /* * this branch is our 'one mirror IO has finished' event handler: */ update_head_pos(slot, r10_bio); if (uptodate) { /* * Set R10BIO_Uptodate in our master bio, so that * we will return a good error code to the higher * levels even if IO on some other mirrored buffer fails. * * The 'master' represents the composite IO operation to * user-side. So if something waits for IO, then it will * wait for the 'master' bio. */ set_bit(R10BIO_Uptodate, &r10_bio->state); } else { /* If all other devices that store this block have * failed, we want to return the error upwards rather * than fail the last device. Here we redefine * "uptodate" to mean "Don't want to retry" */ unsigned long flags; spin_lock_irqsave(&conf->device_lock, flags); if (!enough(conf, rdev->raid_disk)) uptodate = 1; spin_unlock_irqrestore(&conf->device_lock, flags); } if (uptodate) { raid_end_bio_io(r10_bio); rdev_dec_pending(rdev, conf->mddev); } else { /* * oops, read error - keep the refcount on the rdev */ char b[BDEVNAME_SIZE]; printk_ratelimited(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n", mdname(conf->mddev), bdevname(rdev->bdev, b), (unsigned long long)r10_bio->sector); set_bit(R10BIO_ReadError, &r10_bio->state); reschedule_retry(r10_bio); } } static void close_write(struct r10bio *r10_bio) { /* clear the bitmap if all writes complete successfully */ bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, r10_bio->sectors, !test_bit(R10BIO_Degraded, &r10_bio->state), 0); md_write_end(r10_bio->mddev); } static void one_write_done(struct r10bio *r10_bio) { if (atomic_dec_and_test(&r10_bio->remaining)) { if (test_bit(R10BIO_WriteError, &r10_bio->state)) reschedule_retry(r10_bio); else { close_write(r10_bio); if (test_bit(R10BIO_MadeGood, &r10_bio->state)) reschedule_retry(r10_bio); else raid_end_bio_io(r10_bio); } } } static void raid10_end_write_request(struct bio *bio, int error) { int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); struct r10bio *r10_bio = bio->bi_private; int dev; int dec_rdev = 1; struct r10conf *conf = r10_bio->mddev->private; int slot, repl; struct md_rdev *rdev = NULL; dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); if (repl) rdev = conf->mirrors[dev].replacement; if (!rdev) { smp_rmb(); repl = 0; rdev = conf->mirrors[dev].rdev; } /* * this branch is our 'one mirror IO has finished' event handler: */ if (!uptodate) { if (repl) /* Never record new bad blocks to replacement, * just fail it. */ md_error(rdev->mddev, rdev); else { set_bit(WriteErrorSeen, &rdev->flags); if (!test_and_set_bit(WantReplacement, &rdev->flags)) set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); set_bit(R10BIO_WriteError, &r10_bio->state); dec_rdev = 0; } } else { /* * Set R10BIO_Uptodate in our master bio, so that * we will return a good error code for to the higher * levels even if IO on some other mirrored buffer fails. * * The 'master' represents the composite IO operation to * user-side. So if something waits for IO, then it will * wait for the 'master' bio. */ sector_t first_bad; int bad_sectors; set_bit(R10BIO_Uptodate, &r10_bio->state); /* Maybe we can clear some bad blocks. */ if (is_badblock(rdev, r10_bio->devs[slot].addr, r10_bio->sectors, &first_bad, &bad_sectors)) { bio_put(bio); if (repl) r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; else r10_bio->devs[slot].bio = IO_MADE_GOOD; dec_rdev = 0; set_bit(R10BIO_MadeGood, &r10_bio->state); } } /* * * Let's see if all mirrored write operations have finished * already. */ one_write_done(r10_bio); if (dec_rdev) rdev_dec_pending(rdev, conf->mddev); } /* * RAID10 layout manager * As well as the chunksize and raid_disks count, there are two * parameters: near_copies and far_copies. * near_copies * far_copies must be <= raid_disks. * Normally one of these will be 1. * If both are 1, we get raid0. * If near_copies == raid_disks, we get raid1. * * Chunks are laid out in raid0 style with near_copies copies of the * first chunk, followed by near_copies copies of the next chunk and * so on. * If far_copies > 1, then after 1/far_copies of the array has been assigned * as described above, we start again with a device offset of near_copies. * So we effectively have another copy of the whole array further down all * the drives, but with blocks on different drives. * With this layout, and block is never stored twice on the one device. * * raid10_find_phys finds the sector offset of a given virtual sector * on each device that it is on. * * raid10_find_virt does the reverse mapping, from a device and a * sector offset to a virtual address */ static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) { int n,f; sector_t sector; sector_t chunk; sector_t stripe; int dev; int slot = 0; int last_far_set_start, last_far_set_size; last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; last_far_set_start *= geo->far_set_size; last_far_set_size = geo->far_set_size; last_far_set_size += (geo->raid_disks % geo->far_set_size); /* now calculate first sector/dev */ chunk = r10bio->sector >> geo->chunk_shift; sector = r10bio->sector & geo->chunk_mask; chunk *= geo->near_copies; stripe = chunk; dev = sector_div(stripe, geo->raid_disks); if (geo->far_offset) stripe *= geo->far_copies; sector += stripe << geo->chunk_shift; /* and calculate all the others */ for (n = 0; n < geo->near_copies; n++) { int d = dev; int set; sector_t s = sector; r10bio->devs[slot].devnum = d; r10bio->devs[slot].addr = s; slot++; for (f = 1; f < geo->far_copies; f++) { set = d / geo->far_set_size; d += geo->near_copies; if ((geo->raid_disks % geo->far_set_size) && (d > last_far_set_start)) { d -= last_far_set_start; d %= last_far_set_size; d += last_far_set_start; } else { d %= geo->far_set_size; d += geo->far_set_size * set; } s += geo->stride; r10bio->devs[slot].devnum = d; r10bio->devs[slot].addr = s; slot++; } dev++; if (dev >= geo->raid_disks) { dev = 0; sector += (geo->chunk_mask + 1); } } } static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) { struct geom *geo = &conf->geo; if (conf->reshape_progress != MaxSector && ((r10bio->sector >= conf->reshape_progress) != conf->mddev->reshape_backwards)) { set_bit(R10BIO_Previous, &r10bio->state); geo = &conf->prev; } else clear_bit(R10BIO_Previous, &r10bio->state); __raid10_find_phys(geo, r10bio); } static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) { sector_t offset, chunk, vchunk; /* Never use conf->prev as this is only called during resync * or recovery, so reshape isn't happening */ struct geom *geo = &conf->geo; int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; int far_set_size = geo->far_set_size; int last_far_set_start; if (geo->raid_disks % geo->far_set_size) { last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; last_far_set_start *= geo->far_set_size; if (dev >= last_far_set_start) { far_set_size = geo->far_set_size; far_set_size += (geo->raid_disks % geo->far_set_size); far_set_start = last_far_set_start; } } offset = sector & geo->chunk_mask; if (geo->far_offset) { int fc; chunk = sector >> geo->chunk_shift; fc = sector_div(chunk, geo->far_copies); dev -= fc * geo->near_copies; if (dev < far_set_start) dev += far_set_size; } else { while (sector >= geo->stride) { sector -= geo->stride; if (dev < (geo->near_copies + far_set_start)) dev += far_set_size - geo->near_copies; else dev -= geo->near_copies; } chunk = sector >> geo->chunk_shift; } vchunk = chunk * geo->raid_disks + dev; sector_div(vchunk, geo->near_copies); return (vchunk << geo->chunk_shift) + offset; } /** * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged * @q: request queue * @bvm: properties of new bio * @biovec: the request that could be merged to it. * * Return amount of bytes we can accept at this offset * This requires checking for end-of-chunk if near_copies != raid_disks, * and for subordinate merge_bvec_fns if merge_check_needed. */ static int raid10_mergeable_bvec(struct request_queue *q, struct bvec_merge_data *bvm, struct bio_vec *biovec) { struct mddev *mddev = q->queuedata; struct r10conf *conf = mddev->private; sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); int max; unsigned int chunk_sectors; unsigned int bio_sectors = bvm->bi_size >> 9; struct geom *geo = &conf->geo; chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; if (conf->reshape_progress != MaxSector && ((sector >= conf->reshape_progress) != conf->mddev->reshape_backwards)) geo = &conf->prev; if (geo->near_copies < geo->raid_disks) { max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; if (max < 0) /* bio_add cannot handle a negative return */ max = 0; if (max <= biovec->bv_len && bio_sectors == 0) return biovec->bv_len; } else max = biovec->bv_len; if (mddev->merge_check_needed) { struct { struct r10bio r10_bio; struct r10dev devs[conf->copies]; } on_stack; struct r10bio *r10_bio = &on_stack.r10_bio; int s; if (conf->reshape_progress != MaxSector) { /* Cannot give any guidance during reshape */ if (max <= biovec->bv_len && bio_sectors == 0) return biovec->bv_len; return 0; } r10_bio->sector = sector; raid10_find_phys(conf, r10_bio); rcu_read_lock(); for (s = 0; s < conf->copies; s++) { int disk = r10_bio->devs[s].devnum; struct md_rdev *rdev = rcu_dereference( conf->mirrors[disk].rdev); if (rdev && !test_bit(Faulty, &rdev->flags)) { struct request_queue *q = bdev_get_queue(rdev->bdev); if (q->merge_bvec_fn) { bvm->bi_sector = r10_bio->devs[s].addr + rdev->data_offset; bvm->bi_bdev = rdev->bdev; max = min(max, q->merge_bvec_fn( q, bvm, biovec)); } } rdev = rcu_dereference(conf->mirrors[disk].replacement); if (rdev && !test_bit(Faulty, &rdev->flags)) { struct request_queue *q = bdev_get_queue(rdev->bdev); if (q->merge_bvec_fn) { bvm->bi_sector = r10_bio->devs[s].addr + rdev->data_offset; bvm->bi_bdev = rdev->bdev; max = min(max, q->merge_bvec_fn( q, bvm, biovec)); } } } rcu_read_unlock(); } return max; } /* * This routine returns the disk from which the requested read should * be done. There is a per-array 'next expected sequential IO' sector * number - if this matches on the next IO then we use the last disk. * There is also a per-disk 'last know head position' sector that is * maintained from IRQ contexts, both the normal and the resync IO * completion handlers update this position correctly. If there is no * perfect sequential match then we pick the disk whose head is closest. * * If there are 2 mirrors in the same 2 devices, performance degrades * because position is mirror, not device based. * * The rdev for the device selected will have nr_pending incremented. */ /* * FIXME: possibly should rethink readbalancing and do it differently * depending on near_copies / far_copies geometry. */ static struct md_rdev *read_balance(struct r10conf *conf, struct r10bio *r10_bio, int *max_sectors) { const sector_t this_sector = r10_bio->sector; int disk, slot; int sectors = r10_bio->sectors; int best_good_sectors; sector_t new_distance, best_dist; struct md_rdev *best_rdev, *rdev = NULL; int do_balance; int best_slot; struct geom *geo = &conf->geo; raid10_find_phys(conf, r10_bio); rcu_read_lock(); retry: sectors = r10_bio->sectors; best_slot = -1; best_rdev = NULL; best_dist = MaxSector; best_good_sectors = 0; do_balance = 1; /* * Check if we can balance. We can balance on the whole * device if no resync is going on (recovery is ok), or below * the resync window. We take the first readable disk when * above the resync window. */ if (conf->mddev->recovery_cp < MaxSector && (this_sector + sectors >= conf->next_resync)) do_balance = 0; for (slot = 0; slot < conf->copies ; slot++) { sector_t first_bad; int bad_sectors; sector_t dev_sector; if (r10_bio->devs[slot].bio == IO_BLOCKED) continue; disk = r10_bio->devs[slot].devnum; rdev = rcu_dereference(conf->mirrors[disk].replacement); if (rdev == NULL || test_bit(Faulty, &rdev->flags) || test_bit(Unmerged, &rdev->flags) || r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) rdev = rcu_dereference(conf->mirrors[disk].rdev); if (rdev == NULL || test_bit(Faulty, &rdev->flags) || test_bit(Unmerged, &rdev->flags)) continue; if (!test_bit(In_sync, &rdev->flags) && r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) continue; dev_sector = r10_bio->devs[slot].addr; if (is_badblock(rdev, dev_sector, sectors, &first_bad, &bad_sectors)) { if (best_dist < MaxSector) /* Already have a better slot */ continue; if (first_bad <= dev_sector) { /* Cannot read here. If this is the * 'primary' device, then we must not read * beyond 'bad_sectors' from another device. */ bad_sectors -= (dev_sector - first_bad); if (!do_balance && sectors > bad_sectors) sectors = bad_sectors; if (best_good_sectors > sectors) best_good_sectors = sectors; } else { sector_t good_sectors = first_bad - dev_sector; if (good_sectors > best_good_sectors) { best_good_sectors = good_sectors; best_slot = slot; best_rdev = rdev; } if (!do_balance) /* Must read from here */ break; } continue; } else best_good_sectors = sectors; if (!do_balance) break; /* This optimisation is debatable, and completely destroys * sequential read speed for 'far copies' arrays. So only * keep it for 'near' arrays, and review those later. */ if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) break; /* for far > 1 always use the lowest address */ if (geo->far_copies > 1) new_distance = r10_bio->devs[slot].addr; else new_distance = abs(r10_bio->devs[slot].addr - conf->mirrors[disk].head_position); if (new_distance < best_dist) { best_dist = new_distance; best_slot = slot; best_rdev = rdev; } } if (slot >= conf->copies) { slot = best_slot; rdev = best_rdev; } if (slot >= 0) { atomic_inc(&rdev->nr_pending); if (test_bit(Faulty, &rdev->flags)) { /* Cannot risk returning a device that failed * before we inc'ed nr_pending */ rdev_dec_pending(rdev, conf->mddev); goto retry; } r10_bio->read_slot = slot; } else rdev = NULL; rcu_read_unlock(); *max_sectors = best_good_sectors; return rdev; } int md_raid10_congested(struct mddev *mddev, int bits) { struct r10conf *conf = mddev->private; int i, ret = 0; if ((bits & (1 << BDI_async_congested)) && conf->pending_count >= max_queued_requests) return 1; rcu_read_lock(); for (i = 0; (i < conf->geo.raid_disks || i < conf->prev.raid_disks) && ret == 0; i++) { struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); if (rdev && !test_bit(Faulty, &rdev->flags)) { struct request_queue *q = bdev_get_queue(rdev->bdev); ret |= bdi_congested(&q->backing_dev_info, bits); } } rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(md_raid10_congested); static int raid10_congested(void *data, int bits) { struct mddev *mddev = data; return mddev_congested(mddev, bits) || md_raid10_congested(mddev, bits); } static void flush_pending_writes(struct r10conf *conf) { /* Any writes that have been queued but are awaiting * bitmap updates get flushed here. */ spin_lock_irq(&conf->device_lock); if (conf->pending_bio_list.head) { struct bio *bio; bio = bio_list_get(&conf->pending_bio_list); conf->pending_count = 0; spin_unlock_irq(&conf->device_lock); /* flush any pending bitmap writes to disk * before proceeding w/ I/O */ bitmap_unplug(conf->mddev->bitmap); wake_up(&conf->wait_barrier); while (bio) { /* submit pending writes */ struct bio *next = bio->bi_next; bio->bi_next = NULL; if (unlikely((bio->bi_rw & REQ_DISCARD) && !