/*
 * Copyright (C) 2001 Sistina Software (UK) Limited.
 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
 *
 * This file is released under the GPL.
 */

#include "dm.h"

#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/blkdev.h>
#include <linux/namei.h>
#include <linux/ctype.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <asm/atomic.h>

#define DM_MSG_PREFIX "table"

#define MAX_DEPTH 16
#define NODE_SIZE L1_CACHE_BYTES
#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)

struct dm_table {
	struct mapped_device *md;
	atomic_t holders;

	/* btree table */
	unsigned int depth;
	unsigned int counts[MAX_DEPTH];	/* in nodes */
	sector_t *index[MAX_DEPTH];

	unsigned int num_targets;
	unsigned int num_allocated;
	sector_t *highs;
	struct dm_target *targets;

	/*
	 * Indicates the rw permissions for the new logical
	 * device.  This should be a combination of FMODE_READ
	 * and FMODE_WRITE.
	 */
	int mode;

	/* a list of devices used by this table */
	struct list_head devices;

	/*
	 * These are optimistic limits taken from all the
	 * targets, some targets will need smaller limits.
	 */
	struct io_restrictions limits;

	/* events get handed up using this callback */
	void (*event_fn)(void *);
	void *event_context;
};

/*
 * Similar to ceiling(log_size(n))
 */
static unsigned int int_log(unsigned int n, unsigned int base)
{
	int result = 0;

	while (n > 1) {
		n = dm_div_up(n, base);
		result++;
	}

	return result;
}

/*
 * Returns the minimum that is _not_ zero, unless both are zero.
 */
#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))

/*
 * Combine two io_restrictions, always taking the lower value.
 */
static void combine_restrictions_low(struct io_restrictions *lhs,
				     struct io_restrictions *rhs)
{
	lhs->max_sectors =
		min_not_zero(lhs->max_sectors, rhs->max_sectors);

	lhs->max_phys_segments =
		min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);

	lhs->max_hw_segments =
		min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);

	lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);

	lhs->max_segment_size =
		min_not_zero(lhs->max_segment_size, rhs->max_segment_size);

	lhs->seg_boundary_mask =
		min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);

	lhs->no_cluster |= rhs->no_cluster;
}

/*
 * Calculate the index of the child node of the n'th node k'th key.
 */
static inline unsigned int get_child(unsigned int n, unsigned int k)
{
	return (n * CHILDREN_PER_NODE) + k;
}

/*
 * Return the n'th node of level l from table t.
 */
static inline sector_t *get_node(struct dm_table *t,
				 unsigned int l, unsigned int n)
{
	return t->index[l] + (n * KEYS_PER_NODE);
}

/*
 * Return the highest key that you could lookup from the n'th
 * node on level l of the btree.
 */
static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
{
	for (; l < t->depth - 1; l++)
		n = get_child(n, CHILDREN_PER_NODE - 1);

	if (n >= t->counts[l])
		return (sector_t) - 1;

	return get_node(t, l, n)[KEYS_PER_NODE - 1];
}

/*
 * Fills in a level of the btree based on the highs of the level
 * below it.
 */
static int setup_btree_index(unsigned int l, struct dm_table *t)
{
	unsigned int n, k;
	sector_t *node;

	for (n = 0U; n < t->counts[l]; n++) {
		node = get_node(t, l, n);

		for (k = 0U; k < KEYS_PER_NODE; k++)
			node[k] = high(t, l + 1, get_child(n, k));
	}

	return 0;
}

void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
{
	unsigned long size;
	void *addr;

	/*
	 * Check that we're not going to overflow.
	 */
	if (nmemb > (ULONG_MAX / elem_size))
		return NULL;

	size = nmemb * elem_size;
	addr = vmalloc(size);
	if (addr)
		memset(addr, 0, size);

	return addr;
}

/*
 * highs, and targets are managed as dynamic arrays during a
 * table load.
 */
static int alloc_targets(struct dm_table *t, unsigned int num)
{
	sector_t *n_highs;
	struct dm_target *n_targets;
	int n = t->num_targets;