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) /* Just ignore it */ bio_endio(bio, 0); else generic_make_request(bio); bio = next; } } else spin_unlock_irq(&conf->device_lock); } /* Barriers.... * Sometimes we need to suspend IO while we do something else, * either some resync/recovery, or reconfigure the array. * To do this we raise a 'barrier'. * The 'barrier' is a counter that can be raised multiple times * to count how many activities are happening which preclude * normal IO. * We can only raise the barrier if there is no pending IO. * i.e. if nr_pending == 0. * We choose only to raise the barrier if no-one is waiting for the * barrier to go down. This means that as soon as an IO request * is ready, no other operations which require a barrier will start * until the IO request has had a chance. * * So: regular IO calls 'wait_barrier'. When that returns there * is no backgroup IO happening, It must arrange to call * allow_barrier when it has finished its IO. * backgroup IO calls must call raise_barrier. Once that returns * there is no normal IO happeing. It must arrange to call * lower_barrier when the particular background IO completes. */ static void raise_barrier(struct r10conf *conf, int force) { BUG_ON(force && !conf->barrier); spin_lock_irq(&conf->resync_lock); /* Wait until no block IO is waiting (unless 'force') */ wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, conf->resync_lock); /* block any new IO from starting */ conf->barrier++; /* Now wait for all pending IO to complete */ wait_event_lock_irq(conf->wait_barrier, !conf->nr_pending && conf->barrier < RESYNC_DEPTH, conf->resync_lock); spin_unlock_irq(&conf->resync_lock); } static void lower_barrier(struct r10conf *conf) { unsigned long flags; spin_lock_irqsave(&conf->resync_lock, flags); conf->barrier--; spin_unlock_irqrestore(&conf->resync_lock, flags); wake_up(&conf->wait_barrier); } static void wait_barrier(struct r10conf *conf) { spin_lock_irq(&conf->resync_lock); if (conf->barrier) { conf->nr_waiting++; /* Wait for the barrier to drop. * However if there are already pending * requests (preventing the barrier from * rising completely), and the * pre-process bio queue isn't empty, * then don't wait, as we need to empty * that queue to get the nr_pending * count down. */ wait_event_lock_irq(conf->wait_barrier, !conf->barrier || (conf->nr_pending && current->bio_list && !bio_list_empty(current->bio_list)), conf->resync_lock); conf->nr_waiting--; } conf->nr_pending++; spin_unlock_irq(&conf->resync_lock); } static void allow_barrier(struct r10conf *conf) { unsigned long flags; spin_lock_irqsave(&conf->resync_lock, flags); conf->nr_pending--; spin_unlock_irqrestore(&conf->resync_lock, flags); wake_up(&conf->wait_barrier); } static void freeze_array(struct r10conf *conf) { /* stop syncio and normal IO and wait for everything to * go quiet. * We increment barrier and nr_waiting, and then * wait until nr_pending match nr_queued+1 * This is called in the context of one normal IO request * that has failed. Thus any sync request that might be pending * will be blocked by nr_pending, and we need to wait for * pending IO requests to complete or be queued for re-try. * Thus the number queued (nr_queued) plus this request (1) * must match the number of pending IOs (nr_pending) before * we continue. */ spin_lock_irq(&conf->resync_lock); conf->barrier++; conf->nr_waiting++; wait_event_lock_irq_cmd(conf->wait_barrier, conf->nr_pending == conf->nr_queued+1, conf->resync_lock, flush_pending_writes(conf)); spin_unlock_irq(&conf->resync_lock); } static void unfreeze_array(struct r10conf *conf) { /* reverse the effect of the freeze */ spin_lock_irq(&conf->resync_lock); conf->barrier--; conf->nr_waiting--; wake_up(&conf->wait_barrier); spin_unlock_irq(&conf->resync_lock); } static sector_t choose_data_offset(struct r10bio *r10_bio, struct md_rdev *rdev) { if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || test_bit(R10BIO_Previous, &r10_bio->state)) return rdev->data_offset; else return rdev->new_data_offset; } struct raid10_plug_cb { struct blk_plug_cb cb; struct bio_list pending; int pending_cnt; }; static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) { struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, cb); struct mddev *mddev = plug->cb.data; struct r10conf *conf = mddev->private; struct bio *bio; if (from_schedule || current->bio_list) { spin_lock_irq(&conf->device_lock); bio_list_merge(&conf->pending_bio_list, &plug->pending); conf->pending_count += plug->pending_cnt; spin_unlock_irq(&conf->device_lock); wake_up(&conf->wait_barrier); md_wakeup_thread(mddev->thread); kfree(plug); return; } /* we aren't scheduling, so we can do the write-out directly. */ bio = bio_list_get(&plug->pending); bitmap_unplug(mddev->bitmap); wake_up(&conf->wait_barrier); while (bio) { /* submit pending writes */ struct bio *next = bio->bi_next; bio->bi_next = NULL; if (unlikely((bio->bi_rw & REQ_DISCARD) && !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) /* Just ignore it */ bio_endio(bio, 0); else generic_make_request(bio); bio = next; } kfree(plug); } static void make_request(struct mddev *mddev, struct bio * bio) { struct r10conf *conf = mddev->private; struct r10bio *r10_bio; struct bio *read_bio; int i; sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); int chunk_sects = chunk_mask + 1; const int rw = bio_data_dir(bio); const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); const unsigned long do_fua = (bio->bi_rw & REQ_FUA); const unsigned long do_discard = (bio->bi_rw & (REQ_DISCARD | REQ_SECURE)); const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); unsigned long flags; struct md_rdev *blocked_rdev; struct blk_plug_cb *cb; struct raid10_plug_cb *plug = NULL; int sectors_handled; int max_sectors; int sectors; if (unlikely(bio->bi_rw & REQ_FLUSH)) { md_flush_request(mddev, bio); return; } /* If this request crosses a chunk boundary, we need to * split it. This will only happen for 1 PAGE (or less) requests. */ if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9) > chunk_sects && (conf->geo.near_copies < conf->geo.raid_disks || conf->prev.near_copies < conf->prev.raid_disks))) { struct bio_pair *bp; /* Sanity check -- queue functions should prevent this happening */ if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) || bio->bi_idx != 0) goto bad_map; /* This is a one page bio that upper layers * refuse to split for us, so we need to split it. */ bp = bio_split(bio, chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); /* Each of these 'make_request' calls will call 'wait_barrier'. * If the first succeeds but the second blocks due to the resync * thread raising the barrier, we will deadlock because the * IO to the underlying device will be queued in generic_make_request * and will never complete, so will never reduce nr_pending. * So increment nr_waiting here so no new raise_barriers will * succeed, and so the second wait_barrier cannot block. */ spin_lock_irq(&conf->resync_lock); conf->nr_waiting++; spin_unlock_irq(&conf->resync_lock); make_request(mddev, &bp->bio1); make_request(mddev, &bp->bio2); spin_lock_irq(&conf->resync_lock); conf->nr_waiting--; wake_up(&conf->wait_barrier); spin_unlock_irq(&conf->resync_lock); bio_pair_release(bp); return; bad_map: printk("md/raid10:%s: make_request bug: can't convert block across chunks" " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, (unsigned long long)bio->bi_sector, bio->bi_size >> 10); bio_io_error(bio); return; } md_write_start(mddev, bio); /* * Register the new request and wait if the reconstruction * thread has put up a bar for new requests. * Continue immediately if no resync is active currently. */ wait_barrier(conf); sectors = bio->bi_size >> 9; while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && bio->bi_sector < conf->reshape_progress && bio->bi_sector + sectors > conf->reshape_progress) { /* IO spans the reshape position. Need to wait for * reshape to pass */ allow_barrier(conf); wait_event(conf->wait_barrier, conf->reshape_progress <= bio->bi_sector || conf->reshape_progress >= bio->bi_sector + sectors); wait_barrier(conf); } if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && bio_data_dir(bio) == WRITE && (mddev->reshape_backwards ? (bio->bi_sector < conf->reshape_safe && bio->bi_sector + sectors > conf->reshape_progress) : (bio->bi_sector + sectors > conf->reshape_safe && bio->bi_sector < conf->reshape_progress))) { /* Need to update reshape_position in metadata */ mddev->reshape_position = conf->reshape_progress; set_bit(MD_CHANGE_DEVS, &mddev->flags); set_bit(MD_CHANGE_PENDING, &mddev->flags); md_wakeup_thread(mddev->thread); wait_event(mddev->sb_wait, !test_bit(MD_CHANGE_PENDING, &mddev->flags)); conf->reshape_safe = mddev->reshape_position; } r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); r10_bio->master_bio = bio; r10_bio->sectors = sectors; r10_bio->mddev = mddev; r10_bio->sector = bio->bi_sector; r10_bio->state = 0; /* We might need to issue multiple reads to different * devices if there are bad blocks around, so we keep * track of the number of reads in bio->bi_phys_segments. * If this is 0, there is only one r10_bio and no locking * will be needed when the request completes. If it is * non-zero, then it is the number of not-completed requests. */ bio->bi_phys_segments = 0; clear_bit(BIO_SEG_VALID, &bio->bi_flags); if (rw == READ) { /* * read balancing logic: */ struct md_rdev *rdev; int slot; read_again: rdev = read_balance(conf, r10_bio, &max_sectors); if (!rdev) { raid_end_bio_io(r10_bio); return; } slot = r10_bio->read_slot; read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, max_sectors); r10_bio->devs[slot].bio = read_bio; r10_bio->devs[slot].rdev = rdev; read_bio->bi_sector = r10_bio->devs[slot].addr + choose_data_offset(r10_bio, rdev); read_bio->bi_bdev = rdev->bdev; read_bio->bi_end_io = raid10_end_read_request; read_bio->bi_rw = READ | do_sync; read_bio->bi_private = r10_bio; if (max_sectors < r10_bio->sectors) { /* Could not read all from this device, so we will * need another r10_bio. */ sectors_handled = (r10_bio->sectors + max_sectors - bio->bi_sector); r10_bio->sectors = max_sectors; spin_lock_irq(&conf->device_lock); if (bio->bi_phys_segments == 0) bio->bi_phys_segments = 2; else bio->bi_phys_segments++; spin_unlock(&conf->device_lock); /* Cannot call generic_make_request directly * as that will be queued in __generic_make_request * and subsequent mempool_alloc might block * waiting for it. so hand bio over to raid10d. */ reschedule_retry(r10_bio); r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); r10_bio->master_bio = bio; r10_bio->sectors = ((bio->bi_size >> 9) - sectors_handled); r10_bio->state = 0; r10_bio->mddev = mddev; r10_bio->sector = bio->bi_sector + sectors_handled; goto read_again; } else generic_make_request(read_bio); return; } /* * WRITE: */ if (conf->pending_count >= max_queued_requests) { md_wakeup_thread(mddev->thread); wait_event(conf->wait_barrier, conf->pending_count < max_queued_requests); } /* first select target devices under rcu_lock and * inc refcount on their rdev. Record them by setting * bios[x] to bio * If there are known/acknowledged bad blocks on any device * on which we have seen a write error, we want to avoid * writing to those blocks. This potentially requires several * writes to write around the bad blocks. Each set of writes * gets its own r10_bio with a set of bios attached. The number * of r10_bios is recored in bio->bi_phys_segments just as with * the read case. */ r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ raid10_find_phys(conf, r10_bio); retry_write: blocked_rdev = NULL; rcu_read_lock(); max_sectors = r10_bio->sectors; for (i = 0; i < conf->copies; i++) { int d = r10_bio->devs[i].devnum; struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); struct md_rdev *rrdev = rcu_dereference( conf->mirrors[d].replacement); if (rdev == rrdev) rrdev = NULL; if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { atomic_inc(&rdev->nr_pending); blocked_rdev = rdev; break; } if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { atomic_inc(&rrdev->nr_pending); blocked_rdev = rrdev; break; } if (rdev && (test_bit(Faulty, &rdev->flags) || test_bit(Unmerged, &rdev->flags))) rdev = NULL; if (rrdev && (test_bit(Faulty, &rrdev->flags) || test_bit(Unmerged, &rrdev->flags))) rrdev = NULL; r10_bio->devs[i].bio = NULL; r10_bio->devs[i].repl_bio = NULL; if (!rdev && !rrdev) { set_bit(R10BIO_Degraded, &r10_bio->state); continue; } if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { sector_t first_bad; sector_t dev_sector = r10_bio->devs[i].addr; int bad_sectors; int is_bad; is_bad = is_badblock(rdev, dev_sector, max_sectors, &first_bad, &bad_sectors); if (is_bad < 0) { /* Mustn't write here until the bad block * is acknowledged */ atomic_inc(&rdev->nr_pending); set_bit(BlockedBadBlocks, &rdev->flags); blocked_rdev = rdev; break; } if (is_bad && first_bad <= dev_sector) { /* Cannot write here at all */ bad_sectors -= (dev_sector - first_bad); if (bad_sectors < max_sectors) /* Mustn't write more than bad_sectors * to other devices yet */ max_sectors = bad_sectors; /* We don't set R10BIO_Degraded as that * only applies if the disk is missing, * so it might be re-added, and we want to * know to recover this chunk. * In this case the device is here, and the * fact that this chunk is not in-sync is * recorded in the bad block log. */ continue; } if (is_bad) { int good_sectors = first_bad - dev_sector; if (good_sectors < max_sectors) max_sectors = good_sectors; } } if (rdev) { r10_bio->devs[i].bio = bio; atomic_inc(&rdev->nr_pending); } if (rrdev) { r10_bio->devs[i].repl_bio = bio; atomic_inc(&rrdev->nr_pending); } } rcu_read_unlock(); if (unlikely(blocked_rdev)) { /* Have to wait for this device to get unblocked, then retry */ int j; int d; for (j = 0; j < i; j++) { if (r10_bio->devs[j].bio) { d = r10_bio->devs[j].devnum; rdev_dec_pending(conf->mirrors[d].rdev, mddev); } if (r10_bio->devs[j].repl_bio) { struct md_rdev *rdev; d = r10_bio->devs[j].devnum; rdev = conf->mirrors[d].replacement; if (!rdev) { /* Race with remove_disk */ smp_mb(); rdev = conf->mirrors[d].rdev; } rdev_dec_pending(rdev, mddev); } } allow_barrier(conf); md_wait_for_blocked_rdev(blocked_rdev, mddev); wait_barrier(conf); goto retry_write; } if (max_sectors < r10_bio->sectors) { /* We are splitting this into multiple parts, so * we need to prepare for allocating another r10_bio. */ r10_bio->sectors = max_sectors; spin_lock_irq(&conf->device_lock); if (bio->bi_phys_segments == 0) bio->bi_phys_segments = 2; else bio->bi_phys_segments++; spin_unlock_irq(&conf->device_lock); } sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; atomic_set(&r10_bio->remaining, 1); bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); for (i = 0; i < conf->copies; i++) { struct bio *mbio; int d = r10_bio->devs[i].devnum; if (r10_bio->devs[i].bio) { struct md_rdev *rdev = conf->mirrors[d].rdev; mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, max_sectors); r10_bio->devs[i].bio = mbio; mbio->bi_sector = (r10_bio->devs[i].addr+ choose_data_offset(r10_bio, rdev)); mbio->bi_bdev = rdev->bdev; mbio->bi_end_io = raid10_end_write_request; mbio->bi_rw = WRITE | do_sync | do_fua | do_discard | do_same; mbio->bi_private = r10_bio; atomic_inc(&r10_bio->remaining); cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); if (cb) plug = container_of(cb, struct raid10_plug_cb, cb); else plug = NULL; spin_lock_irqsave(&conf->device_lock, flags); if (plug) { bio_list_add(&plug->pending, mbio); plug->pending_cnt++; } else { bio_list_add(&conf->pending_bio_list, mbio); conf->pending_count++; } spin_unlock_irqrestore(&conf->device_lock, flags); if (!plug) md_wakeup_thread(mddev->thread); } if (r10_bio->devs[i].repl_bio) { struct md_rdev *rdev = conf->mirrors[d].replacement; if (rdev == NULL) { /* Replacement just got moved to main 'rdev' */ smp_mb(); rdev = conf->mirrors[d].rdev; } mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, max_sectors); r10_bio->devs[i].repl_bio = mbio; mbio->bi_sector = (r10_bio->devs[i].addr + choose_data_offset( r10_bio, rdev)); mbio->bi_bdev = rdev->bdev; mbio->bi_end_io = raid10_end_write_request; mbio->bi_rw = WRITE | do_sync | do_fua | do_discard | do_same; mbio->bi_private = r10_bio; atomic_inc(&r10_bio->remaining); spin_lock_irqsave(&conf->device_lock, flags); bio_list_add(&conf->pending_bio_list, mbio); conf->pending_count++; spin_unlock_irqrestore(&conf->device_lock, flags); if (!mddev_check_plugged(mddev)) md_wakeup_thread(mddev->thread); } } /* Don't remove the bias on 'remaining' (one_write_done) until * after checking if we need to go around again. */ if (sectors_handled < (bio->bi_size >> 9)) { one_write_done(r10_bio); /* We need another r10_bio. It has already been counted * in bio->bi_phys_segments. */ r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); r10_bio->master_bio = bio; r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; r10_bio->mddev = mddev; r10_bio->sector = bio->bi_sector + sectors_handled; r10_bio->state = 0; goto retry_write; } one_write_done(r10_bio); /* In case raid10d snuck in to freeze_array */ wake_up(&conf->wait_barrier); } static void status(struct seq_file *seq, struct mddev *mddev) { struct r10conf *conf = mddev->private; int i; if (conf->geo.near_copies < conf->geo.raid_disks) seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); if (conf->geo.near_copies > 1) seq_printf(seq, " %d near-copies", conf->geo.near_copies); if (conf->geo.far_copies > 1) { if (conf->geo.far_offset) seq_printf(seq, " %d offset-copies", conf->geo.far_copies); else seq_printf(seq, " %d far-copies", conf->geo.far_copies); } seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, conf->geo.raid_disks - mddev->degraded); for (i = 0; i < conf->geo.raid_disks; i++) seq_printf(seq, "%s", conf->mirrors[i].rdev && test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); seq_printf(seq, "]"); } /* check if there are enough drives for * every block to appear on atleast one. * Don't consider the device numbered 'ignore' * as we might be about to remove it. */ static int _enough(struct r10conf *conf, struct geom *geo, int ignore) { int first = 0; do { int n = conf->copies; int cnt = 0; int this = first; while (n--) { if (conf->mirrors[this].rdev && this != ignore) cnt++; this = (this+1) % geo->raid_disks; } if (cnt == 0) return 0; first = (first + geo->near_copies) % geo->raid_disks; } while (first != 0); return 1; } static int enough(struct r10conf *conf, int ignore) { return _enough(conf, &conf->geo, ignore) && _enough(conf, &conf->prev, ignore); } static void error(struct mddev *mddev, struct md_rdev *rdev) { char b[BDEVNAME_SIZE]; struct r10conf *conf = mddev->private; /* * If it is not operational, then we have already marked it as dead * else if it is the last working disks, ignore the error, let the * next level up know. * else mark the drive as failed */ if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) /* * Don't fail the drive, just return an IO error. */ return; if (test_and_clear_bit(In_sync, &rdev->flags)) { unsigned long flags; spin_lock_irqsave(&conf->device_lock, flags); mddev->degraded++; spin_unlock_irqrestore(&conf->device_lock, flags); /* * if recovery is running, make sure it aborts. */ set_bit(MD_RECOVERY_INTR, &mddev->recovery); } set_bit(Blocked, &rdev->flags); set_bit(Faulty, &rdev->flags); set_bit(MD_CHANGE_DEVS, &mddev->flags); printk(KERN_ALERT "md/raid10:%s: Disk failure on %s, disabling device.\n" "md/raid10:%s: Operation continuing on %d devices.\n", mdname(mddev), bdevname(rdev->bdev, b), mdname(mddev), conf->geo.raid_disks - mddev->degraded); } static void print_conf(struct r10conf *conf) { int i; struct raid10_info *tmp; printk(KERN_DEBUG "RAID10 conf printout:\n"); if (!conf) { printk(KERN_DEBUG "(!conf)\n"); return; } printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, conf->geo.raid_disks); for (i = 0; i < conf->geo.raid_disks; i++) { char b[BDEVNAME_SIZE]; tmp = conf->mirrors + i; if (tmp->rdev) printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", i, !test_bit(In_sync, &tmp->rdev->flags), !test_bit(Faulty, &tmp->rdev->flags), bdevname(tmp->rdev->bdev,b)); } } static void close_sync(struct r10conf *conf) { wait_barrier(conf); allow_barrier(conf); mempool_destroy(conf->r10buf_pool); conf->r10buf_pool = NULL; } static int raid10_spare_active(struct mddev *mddev) { int i; struct r10conf *conf = mddev->private; struct raid10_info *tmp; int count = 0; unsigned long flags; /* * Find all non-in_sync disks within the RAID10 configuration * and mark them in_sync */ for (i = 0; i < conf->geo.raid_disks; i++) { tmp = conf->mirrors + i; if (tmp->replacement && tmp->replacement->recovery_offset == MaxSector && !test_bit(Faulty, &tmp->replacement->flags) && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { /* Replacement has just become active */ if (!tmp->rdev || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) count++; if (tmp->rdev) { /* Replaced device not technically faulty, * but we need to be sure it gets removed * and never re-added. */ set_bit(Faulty, &tmp->rdev->flags); sysfs_notify_dirent_safe( tmp->rdev->sysfs_state); } sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); } else if (tmp->rdev && !test_bit(Faulty, &tmp->rdev->flags) && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { count++; sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); } } spin_lock_irqsave(&conf->device_lock, flags); mddev->degraded -= count; spin_unlock_irqrestore(&conf->device_lock, flags); print_conf(conf); return count; } static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) { struct r10conf *conf = mddev->private; int err = -EEXIST; int mirror; int first = 0; int last = conf->geo.raid_disks - 1; struct request_queue *q = bdev_get_queue(rdev->bdev); if (mddev->recovery_cp < MaxSector) /* only hot-add to in-sync arrays, as recovery is * very different from resync */ return -EBUSY; if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1)) return -EINVAL; if (rdev->raid_disk >= 0) first = last = rdev->raid_disk; if (q->merge_bvec_fn) { set_bit(Unmerged, &rdev->flags); mddev->merge_check_needed = 1; } if (rdev->saved_raid_disk >= first && conf->mirrors[rdev->saved_raid_disk].rdev == NULL) mirror = rdev->saved_raid_disk; else mirror = first; for ( ; mirror <= last ; mirror++) { struct raid10_info *p = &conf->mirrors[mirror]; if (p->recovery_disabled == mddev->recovery_disabled) continue; if (p->rdev) { if (!test_bit(WantReplacement, &p->rdev->flags) || p->replacement != NULL) continue; clear_bit(In_sync, &rdev->flags); set_bit(Replacement, &rdev->flags); rdev->raid_disk = mirror; err = 0; disk_stack_limits(mddev->gendisk, rdev->bdev, rdev->data_offset << 9); conf->fullsync = 1; rcu_assign_pointer(p->replacement, rdev); break; } disk_stack_limits(mddev->gendisk, rdev->bdev, rdev->data_offset << 9); p->head_position = 0; p->recovery_disabled = mddev->recovery_disabled - 1; rdev->raid_disk = mirror; err = 0; if (rdev->saved_raid_disk != mirror) conf->fullsync = 1; rcu_assign_pointer(p->rdev, rdev); break; } if (err == 0 && test_bit(Unmerged, &rdev->flags)) { /* Some requests might not have seen this new * merge_bvec_fn. We must wait for them to complete * before merging the device fully. * First we make sure any code which has tested * our function has submitted the request, then * we wait for all outstanding requests to complete. */ synchronize_sched(); raise_barrier(conf, 0); lower_barrier(conf); clear_bit(Unmerged, &rdev->flags); } md_integrity_add_rdev(rdev, mddev); if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); print_conf(conf); return err; } static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) { struct r10conf *conf = mddev->private; int err = 0; int number = rdev->raid_disk; struct md_rdev **rdevp; struct raid10_info *p = conf->mirrors + number; print_conf(conf); if (rdev == p->rdev) rdevp = &p->rdev; else if (rdev == p->replacement) rdevp = &p->replacement; else return 0; if (test_bit(In_sync, &rdev->flags) || atomic_read(&rdev->nr_pending)) { err = -EBUSY; goto abort; } /* Only remove faulty devices if recovery * is not possible. */ if (!test_bit(Faulty, &rdev->flags) && mddev->recovery_disabled != p->recovery_disabled && (!p->replacement || p->replacement == rdev) && number < conf->geo.raid_disks && enough(conf, -1)) { err = -EBUSY; goto abort; } *rdevp = NULL; synchronize_rcu(); if (atomic_read(&rdev->nr_pending)) { /* lost the race, try later */ err = -EBUSY; *rdevp = rdev; goto abort; } else if (p->replacement) { /* We must have just cleared 'rdev' */ p->rdev = p->replacement; clear_bit(Replacement, &p->replacement->flags); smp_mb(); /* Make sure other CPUs may see both as identical * but will never see neither -- if they are careful. */ p->replacement = NULL; clear_bit(WantReplacement, &rdev->flags); } else /* We might have just remove the Replacement as faulty * Clear the flag just in case */ clear_bit(WantReplacement, &rdev->flags); err = md_integrity_register(mddev); abort: print_conf(conf); return err; } static void end_sync_read(struct bio *bio, int error) { struct r10bio *r10_bio = bio->bi_private; struct r10conf *conf = r10_bio->mddev->private; int d; if (bio == r10_bio->master_bio) { /* this is a reshape read */ d = r10_bio->read_slot; /* really the read dev */ } else d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); if (test_bit(BIO_UPTODATE, &bio->bi_flags)) set_bit(R10BIO_Uptodate, &r10_bio->state); else /* The write handler will notice the lack of * R10BIO_Uptodate and record any errors etc */ atomic_add(r10_bio->sectors, &conf->mirrors[d].rdev->corrected_errors); /* for reconstruct, we always reschedule after a read. * for resync, only after all reads */ rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); if (test_bit(R10BIO_IsRecover, &r10_bio->state) || atomic_dec_and_test(&r10_bio->remaining)) { /* we have read all the blocks, * do the comparison in process context in raid10d */ reschedule_retry(r10_bio); } } static void end_sync_request(struct r10bio *r10_bio) { struct mddev *mddev = r10_bio->mddev; while (atomic_dec_and_test(&r10_bio->remaining)) { if (r10_bio->master_bio == NULL) { /* the primary of several recovery bios */ sector_t s = r10_bio->sectors; if (test_bit(R10BIO_MadeGood, &r10_bio->state) || test_bit(R10BIO_WriteError, &r10_bio->state)) reschedule_retry(r10_bio); else put_buf(r10_bio); md_done_sync(mddev, s, 