	/*
	 * Allocate both the target array and offset array at once.
	 */
	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
					  sizeof(sector_t));
	if (!n_highs)
		return -ENOMEM;

	n_targets = (struct dm_target *) (n_highs + num);

	if (n) {
		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
	}

	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
	vfree(t->highs);

	t->num_allocated = num;
	t->highs = n_highs;
	t->targets = n_targets;

	return 0;
}

int dm_table_create(struct dm_table **result, int mode,
		    unsigned num_targets, struct mapped_device *md)
{
	struct dm_table *t = kmalloc(sizeof(*t), GFP_KERNEL);

	if (!t)
		return -ENOMEM;

	memset(t, 0, sizeof(*t));
	INIT_LIST_HEAD(&t->devices);
	atomic_set(&t->holders, 1);

	if (!num_targets)
		num_targets = KEYS_PER_NODE;

	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);

	if (alloc_targets(t, num_targets)) {
		kfree(t);
		t = NULL;
		return -ENOMEM;
	}

	t->mode = mode;
	t->md = md;
	*result = t;
	return 0;
}

int dm_create_error_table(struct dm_table **result, struct mapped_device *md)
{
	struct dm_table *t;
	sector_t dev_size = 1;
	int r;

	/*
	 * Find current size of device.
	 * Default to 1 sector if inactive.
	 */
	t = dm_get_table(md);
	if (t) {
		dev_size = dm_table_get_size(t);
		dm_table_put(t);
	}

	r = dm_table_create(&t, FMODE_READ, 1, md);
	if (r)
		return r;

	r = dm_table_add_target(t, "error", 0, dev_size, NULL);
	if (r)
		goto out;

	r = dm_table_complete(t);
	if (r)
		goto out;

	*result = t;

out:
	if (r)
		dm_table_put(t);

	return r;
}
EXPORT_SYMBOL_GPL(dm_create_error_table);

static void free_devices(struct list_head *devices)
{
	struct list_head *tmp, *next;

	for (tmp = devices->next; tmp != devices; tmp = next) {
		struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
		next = tmp->next;
		kfree(dd);
	}
}

static void table_destroy(struct dm_table *t)
{
	unsigned int i;

	/* free the indexes (see dm_table_complete) */
	if (t->depth >= 2)
		vfree(t->index[t->depth - 2]);

	/* free the targets */
	for (i = 0; i < t->num_targets; i++) {
		struct dm_target *tgt = t->targets + i;

		if (tgt->type->dtr)
			tgt->type->dtr(tgt);

		dm_put_target_type(tgt->type);
	}

	vfree(t->highs);

	/* free the device list */
	if (t->devices.next != &t->devices) {
		DMWARN("devices still present during destroy: "
		       "dm_table_remove_device calls missing");

		free_devices(&t->devices);
	}

	kfree(t);
}

void dm_table_get(struct dm_table *t)
{
	atomic_inc(&t->holders);
}

void dm_table_put(struct dm_table *t)
{
	if (!t)
		return;

	if (atomic_dec_and_test(&t->holders))
		table_destroy(t);
}

/*
 * Checks to see if we need to extend highs or targets.
 */
static inline int check_space(struct dm_table *t)
{
	if (t->num_targets >= t->num_allocated)
		return alloc_targets(t, t->num_allocated * 2);

	return 0;
}

/*
 * Convert a device path to a dev_t.
 */
static int lookup_device(const char *path, dev_t *dev)
{
	int r;
	struct nameidata nd;
	struct inode *inode;

	if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
		return r;

	inode = nd.dentry->d_inode;
	if (!inode) {
		r = -ENOENT;
		goto out;
	}

	if (!S_ISBLK(inode->i_mode)) {
		r = -ENOTBLK;
		goto out;
	}

	*dev = inode->i_rdev;

 out:
	path_release(&nd);
	return r;
}

/*
 * See if we've already got a device in the list.
 */
static struct dm_dev *find_device(struct list_head *l, dev_t dev)
{
	struct dm_dev *dd;

	list_for_each_entry (dd, l, list)
		if (dd->bdev->bd_dev == dev)
			return dd;

	return NULL;
}

/*
 * Open a device so we can use it as a map destination.
 */
static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md)
{
	static char *_claim_ptr = "I belong to device-mapper";
	struct block_device *bdev;

	int r;

	BUG_ON(d->bdev);

	bdev = open_by_devnum(dev, d->mode);
	if (IS_ERR(bdev))
		return PTR_ERR(bdev);
	r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
	if (r)
		blkdev_put(bdev);
	else
		d->bdev = bdev;
	return r;
}

/*
 * Close a device that we've been using.
 */
static void close_dev(struct dm_dev *d, struct mapped_device *md)
{
	if (!d->bdev)
		return;

	bd_release_from_disk(d->bdev, dm_disk(md));
	blkdev_put(d->bdev);
	d->bdev = NULL;
}

/*
 * If possible (ie. blk_size[major] is set), this checks an area
 * of a destination device is valid.
 */
static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
{
	sector_t dev_size;
	dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
	return ((start < dev_size) && (len <= (dev_size - start)));
}

/*
 * This upgrades the mode on an already open dm_dev.  Being
 * careful to leave things as they were if we fail to reopen the
 * device.
 */
static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md)
{
	int r;
	struct dm_dev dd_copy;
	dev_t dev = dd->bdev->bd_dev;

	dd_copy = *dd;

	dd->mode |= new_mode;
	dd->bdev = NULL;
	r = open_dev(dd, dev, md);
	if (!r)
		close_dev(&dd_copy, md);
	else
		*dd = dd_copy;

	return r;
}

/*
 * Add a device to the list, or just increment the usage count if
 * it's already present.
 */
static int __table_get_device(struct dm_table *t, struct dm_target *ti,
			      const char *path, sector_t start, sector_t len,
			      int mode, struct dm_dev **result)
{
	int r;
	dev_t dev;
	struct dm_dev *dd;
	unsigned int major, minor;

	BUG_ON(!t);

	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
		/* Extract the major/minor numbers */
		dev = MKDEV(major, minor);
		if (MAJOR(dev) != major || MINOR(dev) != minor)
			return -EOVERFLOW;
	} else {
		/* convert the path to a device */
		if ((r = lookup_device(path, &dev)))
			return r;
	}

	dd = find_device(&t->devices, dev);
	if (!dd) {
		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
		if (!dd)
			return -ENOMEM;

		dd->mode = mode;
		dd->bdev = NULL;

		if ((r = open_dev(dd, dev, t->md))) {
			kfree(dd);
			return r;
		}

		format_dev_t(dd->name, dev);

		atomic_set(&dd->count, 0);
		list_add(&dd->list, &t->devices);

	} else if (dd->mode != (mode | dd->mode)) {
		r = upgrade_mode(dd, mode, t->md);
		if (r)
			return r;
	}
	atomic_inc(&dd->count);

	if (!check_device_area(dd, start, len)) {
		DMWARN("device %s too small for target", path);
		dm_put_device(ti, dd);
		return -EINVAL;
	}

	*result = dd;

	return 0;
}

void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
{
	request_queue_t *q = bdev_get_queue(bdev);
	struct io_restrictions *rs = &ti->limits;

	/*
	 * Combine the device limits low.
	 *
	 * FIXME: if we move an io_restriction struct
	 *        into q this would just be a call to
	 *        combine_restrictions_low()
	 */
	rs->max_sectors =
		min_not_zero(rs->max_sectors, q->max_sectors);