1); break; } else { struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; if (test_bit(R10BIO_MadeGood, &r10_bio->state) || test_bit(R10BIO_WriteError, &r10_bio->state)) reschedule_retry(r10_bio); else put_buf(r10_bio); r10_bio = r10_bio2; } } } static void end_sync_write(struct bio *bio, int error) { int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); struct r10bio *r10_bio = bio->bi_private; struct mddev *mddev = r10_bio->mddev; struct r10conf *conf = mddev->private; int d; sector_t first_bad; int bad_sectors; int slot; int repl; struct md_rdev *rdev = NULL; d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); if (repl) rdev = conf->mirrors[d].replacement; else rdev = conf->mirrors[d].rdev; if (!uptodate) { if (repl) md_error(mddev, rdev); else { set_bit(WriteErrorSeen, &rdev->flags); if (!test_and_set_bit(WantReplacement, &rdev->flags)) set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); set_bit(R10BIO_WriteError, &r10_bio->state); } } else if (is_badblock(rdev, r10_bio->devs[slot].addr, r10_bio->sectors, &first_bad, &bad_sectors)) set_bit(R10BIO_MadeGood, &r10_bio->state); rdev_dec_pending(rdev, mddev); end_sync_request(r10_bio); } /* * Note: sync and recover and handled very differently for raid10 * This code is for resync. * For resync, we read through virtual addresses and read all blocks. * If there is any error, we schedule a write. The lowest numbered * drive is authoritative. * However requests come for physical address, so we need to map. * For every physical address there are raid_disks/copies virtual addresses, * which is always are least one, but is not necessarly an integer. * This means that a physical address can span multiple chunks, so we may * have to submit multiple io requests for a single sync request. */ /* * We check if all blocks are in-sync and only write to blocks that * aren't in sync */ static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) { struct r10conf *conf = mddev->private; int i, first; struct bio *tbio, *fbio; int vcnt; atomic_set(&r10_bio->remaining, 1); /* find the first device with a block */ for (i=0; i<conf->copies; i++) if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) break; if (i == conf->copies) goto done; first = i; fbio = r10_bio->devs[i].bio; vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); /* now find blocks with errors */ for (i=0 ; i < conf->copies ; i++) { int j, d; tbio = r10_bio->devs[i].bio; if (tbio->bi_end_io != end_sync_read) continue; if (i == first) continue; if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { /* We know that the bi_io_vec layout is the same for * both 'first' and 'i', so we just compare them. * All vec entries are PAGE_SIZE; */ for (j = 0; j < vcnt; j++) if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), page_address(tbio->bi_io_vec[j].bv_page), fbio->bi_io_vec[j].bv_len)) break; if (j == vcnt) continue; atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) /* Don't fix anything. */ continue; } /* Ok, we need to write this bio, either to correct an * inconsistency or to correct an unreadable block. * First we need to fixup bv_offset, bv_len and * bi_vecs, as the read request might have corrupted these */ tbio->bi_vcnt = vcnt; tbio->bi_size = r10_bio->sectors << 9; tbio->bi_idx = 0; tbio->bi_phys_segments = 0; tbio->bi_flags &= ~(BIO_POOL_MASK - 1); tbio->bi_flags |= 1 << BIO_UPTODATE; tbio->bi_next = NULL; tbio->bi_rw = WRITE; tbio->bi_private = r10_bio; tbio->bi_sector = r10_bio->devs[i].addr; for (j=0; j < vcnt ; j++) { tbio->bi_io_vec[j].bv_offset = 0; tbio->bi_io_vec[j].bv_len = PAGE_SIZE; memcpy(page_address(tbio->bi_io_vec[j].bv_page), page_address(fbio->bi_io_vec[j].bv_page), PAGE_SIZE); } tbio->bi_end_io = end_sync_write; d = r10_bio->devs[i].devnum; atomic_inc(&conf->mirrors[d].rdev->nr_pending); atomic_inc(&r10_bio->remaining); md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); tbio->bi_sector += conf->mirrors[d].rdev->data_offset; tbio->bi_bdev = conf->mirrors[d].rdev->bdev; generic_make_request(tbio); } /* Now write out to any replacement devices * that are active */ for (i = 0; i < conf->copies; i++) { int j, d; tbio = r10_bio->devs[i].repl_bio; if (!tbio || !tbio->bi_end_io) continue; if (r10_bio->devs[i].bio->bi_end_io != end_sync_write && r10_bio->devs[i].bio != fbio) for (j = 0; j < vcnt; j++) memcpy(page_address(tbio->bi_io_vec[j].bv_page), page_address(fbio->bi_io_vec[j].bv_page), PAGE_SIZE); d = r10_bio->devs[i].devnum; atomic_inc(&r10_bio->remaining); md_sync_acct(conf->mirrors[d].replacement->bdev, tbio->bi_size >> 9); generic_make_request(tbio); } done: if (atomic_dec_and_test(&r10_bio->remaining)) { md_done_sync(mddev, r10_bio->sectors, 1); put_buf(r10_bio); } } /* * Now for the recovery code. * Recovery happens across physical sectors. * We recover all non-is_sync drives by finding the virtual address of * each, and then choose a working drive that also has that virt address. * There is a separate r10_bio for each non-in_sync drive. * Only the first two slots are in use. The first for reading, * The second for writing. * */ static void fix_recovery_read_error(struct r10bio *r10_bio) { /* We got a read error during recovery. * We repeat the read in smaller page-sized sections. * If a read succeeds, write it to the new device or record * a bad block if we cannot. * If a read fails, record a bad block on both old and * new devices. */ struct mddev *mddev = r10_bio->mddev; struct r10conf *conf = mddev->private; struct bio *bio = r10_bio->devs[0].bio; sector_t sect = 0; int sectors = r10_bio->sectors; int idx = 0; int dr = r10_bio->devs[0].devnum; int dw = r10_bio->devs[1].devnum; while (sectors) { int s = sectors; struct md_rdev *rdev; sector_t addr; int ok; if (s > (PAGE_SIZE>>9)) s = PAGE_SIZE >> 9; rdev = conf->mirrors[dr].rdev; addr = r10_bio->devs[0].addr + sect, ok = sync_page_io(rdev, addr, s << 9, bio->bi_io_vec[idx].bv_page, READ, false); if (ok) { rdev = conf->mirrors[dw].rdev; addr = r10_bio->devs[1].addr + sect; ok = sync_page_io(rdev, addr, s << 9, bio->bi_io_vec[idx].bv_page, WRITE, false); if (!ok) { set_bit(WriteErrorSeen, &rdev->flags); if (!test_and_set_bit(WantReplacement, &rdev->flags)) set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); } } if (!ok) { /* We don't worry if we cannot set a bad block - * it really is bad so there is no loss in not * recording it yet */ rdev_set_badblocks(rdev, addr, s, 0); if (rdev != conf->mirrors[dw].rdev) { /* need bad block on destination too */ struct md_rdev *rdev2 = conf->mirrors[dw].rdev; addr = r10_bio->devs[1].addr + sect; ok = rdev_set_badblocks(rdev2, addr, s, 0); if (!ok) { /* just abort the recovery */ printk(KERN_NOTICE "md/raid10:%s: recovery aborted" " due to read error\n", mdname(mddev)); conf->mirrors[dw].recovery_disabled = mddev->recovery_disabled; set_bit(MD_RECOVERY_INTR, &mddev->recovery); break; } } } sectors -= s; sect += s; idx++; } } static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) { struct r10conf *conf = mddev->private; int d; struct bio *wbio, *wbio2; if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { fix_recovery_read_error(r10_bio); end_sync_request(r10_bio); return; } /* * share the pages with the first bio * and submit the write request */ d = r10_bio->devs[1].devnum; wbio = r10_bio->devs[1].bio; wbio2 = r10_bio->devs[1].repl_bio; if (wbio->bi_end_io) { atomic_inc(&conf->mirrors[d].rdev->nr_pending); md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); generic_make_request(wbio); } if (wbio2 && wbio2->bi_end_io) { atomic_inc(&conf->mirrors[d].replacement->nr_pending); md_sync_acct(conf->mirrors[d].replacement->bdev, wbio2->bi_size >> 9); generic_make_request(wbio2); } } /* * Used by fix_read_error() to decay the per rdev read_errors. * We halve the read error count for every hour that has elapsed * since the last recorded read error. * */ static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) { struct timespec cur_time_mon; unsigned long hours_since_last; unsigned int read_errors = atomic_read(&rdev->read_errors); ktime_get_ts(&cur_time_mon); if (rdev->last_read_error.tv_sec == 0 && rdev->last_read_error.tv_nsec == 0) { /* first time we've seen a read error */ rdev->last_read_error = cur_time_mon; return; } hours_since_last = (cur_time_mon.tv_sec - rdev->last_read_error.tv_sec) / 3600; rdev->last_read_error = cur_time_mon; /* * if hours_since_last is > the number of bits in read_errors * just set read errors to 0. We do this to avoid * overflowing the shift of read_errors by hours_since_last. */ if (hours_since_last >= 8 * sizeof(read_errors)) atomic_set(&rdev->read_errors, 0); else atomic_set(&rdev->read_errors, read_errors >> hours_since_last); } static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, int sectors, struct page *page, int rw) { sector_t first_bad; int bad_sectors; if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) return -1; if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) /* success */ return 1; if (rw == WRITE) { set_bit(WriteErrorSeen, &rdev->flags); if (!test_and_set_bit(WantReplacement, &rdev->flags)) set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); } /* need to record an error - either for the block or the device */ if (!rdev_set_badblocks(rdev, sector, sectors, 0)) md_error(rdev->mddev, rdev); return 0; } /* * This is a kernel thread which: * * 1. Retries failed read operations on working mirrors. * 2. Updates the raid superblock when problems encounter. * 3. Performs writes following reads for array synchronising. */ static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) { int sect = 0; /* Offset from r10_bio->sector */ int sectors = r10_bio->sectors; struct md_rdev*rdev; int max_read_errors = atomic_read(&mddev->max_corr_read_errors); int d = r10_bio->devs[r10_bio->read_slot].devnum; /* still own a reference to this rdev, so it cannot * have been cleared recently. */ rdev = conf->mirrors[d].rdev; if (test_bit(Faulty, &rdev->flags)) /* drive has already been failed, just ignore any more fix_read_error() attempts */ return; check_decay_read_errors(mddev, rdev); atomic_inc(&rdev->read_errors); if (atomic_read(&rdev->read_errors) > max_read_errors) { char b[BDEVNAME_SIZE]; bdevname(rdev->bdev, b); printk(KERN_NOTICE "md/raid10:%s: %s: Raid device exceeded " "read_error threshold [cur %d:max %d]\n", mdname(mddev), b, atomic_read(&rdev->read_errors), max_read_errors); printk(KERN_NOTICE "md/raid10:%s: %s: Failing raid device\n", mdname(mddev), b); md_error(mddev, conf->mirrors[d].rdev); r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; return; } while(sectors) { int s = sectors; int sl = r10_bio->read_slot; int success = 0; int start; if (s > (PAGE_SIZE>>9)) s = PAGE_SIZE >> 9; rcu_read_lock(); do { sector_t first_bad; int bad_sectors; d = r10_bio->devs[sl].devnum; rdev = rcu_dereference(conf->mirrors[d].rdev); if (rdev && !test_bit(Unmerged, &rdev->flags) && test_bit(In_sync, &rdev->flags) && is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, &first_bad, &bad_sectors) == 0) { atomic_inc(&rdev->nr_pending); rcu_read_unlock(); success = sync_page_io(rdev, r10_bio->devs[sl].addr + sect, s<<9, conf->tmppage, READ, false); rdev_dec_pending(rdev, mddev); rcu_read_lock(); if (success) break; } sl++; if (sl == conf->copies) sl = 0; } while (!success && sl != r10_bio->read_slot); rcu_read_unlock(); if (!success) { /* Cannot read from anywhere, just mark the block * as bad on the first device to discourage future * reads. */ int dn = r10_bio->devs[r10_bio->read_slot].devnum; rdev = conf->mirrors[dn].rdev; if (!rdev_set_badblocks( rdev, r10_bio->devs[r10_bio->read_slot].addr + sect, s, 0)) { md_error(mddev, rdev); r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; } break; } start = sl; /* write it back and re-read */ rcu_read_lock(); while (sl != r10_bio->read_slot) { char b[BDEVNAME_SIZE]; if (sl==0) sl = conf->copies; sl--; d = r10_bio->devs[sl].devnum; rdev = rcu_dereference(conf->mirrors[d].rdev); if (!rdev || test_bit(Unmerged, &rdev->flags) || !test_bit(In_sync, &rdev->flags)) continue; atomic_inc(&rdev->nr_pending); rcu_read_unlock(); if (r10_sync_page_io(rdev, r10_bio->devs[sl].addr + sect, s, conf->tmppage, WRITE) == 0) { /* Well, this device is dead */ printk(KERN_NOTICE "md/raid10:%s: read correction " "write failed" " (%d sectors at %llu on %s)\n", mdname(mddev), s, (unsigned long long)( sect + choose_data_offset(r10_bio, rdev)), bdevname(rdev->bdev, b)); printk(KERN_NOTICE "md/raid10:%s: %s: failing " "drive\n", mdname(mddev), bdevname(rdev->bdev, b)); } rdev_dec_pending(rdev, mddev); rcu_read_lock(); } sl = start; while (sl != r10_bio->read_slot) { char b[BDEVNAME_SIZE]; if (sl==0) sl = conf->copies; sl--; d = r10_bio->devs[sl].devnum; rdev = rcu_dereference(conf->mirrors[d].rdev); if (!rdev || !test_bit(In_sync, &rdev->flags)) continue; atomic_inc(&rdev->nr_pending); rcu_read_unlock(); switch (r10_sync_page_io(rdev, r10_bio->devs[sl].addr + sect, s, conf->tmppage, READ)) { case 0: /* Well, this device is dead */ printk(KERN_NOTICE "md/raid10:%s: unable to read back " "corrected sectors" " (%d sectors at %llu on %s)\n", mdname(mddev), s, (unsigned long long)( sect + choose_data_offset(r10_bio, rdev)), bdevname(rdev->bdev, b)); printk(KERN_NOTICE "md/raid10:%s: %s: failing " "drive\n", mdname(mddev), bdevname(rdev->bdev, b)); break; case 1: printk(KERN_INFO "md/raid10:%s: read error corrected" " (%d sectors at %llu on %s)\n", mdname(mddev), s, (unsigned long long)( sect + choose_data_offset(r10_bio, rdev)), bdevname(rdev->bdev, b)); atomic_add(s, &rdev->corrected_errors); } rdev_dec_pending(rdev, mddev); rcu_read_lock(); } rcu_read_unlock(); sectors -= s; sect += s; } } static void bi_complete(struct bio *bio, int error) { complete((struct completion *)bio->bi_private); } static int submit_bio_wait(int rw, struct bio *bio) { struct completion event; rw |= REQ_SYNC; init_completion(&event); bio->bi_private = &event; bio->bi_end_io = bi_complete; submit_bio(rw, bio); wait_for_completion(&event); return test_bit(BIO_UPTODATE, &bio->bi_flags); } static int narrow_write_error(struct r10bio *r10_bio, int i) { struct bio *bio = r10_bio->master_bio; struct mddev *mddev = r10_bio->mddev; struct r10conf *conf = mddev->private; struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; /* bio has the data to be written to slot 'i' where * we just recently had a write error. * We repeatedly clone the bio and trim down to one block, * then try the write. Where the write fails we record * a bad block. * It is conceivable that the bio doesn't exactly align with * blocks. We must handle this. * * We currently own a reference to the rdev. */ int block_sectors; sector_t sector; int sectors; int sect_to_write = r10_bio->sectors; int ok = 1; if (rdev->badblocks.shift < 0) return 0; block_sectors = 1 << rdev->badblocks.shift; sector = r10_bio->sector; sectors = ((r10_bio->sector + block_sectors) & ~(sector_t)(block_sectors - 1)) - sector; while (sect_to_write) { struct bio *wbio; if (sectors > sect_to_write) sectors = sect_to_write; /* Write at 'sector' for 'sectors' */ wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); md_trim_bio(wbio, sector - bio->bi_sector, sectors); wbio->bi_sector = (r10_bio->devs[i].addr+ choose_data_offset(r10_bio, rdev) + (sector - r10_bio->sector)); wbio->bi_bdev = rdev->bdev; if (submit_bio_wait(WRITE, wbio) == 0) /* Failure! */ ok = rdev_set_badblocks(rdev, sector, sectors, 0) && ok; bio_put(wbio); sect_to_write -= sectors; sector += sectors; sectors = block_sectors; } return ok; } static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) { int slot = r10_bio->read_slot; struct bio *bio; struct r10conf *conf = mddev->private; struct md_rdev *rdev = r10_bio->devs[slot].rdev; char b[BDEVNAME_SIZE]; unsigned long do_sync; int max_sectors; /* we got a read error. Maybe the drive is bad. Maybe just * the block and we can fix it. * We freeze all other IO, and try reading the block from * other devices. When we find one, we re-write * and check it that fixes the read error. * This is all done synchronously while the array is * frozen. */ bio = r10_bio->devs[slot].bio; bdevname(bio->bi_bdev, b); bio_put(bio); r10_bio->devs[slot].bio = NULL; if (mddev->ro == 0) { freeze_array(conf); fix_read_error(conf, mddev, r10_bio); unfreeze_array(conf); } else r10_bio->devs[slot].bio = IO_BLOCKED; rdev_dec_pending(rdev, mddev); read_more: rdev = read_balance(conf, r10_bio, &max_sectors); if (rdev == NULL) { printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" " read error for block %llu\n", mdname(mddev), b, (unsigned long long)r10_bio->sector); raid_end_bio_io(r10_bio); return; } do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); slot = r10_bio->read_slot; printk_ratelimited( KERN_ERR "md/raid10:%s: %s: redirecting " "sector %llu to another mirror\n", mdname(mddev), bdevname(rdev->bdev, b), (unsigned long long)r10_bio->sector); bio = bio_clone_mddev(r10_bio->master_bio, GFP_NOIO, mddev); md_trim_bio(bio, r10_bio->sector - bio->bi_sector, max_sectors); r10_bio->devs[slot].bio = bio; r10_bio->devs[slot].rdev = rdev; bio->bi_sector = r10_bio->devs[slot].addr + choose_data_offset(r10_bio, rdev); bio->bi_bdev = rdev->bdev; bio->bi_rw = READ | do_sync; bio->bi_private = r10_bio; bio->bi_end_io = raid10_end_read_request; if (max_sectors < r10_bio->sectors) { /* Drat - have to split this up more */ struct bio *mbio = r10_bio->master_bio; int sectors_handled = r10_bio->sector + max_sectors - mbio->bi_sector; r10_bio->sectors = max_sectors; spin_lock_irq(&conf->device_lock); if (mbio->bi_phys_segments == 0) mbio->bi_phys_segments = 2; else mbio->bi_phys_segments++; spin_unlock_irq(&conf->device_lock); generic_make_request(bio); r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); r10_bio->master_bio = mbio; r10_bio->sectors = (mbio->bi_size >> 9) - sectors_handled; r10_bio->state = 0; set_bit(R10BIO_ReadError, &r10_bio->state); r10_bio->mddev = mddev; r10_bio->sector = mbio->bi_sector + sectors_handled; goto read_more; } else generic_make_request(bio); } static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) { /* Some sort of write request has finished and it * succeeded in writing where we thought there was a * bad block. So forget the bad block. * Or possibly if failed and we need to record * a bad block. */ int m; struct md_rdev *rdev; if (test_bit(R10BIO_IsSync, &r10_bio->state) || test_bit(R10BIO_IsRecover, &r10_bio->state)) { for (m = 0; m < conf->copies; m++) { int dev = r10_bio->devs[m].devnum; rdev = conf->mirrors[dev].rdev; if (r10_bio->devs[m].bio == NULL) continue; if (test_bit(BIO_UPTODATE, &r10_bio->devs[m].bio->bi_flags)) { rdev_clear_badblocks( rdev, r10_bio->devs[m].addr, r10_bio->sectors, 0); } else { if (!rdev_set_badblocks( rdev, r10_bio->devs[m].addr, r10_bio->sectors, 0)) md_error(conf->mddev, rdev); } rdev = conf->mirrors[dev].replacement; if (r10_bio->devs[m].repl_bio == NULL) continue; if (test_bit(BIO_UPTODATE, &r10_bio->devs[m].repl_bio->bi_flags)) { rdev_clear_badblocks( rdev, r10_bio->devs[m].addr, r10_bio->sectors, 0); } else { if (!rdev_set_badblocks( rdev, r10_bio->devs[m].addr, r10_bio->sectors, 0)) md_error(conf->mddev, rdev); } } put_buf(r10_bio); } else { for (m = 0; m < conf->copies; m++) { int dev = r10_bio->devs[m].devnum; struct bio *bio = r10_bio->devs[m].bio; rdev = conf->mirrors[dev].rdev; if (bio == IO_MADE_GOOD) { rdev_clear_badblocks( rdev, r10_bio->devs[m].addr, r10_bio->sectors, 0); rdev_dec_pending(rdev, conf->mddev); } else if (bio != NULL && !test_bit(BIO_UPTODATE, &bio->bi_flags)) { if (!narrow_write_error(r10_bio, m)) { md_error(conf->mddev, rdev); set_bit(R10BIO_Degraded, &r10_bio->state); } rdev_dec_pending(rdev, conf->mddev); } bio = r10_bio->devs[m].repl_bio; rdev = conf->mirrors[dev].replacement; if (rdev && bio == IO_MADE_GOOD) { rdev_clear_badblocks( rdev, r10_bio->devs[m].addr, r10_bio->sectors, 0); rdev_dec_pending(rdev, conf->mddev); } } if (test_bit(R10BIO_WriteError, &r10_bio->state)) close_write(r10_bio); raid_end_bio_io(r10_bio); } } static void raid10d(struct md_thread *thread) { struct mddev *mddev = thread->mddev; struct r10bio *r10_bio; unsigned long flags; struct r10conf *conf = mddev->private; struct list_head *head = &conf->retry_list; struct blk_plug plug; md_check_recovery(mddev); blk_start_plug(&plug); for (;;) { flush_pending_writes(conf); spin_lock_irqsave(&conf->device_lock, flags); if (list_empty(head)) { spin_unlock_irqrestore(&conf->device_lock, flags); break; } r10_bio = list_entry(head->prev, struct r10bio, retry_list); list_del(head->prev); conf->nr_queued--; spin_unlock_irqrestore(&conf->device_lock, flags); mddev = r10_bio->mddev; conf = mddev->private; if (test_bit(R10BIO_MadeGood, &r10_bio->state) || test_bit(R10BIO_WriteError, &r10_bio->state)) handle_write_completed(conf, r10_bio); else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) reshape_request_write(mddev, r10_bio); else if (test_bit(R10BIO_IsSync, &r10_bio->state)) sync_request_write(mddev, r10_bio); else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) recovery_request_write(mddev, r10_bio); else if (test_bit(R10BIO_ReadError, &r10_bio->state)) handle_read_error(mddev, r10_bio); else { /* just a partial read to be scheduled from a * separate context */ int slot = r10_bio->read_slot; generic_make_request(r10_bio->devs[slot].bio); } cond_resched(); if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) md_check_recovery(mddev); } blk_finish_plug(&plug); } static int init_resync(struct r10conf *conf) { int buffs; int i; buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; BUG_ON(conf->r10buf_pool); conf->have_replacement = 0; for (i = 0; i < conf->geo.raid_disks; i++) if (conf->mirrors[i].replacement) conf->have_replacement = 1; conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); if (!conf->r10buf_pool) return -ENOMEM; conf->next_resync = 0; return 0; } /* * perform a "sync" on one "block" * * We need to make sure that no normal I/O request - particularly write * requests - conflict with active sync requests. * * This is achieved by tracking pending requests and a 'barrier' concept * that can be installed to exclude normal IO requests. * * Resync and recovery are handled very differently. * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. * * For resync, we iterate over virtual addresses, read all copies, * and update if there are differences. If only one copy is live, * skip it. * For recovery, we iterate over physical addresses, read a good * value for each non-in_sync drive, and over-write. * * So, for recovery we may have several outstanding complex requests for a * given address, one for each out-of-sync device. We model this by allocating * a number of r10_bio structures, one for each out-of-sync device. * As we setup these structures, we collect all bio's together into a list * which we then process collectively to add pages, and then process again * to pass to generic_make_request. * * The r10_bio structures are linked using a borrowed master_bio pointer. * This link is counted in ->remaining. When the r10_bio that points to NULL * has its remaining count decremented to 0, the whole complex operation * is complete. * */ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) { struct r10conf *conf = mddev->private; struct r10bio *r10_bio; struct bio *biolist = NULL, *bio; sector_t max_sector, nr_sectors; int i; int max_sync; sector_t sync_blocks; sector_t sectors_skipped = 0; int chunks_skipped = 0; sector_t chunk_mask = conf->geo.chunk_mask; if (!conf->r10buf_pool) if (init_resync(conf)) return 0; /* * Allow skipping a full rebuild for incremental assembly * of a clean array, like RAID1 does. */ if (mddev->bitmap == NULL && mddev->recovery_cp == MaxSector && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && conf->fullsync == 0) { *skipped = 1; max_sector = mddev->dev_sectors; if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) max_sector = mddev->resync_max_sectors; return max_sector - sector_nr; } skipped: max_sector = mddev->dev_sectors; if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) max_sector = mddev->resync_max_sectors; if (sector_nr >= max_sector) { /* If we aborted, we need to abort the * sync on the 'current' bitmap chucks (there can * be several when recovering multiple devices). * as we may have started syncing it but not finished. * We can find the current address in * mddev->curr_resync, but for recovery, * we need to convert that to several * virtual addresses. */ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { end_reshape(conf); return 0; } if (mddev->curr_resync < max_sector) { /* aborted */ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) bitmap_end_sync(mddev->bitmap, mddev->curr_resync, &sync_blocks, 1); else for (i = 0; i < conf->geo.raid_disks; i++) { sector_t sect = raid10_find_virt(conf, mddev->curr_resync, i); bitmap_end_sync(mddev->bitmap, sect, &sync_blocks, 1); } } else { /* completed sync */ if ((!mddev->bitmap || conf->fullsync) && conf->have_replacement && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { /* Completed a full sync so the replacements * are now fully recovered. */ for (i = 0; i < conf->geo.raid_disks; i++) if (conf->mirrors[i].replacement) conf->mirrors[i].replacement ->recovery_offset = MaxSector; } conf->fullsync = 0; } bitmap_close_sync(mddev->bitmap); close_sync(conf); *skipped = 1; return sectors_skipped; } if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) return reshape_request(mddev, sector_nr, skipped); if (chunks_skipped >= conf->geo.raid_disks) { /* if there has been nothing to do on any drive, * then there is nothing to do at all.. */ *skipped = 1; return (max_sector - sector_nr) + sectors_skipped; } if (max_sector > mddev->resync_max) max_sector = mddev->resync_max; /* Don't do IO beyond here */ /* make sure whole request will fit in a chunk - if chunks * are meaningful */ if (conf->geo.near_copies < conf->geo.raid_disks && max_sector > (sector_nr | chunk_mask)) max_sector = (sector_nr | chunk_mask) + 1; /* * If there is non-resync activity waiting for us then * put in a delay to throttle resync. */ if (!go_faster && conf->nr_waiting) msleep_interruptible(1000); /* Again, very different code for resync and recovery. * Both must result in an r10bio with a list of bios that * have bi_end_io, bi_sector, bi_bdev set, * and bi_private set to the r10bio. * For recovery, we may actually create several r10bios * with 2 bios in each, that correspond to the bios in the main one. * In this case, the subordinate r10bios link back through a * borrowed master_bio pointer, and the counter in the master * includes a ref from each subordinate. */ /* First, we decide what to do and set ->bi_end_io * To end_sync_read if we want to read, and * end_sync_write if we will want to write. */ max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { /* recovery... the complicated one */ int j; r10_bio = NULL; for (i = 0 ; i < conf->geo.raid_disks; i++) { int still_degraded; struct r10bio *rb2; sector_t sect; int must_sync; int any_working; struct raid10_info *mirror = &conf->mirrors[i]; if ((mirror->rdev == NULL || test_bit(In_sync, &mirror->rdev->flags)) && (mirror->replacement == NULL || test_bit(Faulty, &mirror->replacement->flags))) continue; still_degraded = 0; /* want to reconstruct this device */ rb2 = r10_bio; sect = raid10_find_virt(conf, sector_nr, i); if (sect >= mddev->resync_max_sectors) { /* last stripe is not complete - don't * try to recover this sector. */ continue; } /* Unless we are doing a full sync, or a replacement * we only need to recover the block if it is set in * the bitmap */ must_sync = bitmap_start_sync(mddev->bitmap, sect, &sync_blocks, 1); if (sync_blocks < max_sync) max_sync = sync_blocks; if (!must_sync && mirror->replacement == NULL && !conf->fullsync) { /* yep, skip the sync_blocks here, but don't assume * that there will never be anything to do here */ chunks_skipped = -1; continue; } r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); raise_barrier(conf, rb2 != NULL); atomic_set(&r10_bio->remaining, 0); r10_bio->master_bio = (struct bio*)rb2; if (rb2) atomic_inc(&rb2->remaining); r10_bio->mddev = mddev; set_bit(R10BIO_IsRecover, &r10_bio->state); r10_bio->sector = sect; raid10_find_phys(conf, r10_bio); /* Need to check if the array will still be * degraded */ for (j = 0; j < conf->geo.raid_disks; j++) if (conf->mirrors[j].rdev == NULL || test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { still_degraded = 1; break; } must_sync = bitmap_start_sync(mddev->bitmap, sect, &sync_blocks, still_degraded); any_working = 0; for (j=0; j<conf->copies;j++) { int k; int d = r10_bio->devs[j].devnum; sector_t from_addr, to_addr; struct md_rdev *rdev; sector_t sector, first_bad; int bad_sectors; if (!conf->mirrors[d].rdev || !