	/* FIXME: Device-Mapper on top of RAID-0 breaks because DM
	 *        currently doesn't honor MD's merge_bvec_fn routine.
	 *        In this case, we'll force DM to use PAGE_SIZE or
	 *        smaller I/O, just to be safe. A better fix is in the
	 *        works, but add this for the time being so it will at
	 *        least operate correctly.
	 */
	if (q->merge_bvec_fn)
		rs->max_sectors =
			min_not_zero(rs->max_sectors,
				     (unsigned int) (PAGE_SIZE >> 9));

	rs->max_phys_segments =
		min_not_zero(rs->max_phys_segments,
			     q->max_phys_segments);

	rs->max_hw_segments =
		min_not_zero(rs->max_hw_segments, q->max_hw_segments);

	rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);

	rs->max_segment_size =
		min_not_zero(rs->max_segment_size, q->max_segment_size);

	rs->seg_boundary_mask =
		min_not_zero(rs->seg_boundary_mask,
			     q->seg_boundary_mask);

	rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
}
EXPORT_SYMBOL_GPL(dm_set_device_limits);

int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
		  sector_t len, int mode, struct dm_dev **result)
{
	int r = __table_get_device(ti->table, ti, path,
				   start, len, mode, result);

	if (!r)
		dm_set_device_limits(ti, (*result)->bdev);

	return r;
}

/*
 * Decrement a devices use count and remove it if necessary.
 */
void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
{
	if (atomic_dec_and_test(&dd->count)) {
		close_dev(dd, ti->table->md);
		list_del(&dd->list);
		kfree(dd);
	}
}

/*
 * Checks to see if the target joins onto the end of the table.
 */
static int adjoin(struct dm_table *table, struct dm_target *ti)
{
	struct dm_target *prev;

	if (!table->num_targets)
		return !ti->begin;

	prev = &table->targets[table->num_targets - 1];
	return (ti->begin == (prev->begin + prev->len));
}

/*
 * Used to dynamically allocate the arg array.
 */
static char **realloc_argv(unsigned *array_size, char **old_argv)
{
	char **argv;
	unsigned new_size;

	new_size = *array_size ? *array_size * 2 : 64;
	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
	if (argv) {
		memcpy(argv, old_argv, *array_size * sizeof(*argv));
		*array_size = new_size;
	}

	kfree(old_argv);
	return argv;
}

/*
 * Destructively splits up the argument list to pass to ctr.
 */
int dm_split_args(int *argc, char ***argvp, char *input)
{
	char *start, *end = input, *out, **argv = NULL;
	unsigned array_size = 0;

	*argc = 0;

	if (!input) {
		*argvp = NULL;
		return 0;
	}

	argv = realloc_argv(&array_size, argv);
	if (!argv)
		return -ENOMEM;

	while (1) {
		start = end;

		/* Skip whitespace */
		while (*start && isspace(*start))
			start++;

		if (!*start)
			break;	/* success, we hit the end */

		/* 'out' is used to remove any back-quotes */
		end = out = start;
		while (*end) {
			/* Everything apart from '\0' can be quoted */
			if (*end == '\\' && *(end + 1)) {
				*out++ = *(end + 1);
				end += 2;
				continue;
			}

			if (isspace(*end))
				break;	/* end of token */

			*out++ = *end++;
		}

		/* have we already filled the array ? */
		if ((*argc + 1) > array_size) {
			argv = realloc_argv(&array_size, argv);
			if (!argv)
				return -ENOMEM;
		}

		/* we know this is whitespace */
		if (*end)
			end++;

		/* terminate the string and put it in the array */
		*out = '\0';
		argv[*argc] = start;
		(*argc)++;
	}

	*argvp = argv;
	return 0;
}

static void check_for_valid_limits(struct io_restrictions *rs)
{
	if (!rs->max_sectors)
		rs->max_sectors = SAFE_MAX_SECTORS;
	if (!rs->max_phys_segments)
		rs->max_phys_segments = MAX_PHYS_SEGMENTS;
	if (!rs->max_hw_segments)
		rs->max_hw_segments = MAX_HW_SEGMENTS;
	if (!rs->hardsect_size)
		rs->hardsect_size = 1 << SECTOR_SHIFT;
	if (!rs->max_segment_size)
		rs->max_segment_size = MAX_SEGMENT_SIZE;
	if (!rs->seg_boundary_mask)
		rs->seg_boundary_mask = -1;
}

int dm_table_add_target(struct dm_table *t, const char *type,
			sector_t start, sector_t len, char *params)
{
	int r = -EINVAL, argc;
	char **argv;
	struct dm_target *tgt;

	if ((r = check_space(t)))
		return r;

	tgt = t->targets + t->num_targets;
	memset(tgt, 0, sizeof(*tgt));

	if (!len) {
		DMERR("%s: zero-length target", dm_device_name(t->md));
		return -EINVAL;
	}

	tgt->type = dm_get_target_type(type);
	if (!tgt->type) {
		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
		      type);
		return -EINVAL;
	}

	tgt->table = t;
	tgt->begin = start;
	tgt->len = len;
	tgt->error = "Unknown error";

	/*
	 * Does this target adjoin the previous one ?
	 */
	if (!adjoin(t, tgt)) {
		tgt->error = "Gap in table";
		r = -EINVAL;
		goto bad;
	}

	r = dm_split_args(&argc, &argv, params);
	if (r) {
		tgt->error = "couldn't split parameters (insufficient memory)";
		goto bad;
	}

	r = tgt->type->ctr(tgt, argc, argv);
	kfree(argv);
	if (r)
		goto bad;

	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;

	/* FIXME: the plan is to combine high here and then have
	 * the merge fn apply the target level restrictions. */
	combine_restrictions_low(&t->limits, &tgt->limits);
	return 0;

 bad:
	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
	dm_put_target_type(tgt->type);
	return r;
}

static int setup_indexes(struct dm_table *t)
{
	int i;
	unsigned int total = 0;
	sector_t *indexes;

	/* allocate the space for *all* the indexes */
	for (i = t->depth - 2; i >= 0; i--) {
		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
		total += t->counts[i];
	}

	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
	if (!indexes)
		return -ENOMEM;

	/* set up internal nodes, bottom-up */
	for (i = t->depth - 2, total = 0; i >= 0; i--) {
		t->index[i] = indexes;
		indexes += (KEYS_PER_NODE * t->counts[i]);
		setup_btree_index(i, t);
	}

	return 0;
}

/*
 * Builds the btree to index the map.
 */
int dm_table_complete(struct dm_table *t)
{
	int r = 0;
	unsigned int leaf_nodes;

	check_for_valid_limits(&t->limits);

	/* how many indexes will the btree have ? */
	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);

	/* leaf layer has already been set up */
	t->counts[t->depth - 1] = leaf_nodes;
	t->index[t->depth - 1] = t->highs;

	if (t->depth >= 2)
		r = setup_indexes(t);

	return r;
}

static DEFINE_MUTEX(_event_lock);
void dm_table_event_callback(struct dm_table *t,
			     void (*fn)(void *), void *context)
{
	mutex_lock(&_event_lock);
	t->event_fn = fn;
	t->event_context = context;
	mutex_unlock(&_event_lock);
}

void dm_table_event(struct dm_table *t)
{
	/*
	 * You can no longer call dm_table_event() from interrupt
	 * context, use a bottom half instead.
	 */
	BUG_ON(in_interrupt());

	mutex_lock(&_event_lock);
	if (t->event_fn)
		t->event_fn(t->event_context);
	mutex_unlock(&_event_lock);
}

sector_t dm_table_get_size(struct dm_table *t)
{
	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
}

struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
{
	if (index >= t->num_targets)
		return NULL;

	return t->targets + index;
}

/*
 * Search the btree for the correct target.
 */
struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
{
	unsigned int l, n = 0, k = 0;
	sector_t *node;

	for (l = 0; l < t->depth; l++) {
		n = get_child(n, k);
		node = get_node(t, l, n);

		for (k = 0; k < KEYS_PER_NODE; k++)
			if (node[k] >= sector)
				break;
	}

	return &t->targets[(KEYS_PER_NODE * n) + k];
}

void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
{
	/*
	 * Make sure we obey the optimistic sub devices
	 * restrictions.
	 */
	blk_queue_max_sectors(q, t->limits.max_sectors);
	q->max_phys_segments = t->limits.max_phys_segments;
	q->max_hw_segments = t->limits.max_hw_segments;
	q->hardsect_size = t->limits.hardsect_size;
	q->max_segment_size = t->limits.max_segment_size;
	q->seg_boundary_mask = t->limits.seg_boundary_mask;
	if (t->limits.no_cluster)
		q->queue_flags &= ~(1 << QUEUE_FLAG_CLUSTER);
	else
		q->queue_flags |= (1 << QUEUE_FLAG_CLUSTER);