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) continue; /* This is where we read from */ any_working = 1; rdev = conf->mirrors[d].rdev; sector = r10_bio->devs[j].addr; if (is_badblock(rdev, sector, max_sync, &first_bad, &bad_sectors)) { if (first_bad > sector) max_sync = first_bad - sector; else { bad_sectors -= (sector - first_bad); if (max_sync > bad_sectors) max_sync = bad_sectors; continue; } } bio = r10_bio->devs[0].bio; bio->bi_next = biolist; biolist = bio; bio->bi_private = r10_bio; bio->bi_end_io = end_sync_read; bio->bi_rw = READ; from_addr = r10_bio->devs[j].addr; bio->bi_sector = from_addr + rdev->data_offset; bio->bi_bdev = rdev->bdev; atomic_inc(&rdev->nr_pending); /* and we write to 'i' (if not in_sync) */ for (k=0; k<conf->copies; k++) if (r10_bio->devs[k].devnum == i) break; BUG_ON(k == conf->copies); to_addr = r10_bio->devs[k].addr; r10_bio->devs[0].devnum = d; r10_bio->devs[0].addr = from_addr; r10_bio->devs[1].devnum = i; r10_bio->devs[1].addr = to_addr; rdev = mirror->rdev; if (!test_bit(In_sync, &rdev->flags)) { bio = r10_bio->devs[1].bio; bio->bi_next = biolist; biolist = bio; bio->bi_private = r10_bio; bio->bi_end_io = end_sync_write; bio->bi_rw = WRITE; bio->bi_sector = to_addr + rdev->data_offset; bio->bi_bdev = rdev->bdev; atomic_inc(&r10_bio->remaining); } else r10_bio->devs[1].bio->bi_end_io = NULL; /* and maybe write to replacement */ bio = r10_bio->devs[1].repl_bio; if (bio) bio->bi_end_io = NULL; rdev = mirror->replacement; /* Note: if rdev != NULL, then bio * cannot be NULL as r10buf_pool_alloc will * have allocated it. * So the second test here is pointless. * But it keeps semantic-checkers happy, and * this comment keeps human reviewers * happy. */ if (rdev == NULL || bio == NULL || test_bit(Faulty, &rdev->flags)) break; bio->bi_next = biolist; biolist = bio; bio->bi_private = r10_bio; bio->bi_end_io = end_sync_write; bio->bi_rw = WRITE; bio->bi_sector = to_addr + rdev->data_offset; bio->bi_bdev = rdev->bdev; atomic_inc(&r10_bio->remaining); break; } if (j == conf->copies) { /* Cannot recover, so abort the recovery or * record a bad block */ put_buf(r10_bio); if (rb2) atomic_dec(&rb2->remaining); r10_bio = rb2; if (any_working) { /* problem is that there are bad blocks * on other device(s) */ int k; for (k = 0; k < conf->copies; k++) if (r10_bio->devs[k].devnum == i) break; if (!test_bit(In_sync, &mirror->rdev->flags) && !rdev_set_badblocks( mirror->rdev, r10_bio->devs[k].addr, max_sync, 0)) any_working = 0; if (mirror->replacement && !rdev_set_badblocks( mirror->replacement, r10_bio->devs[k].addr, max_sync, 0)) any_working = 0; } if (!any_working) { if (!test_and_set_bit(MD_RECOVERY_INTR, &mddev->recovery)) printk(KERN_INFO "md/raid10:%s: insufficient " "working devices for recovery.\n", mdname(mddev)); mirror->recovery_disabled = mddev->recovery_disabled; } break; } } if (biolist == NULL) { while (r10_bio) { struct r10bio *rb2 = r10_bio; r10_bio = (struct r10bio*) rb2->master_bio; rb2->master_bio = NULL; put_buf(rb2); } goto giveup; } } else { /* resync. Schedule a read for every block at this virt offset */ int count = 0; bitmap_cond_end_sync(mddev->bitmap, sector_nr); if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, mddev->degraded) && !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { /* We can skip this block */ *skipped = 1; return sync_blocks + sectors_skipped; } if (sync_blocks < max_sync) max_sync = sync_blocks; r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); r10_bio->mddev = mddev; atomic_set(&r10_bio->remaining, 0); raise_barrier(conf, 0); conf->next_resync = sector_nr; r10_bio->master_bio = NULL; r10_bio->sector = sector_nr; set_bit(R10BIO_IsSync, &r10_bio->state); raid10_find_phys(conf, r10_bio); r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; for (i = 0; i < conf->copies; i++) { int d = r10_bio->devs[i].devnum; sector_t first_bad, sector; int bad_sectors; if (r10_bio->devs[i].repl_bio) r10_bio->devs[i].repl_bio->bi_end_io = NULL; bio = r10_bio->devs[i].bio; bio->bi_end_io = NULL; clear_bit(BIO_UPTODATE, &bio->bi_flags); if (conf->mirrors[d].rdev == NULL || test_bit(Faulty, &conf->mirrors[d].rdev->flags)) continue; sector = r10_bio->devs[i].addr; if (is_badblock(conf->mirrors[d].rdev, sector, max_sync, &first_bad, &bad_sectors)) { if (first_bad > sector) max_sync = first_bad - sector; else { bad_sectors -= (sector - first_bad); if (max_sync > bad_sectors) max_sync = bad_sectors; continue; } } atomic_inc(&conf->mirrors[d].rdev->nr_pending); atomic_inc(&r10_bio->remaining); bio->bi_next = biolist; biolist = bio; bio->bi_private = r10_bio; bio->bi_end_io = end_sync_read; bio->bi_rw = READ; bio->bi_sector = sector + conf->mirrors[d].rdev->data_offset; bio->bi_bdev = conf->mirrors[d].rdev->bdev; count++; if (conf->mirrors[d].replacement == NULL || test_bit(Faulty, &conf->mirrors[d].replacement->flags)) continue; /* Need to set up for writing to the replacement */ bio = r10_bio->devs[i].repl_bio; clear_bit(BIO_UPTODATE, &bio->bi_flags); sector = r10_bio->devs[i].addr; atomic_inc(&conf->mirrors[d].rdev->nr_pending); bio->bi_next = biolist; biolist = bio; bio->bi_private = r10_bio; bio->bi_end_io = end_sync_write; bio->bi_rw = WRITE; bio->bi_sector = sector + conf->mirrors[d].replacement->data_offset; bio->bi_bdev = conf->mirrors[d].replacement->bdev; count++; } if (count < 2) { for (i=0; i<conf->copies; i++) { int d = r10_bio->devs[i].devnum; if (r10_bio->devs[i].bio->bi_end_io) rdev_dec_pending(conf->mirrors[d].rdev, mddev); if (r10_bio->devs[i].repl_bio && r10_bio->devs[i].repl_bio->bi_end_io) rdev_dec_pending( conf->mirrors[d].replacement, mddev); } put_buf(r10_bio); biolist = NULL; goto giveup; } } for (bio = biolist; bio ; bio=bio->bi_next) { bio->bi_flags &= ~(BIO_POOL_MASK - 1); if (bio->bi_end_io) bio->bi_flags |= 1 << BIO_UPTODATE; bio->bi_vcnt = 0; bio->bi_idx = 0; bio->bi_phys_segments = 0; bio->bi_size = 0; } nr_sectors = 0; if (sector_nr + max_sync < max_sector) max_sector = sector_nr + max_sync; do { struct page *page; int len = PAGE_SIZE; if (sector_nr + (len>>9) > max_sector) len = (max_sector - sector_nr) << 9; if (len == 0) break; for (bio= biolist ; bio ; bio=bio->bi_next) { struct bio *bio2; page = bio->bi_io_vec[bio->bi_vcnt].bv_page; if (bio_add_page(bio, page, len, 0)) continue; /* stop here */ bio->bi_io_vec[bio->bi_vcnt].bv_page = page; for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { /* remove last page from this bio */ bio2->bi_vcnt--; bio2->bi_size -= len; bio2->bi_flags &= ~(1<< BIO_SEG_VALID); } goto bio_full; } nr_sectors += len>>9; sector_nr += len>>9; } while (biolist->bi_vcnt < RESYNC_PAGES); bio_full: r10_bio->sectors = nr_sectors; while (biolist) { bio = biolist; biolist = biolist->bi_next; bio->bi_next = NULL; r10_bio = bio->bi_private; r10_bio->sectors = nr_sectors; if (bio->bi_end_io == end_sync_read) { md_sync_acct(bio->bi_bdev, nr_sectors); generic_make_request(bio); } } if (sectors_skipped) /* pretend they weren't skipped, it makes * no important difference in this case */ md_done_sync(mddev, sectors_skipped, 1); return sectors_skipped + nr_sectors; giveup: /* There is nowhere to write, so all non-sync * drives must be failed or in resync, all drives * have a bad block, so try the next chunk... */ if (sector_nr + max_sync < max_sector) max_sector = sector_nr + max_sync; sectors_skipped += (max_sector - sector_nr); chunks_skipped ++; sector_nr = max_sector; goto skipped; } static sector_t raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) { sector_t size; struct r10conf *conf = mddev->private; if (!raid_disks) raid_disks = min(conf->geo.raid_disks, conf->prev.raid_disks); if (!sectors) sectors = conf->dev_sectors; size = sectors >> conf->geo.chunk_shift; sector_div(size, conf->geo.far_copies); size = size * raid_disks; sector_div(size, conf->geo.near_copies); return size << conf->geo.chunk_shift; } static void calc_sectors(struct r10conf *conf, sector_t size) { /* Calculate the number of sectors-per-device that will * actually be used, and set conf->dev_sectors and * conf->stride */ size = size >> conf->geo.chunk_shift; sector_div(size, conf->geo.far_copies); size = size * conf->geo.raid_disks; sector_div(size, conf->geo.near_copies); /* 'size' is now the number of chunks in the array */ /* calculate "used chunks per device" */ size = size * conf->copies; /* We need to round up when dividing by raid_disks to * get the stride size. */ size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); conf->dev_sectors = size << conf->geo.chunk_shift; if (conf->geo.far_offset) conf->geo.stride = 1 << conf->geo.chunk_shift; else { sector_div(size, conf->geo.far_copies); conf->geo.stride = size << conf->geo.chunk_shift; } } enum geo_type {geo_new, geo_old, geo_start}; static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) { int nc, fc, fo; int layout, chunk, disks; switch (new) { case geo_old: layout = mddev->layout; chunk = mddev->chunk_sectors; disks = mddev->raid_disks - mddev->delta_disks; break; case geo_new: layout = mddev->new_layout; chunk = mddev->new_chunk_sectors; disks = mddev->raid_disks; break; default: /* avoid 'may be unused' warnings */ case geo_start: /* new when starting reshape - raid_disks not * updated yet. */ layout = mddev->new_layout; chunk = mddev->new_chunk_sectors; disks = mddev->raid_disks + mddev->delta_disks; break; } if (layout >> 18) return -1; if (chunk < (PAGE_SIZE >> 9) || !is_power_of_2(chunk)) return -2; nc = layout & 255; fc = (layout >> 8) & 255; fo = layout & (1<<16); geo->raid_disks = disks; geo->near_copies = nc; geo->far_copies = fc; geo->far_offset = fo; geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; geo->chunk_mask = chunk - 1; geo->chunk_shift = ffz(~chunk); return nc*fc; } static struct r10conf *setup_conf(struct mddev *mddev) { struct r10conf *conf = NULL; int err = -EINVAL; struct geom geo; int copies; copies = setup_geo(&geo, mddev, geo_new); if (copies == -2) { printk(KERN_ERR "md/raid10:%s: chunk size must be " "at least PAGE_SIZE(%ld) and be a power of 2.\n", mdname(mddev), PAGE_SIZE); goto out; } if (copies < 2 || copies > mddev->raid_disks) { printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", mdname(mddev), mddev->new_layout); goto out; } err = -ENOMEM; conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); if (!conf) goto out; /* FIXME calc properly */ conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + max(0,mddev->delta_disks)), GFP_KERNEL); if (!conf->mirrors) goto out; conf->tmppage = alloc_page(GFP_KERNEL); if (!conf->tmppage) goto out; conf->geo = geo; conf->copies = copies; conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, r10bio_pool_free, conf); if (!conf->r10bio_pool) goto out; calc_sectors(conf, mddev->dev_sectors); if (mddev->reshape_position == MaxSector) { conf->prev = conf->geo; conf->reshape_progress = MaxSector; } else { if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { err = -EINVAL; goto out; } conf->reshape_progress = mddev->reshape_position; if (conf->prev.far_offset) conf->prev.stride = 1 << conf->prev.chunk_shift; else /* far_copies must be 1 */ conf->prev.stride = conf->dev_sectors; } spin_lock_init(&conf->device_lock); INIT_LIST_HEAD(&conf->retry_list); spin_lock_init(&conf->resync_lock); init_waitqueue_head(&conf->wait_barrier); conf->thread = md_register_thread(raid10d, mddev, "raid10"); if (!conf->thread) goto out; conf->mddev = mddev; return conf; out: if (err == -ENOMEM) printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", mdname(mddev)); if (conf) { if (conf->r10bio_pool) mempool_destroy(conf->r10bio_pool); kfree(conf->mirrors); safe_put_page(conf->tmppage); kfree(conf); } return ERR_PTR(err); } static int run(struct mddev *mddev) { struct r10conf *conf; int i, disk_idx, chunk_size; struct raid10_info *disk; struct md_rdev *rdev; sector_t size; sector_t min_offset_diff = 0; int first = 1; bool discard_supported = false; if (mddev->private == NULL) { conf = setup_conf(mddev); if (IS_ERR(conf)) return PTR_ERR(conf); mddev->private = conf; } conf = mddev->private; if (!conf) goto out; mddev->thread = conf->thread; conf->thread = NULL; chunk_size = mddev->chunk_sectors << 9; if (mddev->queue) { blk_queue_max_discard_sectors(mddev->queue, mddev->chunk_sectors); blk_queue_max_write_same_sectors(mddev->queue, mddev->chunk_sectors); blk_queue_io_min(mddev->queue, chunk_size); if (conf->geo.raid_disks % conf->geo.near_copies) blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); else blk_queue_io_opt(mddev->queue, chunk_size * (conf->geo.raid_disks / conf->geo.near_copies)); } rdev_for_each(rdev, mddev) { long long diff; struct request_queue *q; disk_idx = rdev->raid_disk; if (disk_idx < 0) continue; if (disk_idx >= conf->geo.raid_disks && disk_idx >= conf->prev.raid_disks) continue; disk = conf->mirrors + disk_idx; if (test_bit(Replacement, &rdev->flags)) { if (disk->replacement) goto out_free_conf; disk->replacement = rdev; } else { if (disk->rdev) goto out_free_conf; disk->rdev = rdev; } q = bdev_get_queue(rdev->bdev); if (q->merge_bvec_fn) mddev->merge_check_needed = 1; diff = (rdev->new_data_offset - rdev->data_offset); if (!mddev->reshape_backwards) diff = -diff; if (diff < 0) diff = 0; if (first || diff < min_offset_diff) min_offset_diff = diff; if (mddev->gendisk) disk_stack_limits(mddev->gendisk, rdev->bdev, rdev->data_offset << 9); disk->head_position = 0; if (blk_queue_discard(bdev_get_queue(rdev->bdev))) discard_supported = true; } if (mddev->queue) { if (discard_supported) queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); else queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); } /* need to check that every block has at least one working mirror */ if (!enough(conf, -1)) { printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", mdname(mddev)); goto out_free_conf; } if (conf->reshape_progress != MaxSector) { /* must ensure that shape change is supported */ if (conf->geo.far_copies != 1 && conf->geo.far_offset == 0) goto out_free_conf; if (conf->prev.far_copies != 1 && conf->geo.far_offset == 0) goto out_free_conf; } mddev->degraded = 0; for (i = 0; i < conf->geo.raid_disks || i < conf->prev.raid_disks; i++) { disk = conf->mirrors + i; if (!disk->rdev && disk->replacement) { /* The replacement is all we have - use it */ disk->rdev = disk->replacement; disk->replacement = NULL; clear_bit(Replacement, &disk->rdev->flags); } if (!disk->rdev || !test_bit(In_sync, &disk->rdev->flags)) { disk->head_position = 0; mddev->degraded++; if (disk->rdev) conf->fullsync = 1; } disk->recovery_disabled = mddev->recovery_disabled - 1; } if (mddev->recovery_cp != MaxSector) printk(KERN_NOTICE "md/raid10:%s: not clean" " -- starting background reconstruction\n", mdname(mddev)); printk(KERN_INFO "md/raid10:%s: active with %d out of %d devices\n", mdname(mddev), conf->geo.raid_disks - mddev->degraded, conf->geo.raid_disks); /* * Ok, everything is just fine now */ mddev->dev_sectors = conf->dev_sectors; size = raid10_size(mddev, 0, 0); md_set_array_sectors(mddev, size); mddev->resync_max_sectors = size; if (mddev->queue) { int stripe = conf->geo.raid_disks * ((mddev->chunk_sectors << 9) / PAGE_SIZE); mddev->queue->backing_dev_info.congested_fn = raid10_congested; mddev->queue->backing_dev_info.congested_data = mddev; /* Calculate max read-ahead size. * We need to readahead at least twice a whole stripe.... * maybe... */ stripe /= conf->geo.near_copies; if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) mddev->queue->backing_dev_info.ra_pages = 2 * stripe; blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); } if (md_integrity_register(mddev)) goto out_free_conf; if (conf->reshape_progress != MaxSector) { unsigned long before_length, after_length; before_length = ((1 << conf->prev.chunk_shift) * conf->prev.far_copies); after_length = ((1 << conf->geo.chunk_shift) * conf->geo.far_copies); if (max(before_length, after_length) > min_offset_diff) { /* This cannot work */ printk("md/raid10: offset difference not enough to continue reshape\n"); goto out_free_conf; } conf->offset_diff = min_offset_diff; conf->reshape_safe = conf->reshape_progress; clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); mddev->sync_thread = md_register_thread(md_do_sync, mddev, "reshape"); } return 0; out_free_conf: md_unregister_thread(&mddev->thread); if (conf->r10bio_pool) mempool_destroy(conf->r10bio_pool); safe_put_page(conf->tmppage); kfree(conf->mirrors); kfree(conf); mddev->private = NULL; out: return -EIO; } static int stop(struct mddev *mddev) { struct r10conf *conf = mddev->private; raise_barrier(conf, 0); lower_barrier(conf); md_unregister_thread(&mddev->thread); if (mddev->queue) /* the unplug fn references 'conf'*/ blk_sync_queue(mddev->queue); if (conf->r10bio_pool) mempool_destroy(conf->r10bio_pool); safe_put_page(conf->tmppage); kfree(conf->mirrors); kfree(conf); mddev->private = NULL; return 0; } static void raid10_quiesce(struct mddev *mddev, int state) { struct r10conf *conf = mddev->private; switch(state) { case 1: raise_barrier(conf, 0); break; case 0: lower_barrier(conf); break; } } static int raid10_resize(struct mddev *mddev, sector_t sectors) { /* Resize of 'far' arrays is not supported. * For 'near' and 'offset' arrays we can set the * number of sectors used to be an appropriate multiple * of the chunk size. * For 'offset', this is far_copies*chunksize. * For 'near' the multiplier is the LCM of * near_copies and raid_disks. * So if far_copies > 1 && !far_offset, fail. * Else find LCM(raid_disks, near_copy)*far_copies and * multiply by chunk_size. Then round to this number. * This is mostly done by raid10_size() */ struct r10conf *conf = mddev->private; sector_t oldsize, size; if (mddev->reshape_position != MaxSector) return -EBUSY; if (conf->geo.far_copies > 1 && !conf->geo.far_offset) return -EINVAL; oldsize = raid10_size(mddev, 0, 0); size = raid10_size(mddev, sectors, 0); if (mddev->external_size && mddev->array_sectors > size) return -EINVAL; if (mddev->bitmap) { int ret = bitmap_resize(mddev->bitmap, size, 0, 0); if (ret) return ret; } md_set_array_sectors(mddev, size); set_capacity(mddev->gendisk, mddev->array_sectors); revalidate_disk(mddev->gendisk); if (sectors > mddev->dev_sectors && mddev->recovery_cp > oldsize) { mddev->recovery_cp = oldsize; set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); } calc_sectors(conf, sectors); mddev->dev_sectors = conf->dev_sectors; mddev->resync_max_sectors = size; return 0; } static void *raid10_takeover_raid0(struct mddev *mddev) { struct md_rdev *rdev; struct r10conf *conf; if (mddev->degraded > 0) { printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", mdname(mddev)); return ERR_PTR(-EINVAL); } /* Set new parameters */ mddev->new_level = 10; /* new layout: far_copies = 1, near_copies = 2 */ mddev->new_layout = (1<<8) + 2; mddev->new_chunk_sectors = mddev->chunk_sectors; mddev->delta_disks = mddev->raid_disks; mddev->raid_disks *= 2; /* make sure it will be not marked as dirty */ mddev->recovery_cp = MaxSector; conf = setup_conf(mddev); if (!IS_ERR(conf)) { rdev_for_each(rdev, mddev) if (rdev->raid_disk >= 0) rdev->new_raid_disk = rdev->raid_disk * 2; conf->barrier = 1; } return conf; } static void *raid10_takeover(struct mddev *mddev) { struct r0conf *raid0_conf; /* raid10 can take over: * raid0 - providing it has only two drives */ if (mddev->level == 0) { /* for raid0 takeover only one zone is supported */ raid0_conf = mddev->private; if (raid0_conf->nr_strip_zones > 1) { printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" " with more than one zone.\n", mdname(mddev)); return ERR_PTR(-EINVAL); } return raid10_takeover_raid0(mddev); } return ERR_PTR(-EINVAL); } static int raid10_check_reshape(struct mddev *mddev) { /* Called when there is a request to change * - layout (to ->new_layout) * - chunk size (to ->new_chunk_sectors) * - raid_disks (by delta_disks) * or when trying to restart a reshape that was ongoing. * * We need to validate the request and possibly allocate * space if that might be an issue later. * * Currently we reject any reshape of a 'far' mode array, * allow chunk size to change if new is generally acceptable, * allow raid_disks to increase, and allow * a switch between 'near' mode and 'offset' mode. */ struct r10conf *conf = mddev->private; struct geom geo; if (conf->geo.far_copies != 1 && !conf->geo.far_offset) return -EINVAL; if (setup_geo(&geo, mddev, geo_start) != conf->copies) /* mustn't change number of copies */ return -EINVAL; if (geo.far_copies > 1 && !geo.far_offset) /* Cannot switch to 'far' mode */ return -EINVAL; if (mddev->array_sectors & geo.chunk_mask) /* not factor of array size */ return -EINVAL; if (!enough(conf, -1)) return -EINVAL; kfree(conf->mirrors_new); conf->mirrors_new = NULL; if (mddev->delta_disks > 0) { /* allocate new 'mirrors' list */ conf->mirrors_new = kzalloc( sizeof(struct raid10_info) *(mddev->raid_disks + mddev->delta_disks), GFP_KERNEL); if (!conf->mirrors_new) return -ENOMEM; } return 0; } /* * Need to check if array has failed when deciding whether to: * - start an array * - remove non-faulty devices * - add a spare * - allow a reshape * This determination is simple when no reshape is happening. * However if there is a reshape, we need to carefully check * both the before and after sections. * This is because some failed devices may only affect one * of the two sections, and some non-in_sync devices may * be insync in the section most affected by failed devices. */ static int calc_degraded(struct r10conf *conf) { int degraded, degraded2; int i; rcu_read_lock(); degraded = 0; /* 'prev' section first */ for (i = 0; i < conf->prev.raid_disks; i++) { struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); if (!rdev || test_bit(Faulty, &rdev->flags)) degraded++; else if (!test_bit(In_sync, &rdev->flags)) /* When we can reduce the number of devices in * an array, this might not contribute to * 'degraded'. It does now. */ degraded++; } rcu_read_unlock(); if (conf->geo.raid_disks == conf->prev.raid_disks) return degraded; rcu_read_lock(); degraded2 = 0; for (i = 0; i < conf->geo.raid_disks; i++) { struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); if (!rdev || test_bit(Faulty, &rdev->flags)) degraded2++; else if (!test_bit(In_sync, &rdev->flags)) { /* If reshape is increasing the number of devices, * this section has already been recovered, so * it doesn't contribute to degraded. * else it does. */ if (conf->geo.raid_disks <= conf->prev.raid_disks) degraded2++; } } rcu_read_unlock(); if (degraded2 > degraded) return degraded2; return degraded; } static int raid10_start_reshape(struct mddev *mddev) { /* A 'reshape' has been requested. This commits * the various 'new' fields and sets MD_RECOVER_RESHAPE * This also checks if there are enough spares and adds them * to the array. * We currently require enough spares to make the final * array non-degraded. We also require that the difference * between old and new data_offset - on each device - is * enough that we never risk over-writing. */ unsigned long before_length, after_length; sector_t min_offset_diff = 0; int first = 1; struct geom new; struct r10conf *conf = mddev->private; struct md_rdev *rdev; int spares = 0; int ret; if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) return -EBUSY; if (setup_geo(&new, mddev, geo_start) != conf->copies) return -EINVAL; before_length = ((1 << conf->prev.chunk_shift) * conf->prev.far_copies); after_length = ((1 << conf->geo.chunk_shift) * conf->geo.far_copies); rdev_for_each(rdev, mddev) { if (!test_bit(In_sync, &rdev->flags) && !test_bit(Faulty, &rdev->flags)) spares++; if (rdev->raid_disk >= 0) { long long diff = (rdev->new_data_offset - rdev->data_offset); if (!mddev->reshape_backwards) diff = -diff; if (diff < 0) diff = 0; if (first || diff < min_offset_diff) min_offset_diff = diff; } } if (max(before_length, after_length) > min_offset_diff) return -EINVAL; if (spares < mddev->delta_disks) return -EINVAL; conf->offset_diff = min_offset_diff; spin_lock_irq(&conf->device_lock); if (conf->mirrors_new) { memcpy(conf->mirrors_new, conf->mirrors, sizeof(struct raid10_info)*conf->prev.raid_disks); smp_mb(); kfree(conf->mirrors_old); /* FIXME and elsewhere */ conf->mirrors_old = conf->mirrors; conf->mirrors = conf->mirrors_new; conf->mirrors_new = NULL; } setup_geo(&conf->geo, mddev, geo_start); smp_mb(); if (mddev->reshape_backwards) { sector_t size = raid10_size(mddev, 0, 0); if (size < mddev->array_sectors) { spin_unlock_irq(&conf->device_lock); printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", mdname(mddev)); return -EINVAL; } mddev->resync_max_sectors = size; conf->reshape_progress = size; } else conf->reshape_progress = 0; spin_unlock_irq(&conf->device_lock); if (mddev->delta_disks && mddev->bitmap) { ret = bitmap_resize(mddev->bitmap, raid10_size(mddev, 0, conf->geo.raid_disks), 0, 0); if (ret) goto abort; } if (mddev->delta_disks > 0) { rdev_for_each(rdev, mddev) if (rdev->raid_disk < 0 && !test_bit(Faulty, &rdev->flags)) { if (raid10_add_disk(mddev, rdev) == 0) { if (rdev->raid_disk >= conf->prev.raid_disks) set_bit(In_sync, &rdev->flags); else rdev->recovery_offset = 0; if (sysfs_link_rdev(mddev, rdev)) /* Failure here is OK */; } } else if (rdev->raid_disk >= conf->prev.raid_disks && !test_bit(Faulty, &rdev->flags)) { /* This is a spare that was manually added */ set_bit(In_sync, &rdev->flags); } } /* When a reshape changes the number of devices, * ->degraded is measured against the larger of the * pre and post numbers. */ spin_lock_irq(&conf->device_lock); mddev->degraded = calc_degraded(conf); spin_unlock_irq(&conf->device_lock); mddev->raid_disks = conf->geo.raid_disks; mddev->reshape_position = conf->reshape_progress; set_bit(MD_CHANGE_DEVS, &mddev->flags); clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); mddev->sync_thread = md_register_thread(md_do_sync, mddev, "reshape"); if (!mddev->sync_thread) { ret = -EAGAIN; goto abort; } conf->reshape_checkpoint = jiffies; md_wakeup_thread(mddev->sync_thread); md_new_event(mddev); return 0; abort: mddev->recovery = 0; spin_lock_irq(&conf->device_lock); conf->geo = conf->prev; mddev->raid_disks = conf->geo.raid_disks; rdev_for_each(rdev, mddev) rdev->new_data_offset = rdev->data_offset; smp_wmb(); conf->reshape_progress = MaxSector; mddev->reshape_position = MaxSector; spin_unlock_irq(&conf->device_lock); return ret; } /* Calculate the last device-address that could contain * any block from the chunk that includes the array-address 's' * and report the next address. * i.e. the address returned will be chunk-aligned and after * any data that is in the chunk containing 's'. */ static sector_t last_dev_address(sector_t s, struct geom *geo) { s = (s | geo->chunk_mask) + 1; s >>= geo->chunk_shift; s *= geo->near_copies; s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); s *= geo->far_copies; s <<= geo->chunk_shift; return s; } /* Calculate the first device-address that could contain * any block from the chunk that includes the array-address 's'. * This too will be the start of a chunk */ static sector_t first_dev_address(sector_t s, struct geom *geo) { s >>= geo->chunk_shift; s *= geo->near_copies; sector_div(s, geo->raid_disks); s *= geo->far_copies; s <<= geo->chunk_shift; return s; } static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) { /* We simply copy at most one chunk (smallest of old and new) * at a time, possibly less if that exceeds RESYNC_PAGES, * or we hit a bad block or something. * This might mean we pause for normal IO in the middle of * a chunk, but that is not a problem was mddev->reshape_position * can record any location. * * If we will want to write to a location that isn't * yet recorded as 'safe' (i.e. in metadata on disk) then * we need to flush all reshape requests and update the metadata. * * When reshaping forwards (e.g. to more devices), we interpret * 'safe' as the earliest block which might not have been copied * down yet. We divide this by previous stripe size and multiply * by previous stripe length to get lowest device offset that we * cannot write to yet. * We interpret 'sector_nr' as an address that we want to write to. * From this we use last_device_address() to find where we might * write to, and first_device_address on the 'safe' position. * If this 'next' write position is after the 'safe' position, * we must update the metadata to increase the 'safe' position. * * When reshaping backwards, we round in the opposite direction * and perform the reverse test: next write position must not be * less than current safe position. * * In all this the minimum difference in data offsets * (conf->offset_diff - always positive) allows a bit of slack, * so next can be after 'safe', but not by more than offset_disk * * We need to prepare all the bios here before we start any IO * to ensure the size we choose is acceptable to all devices. * The means one for each copy for write-out and an extra one for * read-in. * We store the read-in bio in ->master_bio and the others in * ->devs[x].bio and ->devs[x].repl_bio. */ struct r10conf *conf = mddev->private; struct r10bio *r10_bio; sector_t next, safe, last; int max_sectors; int nr_sectors; int s; struct md_rdev *rdev; int need_flush = 0; struct bio *blist; struct bio *bio, *read_bio; int sectors_done = 0; if (sector_nr == 0) { /* If restarting in the middle, skip the initial sectors */ if (mddev->reshape_backwards && conf->reshape_progress < raid10_size(mddev, 0, 0)) { sector_nr = (raid10_size(mddev, 0, 0) - conf->reshape_progress); } else if (!mddev->reshape_backwards && conf->reshape_progress > 0) sector_nr = conf->reshape_progress; if (sector_nr) { mddev->curr_resync_completed = sector_nr; sysfs_notify(&mddev->kobj, NULL, "sync_completed"); *skipped = 1; return sector_nr; } } /* We don't use sector_nr to track where we are up to * as that doesn't work well for ->reshape_backwards. * So just use ->reshape_progress. */ if (mddev->reshape_backwards) { /* 'next' is the earliest device address that we might * write to for this chunk in the new layout */ next = first_dev_address(conf->reshape_progress - 1, &conf->geo); /* 'safe' is the last device address that we might read from * in the old layout after a restart */ safe = last_dev_address(conf->reshape_safe - 1, &conf->prev); if (next + conf->offset_diff < safe) need_flush = 1; last = conf->reshape_progress - 1; sector_nr = last & ~(sector_t)(conf->geo.chunk_mask & conf->prev.chunk_mask); if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; } else { /* 'next' is after the last device address that we * might write to for this chunk in the new layout */ next = last_dev_address(conf->reshape_progress, &conf->geo); /* 'safe' is the earliest device address that we might * read from in the old layout after a restart */ safe = first_dev_address(conf->reshape_safe, &conf->prev); /* Need to update metadata if 'next' might be beyond 'safe' * as that would possibly corrupt data */ if (next > safe + conf->offset_diff) need_flush = 1; sector_nr = conf->reshape_progress; last = sector_nr | (conf->geo.chunk_mask & conf->prev.chunk_mask); if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; } if (need_flush || time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { /* Need to update reshape_position in metadata */ wait_barrier(conf); mddev->reshape_position = conf->reshape_progress; if (mddev->reshape_backwards) mddev->curr_resync_completed = raid10_size(mddev, 0, 0) - conf->reshape_progress; else mddev->curr_resync_completed = conf->reshape_progress; conf->reshape_checkpoint = jiffies; set_bit(MD_CHANGE_DEVS, &mddev->flags); md_wakeup_thread(mddev->thread); wait_event(mddev->sb_wait, mddev->flags == 0 || kthread_should_stop()); conf->reshape_safe = mddev->reshape_position; allow_barrier(conf); } read_more: /* Now schedule reads for blocks from sector_nr to last */ r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); raise_barrier(conf, sectors_done != 0); atomic_set(&r10_bio->remaining, 0); r10_bio->mddev = mddev; r10_bio->sector = sector_nr; set_bit(R10BIO_IsReshape, &r10_bio->state); r10_bio->sectors = last - sector_nr + 1; rdev = read_balance(conf, r10_bio, &max_sectors); BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); if (!rdev) { /* Cannot read from here, so need to record bad blocks * on all the target devices. */ // FIXME set_bit(MD_RECOVERY_INTR, &mddev->recovery); return sectors_done; } read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); read_bio->bi_bdev = rdev->bdev; read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr + rdev->data_offset); read_bio->bi_private = r10_bio; read_bio->bi_end_io = end_sync_read; read_bio->bi_rw = READ; read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); read_bio->bi_flags |= 1 << BIO_UPTODATE; read_bio->bi_vcnt = 0; read_bio->bi_idx = 0; read_bio->bi_size = 0; r10_bio->master_bio = read_bio; r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; /* Now find the locations in the new layout */ __raid10_find_phys(&conf->geo, r10_bio); blist = read_bio; read_bio->bi_next = NULL; for (s = 0; s < conf->copies*2; s++) { struct bio *b; int d = r10_bio->devs[s/2].devnum; struct md_rdev *rdev2; if (s&1) { rdev2 = conf->mirrors[d].replacement; b = r10_bio->devs[s/2].repl_bio; } else { rdev2 = conf->mirrors[d].rdev; b = r10_bio->devs[s/2].bio; } if (!rdev2 || test_bit(Faulty, &rdev2->flags)) continue; b->bi_bdev = rdev2->bdev; b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; b->bi_private = r10_bio; b->bi_end_io = end_reshape_write; b->bi_rw = WRITE; b->bi_flags &= ~(BIO_POOL_MASK - 1); b->bi_flags |= 1 << BIO_UPTODATE; b->bi_next = blist; b->bi_vcnt = 0; b->bi_idx = 0; b->bi_size = 0; blist = b; } /* Now add as many pages as possible to all of these bios. */ nr_sectors = 0; for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; int len = (max_sectors - s) << 9; if (len > PAGE_SIZE) len = PAGE_SIZE; for (bio = blist; bio ; bio = bio->bi_next) { struct bio *bio2; if (bio_add_page(bio, page, len, 0)) continue; /* Didn't fit, must stop */ for (bio2 = blist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { /* Remove last page from this bio */ bio2->bi_vcnt--; bio2->bi_size -= len; bio2->bi_flags &= ~(1<<BIO_SEG_VALID); } goto bio_full; } sector_nr += len >> 9; nr_sectors += len >> 9; } bio_full: r10_bio->sectors = nr_sectors; /* Now submit the read */ md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); atomic_inc(&r10_bio->remaining); read_bio->bi_next = NULL; generic_make_request(read_bio); sector_nr += nr_sectors; sectors_done += nr_sectors; if (sector_nr <= last) goto read_more; /* Now that we have done the whole section we can * update reshape_progress */ if (mddev->reshape_backwards) conf->reshape_progress -= sectors_done; else conf->reshape_progress += sectors_done; return sectors_done; } static void end_reshape_request(struct r10bio *r10_bio); static int handle_reshape_read_error(struct mddev *mddev, struct r10bio *r10_bio); static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) { /* Reshape read completed. Hopefully we have a block * to write out. * If we got a read error then we do sync 1-page reads from * elsewhere until we find the data - or give up. */ struct r10conf *conf = mddev->private; int s; if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) if (handle_reshape_read_error(mddev, r10_bio) < 0) { /* Reshape has been aborted */ md_done_sync(mddev, r10_bio->sectors, 0); return; } /* We definitely have the data in the pages, schedule the * writes. */ atomic_set(&r10_bio->remaining, 1); for (s = 0; s < conf->copies*2; s++) { struct bio *b; int d = r10_bio->devs[s/2].devnum; struct md_rdev *rdev; if (s&1) { rdev = conf->mirrors[d].replacement; b = r10_bio->devs[s/2].repl_bio; } else { rdev = conf->mirrors[d].rdev; b = r10_bio->devs[s/2].bio; } if (!rdev || test_bit(Faulty, &rdev->flags)) continue; atomic_inc(&rdev->nr_pending); md_sync_acct(b->bi_bdev, r10_bio->sectors); atomic_inc(&r10_bio->remaining); b->bi_next = NULL; generic_make_request(b); } end_reshape_request(r10_bio); } static void end_reshape(struct r10conf *conf) { if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) return; spin_lock_irq(&conf->device_lock); conf->prev = conf->geo; md_finish_reshape(conf->mddev); smp_wmb(); conf->reshape_progress = MaxSector; spin_unlock_irq(&conf->device_lock); /* read-ahead size must cover two whole stripes, which is * 2 * (datadisks) * chunksize where 'n' is the number of raid devices */ if (conf->mddev->queue) { int stripe = conf->geo.raid_disks * ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); stripe /= conf->geo.near_copies; if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; } conf->fullsync = 0; } static int handle_reshape_read_error(struct mddev *mddev, struct r10bio *r10_bio) { /* Use sync reads to get the blocks from somewhere else */ int sectors = r10_bio->sectors; struct r10conf *conf = mddev->private; struct { struct r10bio r10_bio; struct r10dev devs[conf->copies]; } on_stack; struct r10bio *r10b = &on_stack.r10_bio; int slot = 0; int idx = 0; struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; r10b->sector = r10_bio->sector; __raid10_find_phys(&conf->prev, r10b); while (sectors) { int s = sectors; int success = 0; int first_slot = slot; if (s > (PAGE_SIZE >> 9)) s = PAGE_SIZE >> 9; while (!success) { int d = r10b->devs[slot].devnum; struct md_rdev *rdev = conf->mirrors[d].rdev; sector_t addr; if (rdev == NULL || test_bit(Faulty, &rdev->flags) || !test_bit(In_sync, &rdev->flags)) goto failed; addr = r10b->devs[slot].addr + idx * PAGE_SIZE; success = sync_page_io(rdev, addr, s << 9, bvec[idx].bv_page, READ, false); if (success) break; failed: slot++; if (slot >= conf->copies) slot = 0; if (slot == first_slot) break; } if (!success) { /* couldn't read this block, must give up */ set_bit(MD_RECOVERY_INTR, &mddev->recovery); return -EIO; } sectors -= s; idx++; } return 0; } static void end_reshape_write(struct bio *bio, int error) { int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); struct r10bio *r10_bio = bio->bi_private; struct mddev *mddev = r10_bio->mddev; struct r10conf *conf = mddev->private; int d; int slot; int repl; struct md_rdev *rdev = NULL; d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); if (repl) rdev = conf->mirrors[d].replacement; if (!rdev) { smp_mb(); rdev = conf->mirrors[d].rdev; } if (!uptodate) { /* FIXME should record badblock */ md_error(mddev, rdev); } rdev_dec_pending(rdev, mddev); end_reshape_request(r10_bio); } static void end_reshape_request(struct r10bio *r10_bio) { if (!atomic_dec_and_test(&r10_bio->remaining)) return; md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); bio_put(r10_bio->master_bio); put_buf(r10_bio); } static void raid10_finish_reshape(struct mddev *mddev) { struct r10conf *conf = mddev->private; if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) return; if (mddev->delta_disks > 0) { sector_t size = raid10_size(mddev, 0, 0); md_set_array_sectors(mddev, size); if (mddev->recovery_cp > mddev->resync_max_sectors) { mddev->recovery_cp = mddev->resync_max_sectors; set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); } mddev->resync_max_sectors = size; set_capacity(mddev->gendisk, mddev->array_sectors); revalidate_disk(mddev->gendisk); } else { int d; for (d = conf->geo.raid_disks ; d < conf->geo.raid_disks - mddev->delta_disks; d++) { struct md_rdev *rdev = conf->mirrors[d].rdev; if (rdev) clear_bit(In_sync, &rdev->flags); rdev = conf->mirrors[d].replacement; if (rdev) clear_bit(In_sync, &rdev->flags); } } mddev->layout = mddev->new_layout; mddev->chunk_sectors = 1 << conf->geo.chunk_shift; mddev->reshape_position = MaxSector; mddev->delta_disks = 0; mddev->reshape_backwards = 0; } static struct md_personality raid10_personality = { .name = "raid10", .level = 10, .owner = THIS_MODULE, .make_request = make_request, .run = run, .stop = stop, .status = status, .error_handler = error, .hot_add_disk = raid10_add_disk, .hot_remove_disk= raid10_remove_disk, .spare_active = raid10_spare_active, .sync_request = sync_request, .quiesce = raid10_quiesce, .size = raid10_size, .resize = raid10_resize, .takeover = raid10_takeover, .check_reshape = raid10_check_reshape, .start_reshape = raid10_start_reshape, .finish_reshape = raid10_finish_reshape, }; static int __init raid_init(void) { return register_md_personality(&raid10_personality); } static void raid_exit(void) { unregister_md_personality(&raid10_personality); } module_init(raid_init); module_exit(raid_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); MODULE_ALIAS("md-personality-9"); /* RAID10 */ MODULE_ALIAS("md-raid10"); MODULE_ALIAS("md-level-10"); module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);