}

unsigned int dm_table_get_num_targets(struct dm_table *t)
{
	return t->num_targets;
}

struct list_head *dm_table_get_devices(struct dm_table *t)
{
	return &t->devices;
}

int dm_table_get_mode(struct dm_table *t)
{
	return t->mode;
}

static void suspend_targets(struct dm_table *t, unsigned postsuspend)
{
	int i = t->num_targets;
	struct dm_target *ti = t->targets;

	while (i--) {
		if (postsuspend) {
			if (ti->type->postsuspend)
				ti->type->postsuspend(ti);
		} else if (ti->type->presuspend)
			ti->type->presuspend(ti);

		ti++;
	}
}

void dm_table_presuspend_targets(struct dm_table *t)
{
	if (!t)
		return;

	return suspend_targets(t, 0);
}

void dm_table_postsuspend_targets(struct dm_table *t)
{
	if (!t)
		return;

	return suspend_targets(t, 1);
}

int dm_table_resume_targets(struct dm_table *t)
{
	int i, r = 0;

	for (i = 0; i < t->num_targets; i++) {
		struct dm_target *ti = t->targets + i;

		if (!ti->type->preresume)
			continue;

		r = ti->type->preresume(ti);
		if (r)
			return r;
	}

	for (i = 0; i < t->num_targets; i++) {
		struct dm_target *ti = t->targets + i;

		if (ti->type->resume)
			ti->type->resume(ti);
	}

	return 0;
}

int dm_table_any_congested(struct dm_table *t, int bdi_bits)
{
	struct list_head *d, *devices;
	int r = 0;

	devices = dm_table_get_devices(t);
	for (d = devices->next; d != devices; d = d->next) {
		struct dm_dev *dd = list_entry(d, struct dm_dev, list);
		request_queue_t *q = bdev_get_queue(dd->bdev);
		r |= bdi_congested(&q->backing_dev_info, bdi_bits);
	}

	return r;
}

void dm_table_unplug_all(struct dm_table *t)
{
	struct list_head *d, *devices = dm_table_get_devices(t);

	for (d = devices->next; d != devices; d = d->next) {
		struct dm_dev *dd = list_entry(d, struct dm_dev, list);
		request_queue_t *q = bdev_get_queue(dd->bdev);

		if (q->unplug_fn)
			q->unplug_fn(q);
	}
}

int dm_table_flush_all(struct dm_table *t)
{
	struct list_head *d, *devices = dm_table_get_devices(t);
	int ret = 0;
	unsigned i;

	for (i = 0; i < t->num_targets; i++)
		if (t->targets[i].type->flush)
			t->targets[i].type->flush(&t->targets[i]);

	for (d = devices->next; d != devices; d = d->next) {
		struct dm_dev *dd = list_entry(d, struct dm_dev, list);
		request_queue_t *q = bdev_get_queue(dd->bdev);
		int err;

		if (!q->issue_flush_fn)
			err = -EOPNOTSUPP;
		else
			err = q->issue_flush_fn(q, dd->bdev->bd_disk, NULL);

		if (!ret)
			ret = err;
	}

	return ret;
}

struct mapped_device *dm_table_get_md(struct dm_table *t)
{
	dm_get(t->md);

	return t->md;
}

EXPORT_SYMBOL(dm_vcalloc);
EXPORT_SYMBOL(dm_get_device);
EXPORT_SYMBOL(dm_put_device);
EXPORT_SYMBOL(dm_table_event);
EXPORT_SYMBOL(dm_table_get_size);
EXPORT_SYMBOL(dm_table_get_mode);
EXPORT_SYMBOL(dm_table_get_md);
EXPORT_SYMBOL(dm_table_put);
EXPORT_SYMBOL(dm_table_get);
EXPORT_SYMBOL(dm_table_unplug_all);
EXPORT_SYMBOL(dm_table_flush_all);