/* * Copyright (C) 2001 Sistina Software (UK) Limited. * Copyright (C) 2004 Red Hat, Inc. All rights reserved. * * This file is released under the GPL. */ #include "dm.h" #include <linux/module.h> #include <linux/vmalloc.h> #include <linux/blkdev.h> #include <linux/namei.h> #include <linux/ctype.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/mutex.h> #include <asm/atomic.h> #define DM_MSG_PREFIX "table" #define MAX_DEPTH 16 #define NODE_SIZE L1_CACHE_BYTES #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) struct dm_table { struct mapped_device *md; atomic_t holders; /* btree table */ unsigned int depth; unsigned int counts[MAX_DEPTH]; /* in nodes */ sector_t *index[MAX_DEPTH]; unsigned int num_targets; unsigned int num_allocated; sector_t *highs; struct dm_target *targets; /* * Indicates the rw permissions for the new logical * device. This should be a combination of FMODE_READ * and FMODE_WRITE. */ int mode; /* a list of devices used by this table */ struct list_head devices; /* * These are optimistic limits taken from all the * targets, some targets will need smaller limits. */ struct io_restrictions limits; /* events get handed up using this callback */ void (*event_fn)(void *); void *event_context; }; /* * Similar to ceiling(log_size(n)) */ static unsigned int int_log(unsigned int n, unsigned int base) { int result = 0; while (n > 1) { n = dm_div_up(n, base); result++; } return result; } /* * Returns the minimum that is _not_ zero, unless both are zero. */ #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) /* * Combine two io_restrictions, always taking the lower value. */ static void combine_restrictions_low(struct io_restrictions *lhs, struct io_restrictions *rhs) { lhs->max_sectors = min_not_zero(lhs->max_sectors, rhs->max_sectors); lhs->max_phys_segments = min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); lhs->max_hw_segments = min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); lhs->max_segment_size = min_not_zero(lhs->max_segment_size, rhs->max_segment_size); lhs->max_hw_sectors = min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors); lhs->seg_boundary_mask = min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn); lhs->no_cluster |= rhs->no_cluster; } /* * Calculate the index of the child node of the n'th node k'th key. */ static inline unsigned int get_child(unsigned int n, unsigned int k) { return (n * CHILDREN_PER_NODE) + k; } /* * Return the n'th node of level l from table t. */ static inline sector_t *get_node(struct dm_table *t, unsigned int l, unsigned int n) { return t->index[l] + (n * KEYS_PER_NODE); } /* * Return the highest key that you could lookup from the n'th * node on level l of the btree. */ static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) { for (; l < t->depth - 1; l++) n = get_child(n, CHILDREN_PER_NODE - 1); if (n >= t->counts[l]) return (sector_t) - 1; return get_node(t, l, n)[KEYS_PER_NODE - 1]; } /* * Fills in a level of the btree based on the highs of the level * below it. */ static int setup_btree_index(unsigned int l, struct dm_table *t) { unsigned int n, k; sector_t *node; for (n = 0U; n < t->counts[l]; n++) { node = get_node(t, l, n); for (k = 0U; k < KEYS_PER_NODE; k++) node[k] = high(t, l + 1, get_child(n, k)); } return 0; } void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) { unsigned long size; void *addr; /* * Check that we're not going to overflow. */ if (nmemb > (ULONG_MAX / elem_size)) return NULL; size = nmemb * elem_size; addr = vmalloc(size); if (addr) memset(addr, 0, size); return addr; } /* * highs, and targets are managed as dynamic arrays during a * table load. */ static int alloc_targets(struct dm_table *t, unsigned int num) { sector_t *n_highs; struct dm_target *n_targets; int n = t->num_targets; /* * Allocate both the target array and offset array at once. * Append an empty entry to catch sectors beyond the end of * the device. */ n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + sizeof(sector_t)); if (!n_highs) return -ENOMEM; n_targets = (struct dm_target *) (n_highs + num); if (n) { memcpy(n_highs, t->highs, sizeof(*n_highs) * n); memcpy(n_targets, t->targets, sizeof(*n_targets) * n); } memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); vfree(t->highs); t->num_allocated = num; t->highs = n_highs; t->targets = n_targets; return 0; } int dm_table_create(struct dm_table **result, int mode, unsigned num_targets, struct mapped_device *md) { struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); if (!t) return -ENOMEM; INIT_LIST_HEAD(&t->devices); atomic_set(&t->holders, 1); if (!num_targets) num_targets = KEYS_PER_NODE; num_targets = dm_round_up(num_targets, KEYS_PER_NODE); if (alloc_targets(t, num_targets)) { kfree(t); t = NULL; return -ENOMEM; } t->mode = mode; t->md = md; *result = t; return 0; } int dm_create_error_table(struct dm_table **result, struct mapped_device *md) { struct dm_table *t; sector_t dev_size = 1; int r; /* * Find current size of device. * Default to 1 sector if inactive. */ t = dm_get_table(md); if (t) { dev_size = dm_table_get_size(t); dm_table_put(t); } r = dm_table_create(&t, FMODE_READ, 1, md); if (r) return r; r = dm_table_add_target(t, "error", 0, dev_size, NULL); if (r) goto out; r = dm_table_complete(t); if (r) goto out; *result = t; out: if (r) dm_table_put(t); return r; } EXPORT_SYMBOL_GPL(dm_create_error_table); static void free_devices(struct list_head *devices) { struct list_head *tmp, *next; for (tmp = devices->next; tmp != devices; tmp = next) { struct dm_dev *dd = list_entry(tmp, struct dm_dev, list); next = tmp->next; kfree(dd); } } static void table_destroy(struct dm_table *t) { unsigned int i; /* free the indexes (see dm_table_complete) */ if (t->depth >= 2) vfree(t->index[t->depth - 2]); /* free the targets */ for (i = 0; i < t->num_targets; i++) { struct dm_target *tgt = t->targets + i; if (tgt->type->dtr) tgt->type->dtr(tgt); dm_put_target_type(tgt->type); } vfree(t->highs); /* free the device list */ if (t->devices.next != &t->devices) { DMWARN("devices still present during destroy: " "dm_table_remove_device calls missing"); free_devices(&t->devices); } kfree(t); } void dm_table_get(struct dm_table *t) { atomic_inc(&t->holders); } void dm_table_put(struct dm_table *t) { if (!t) return; if (atomic_dec_and_test(&t->holders)) table_destroy(t); } /* * Checks to see if we need to extend highs or targets. */ static inline int check_space(struct dm_table *t) { if (t->num_targets >= t->num_allocated) return alloc_targets(t, t->num_allocated * 2); return 0; } /* * Convert a device path to a dev_t. */ static int lookup_device(const char *path, dev_t *dev) { int r; struct nameidata nd; struct inode *inode; if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd))) return r; inode = nd.dentry->d_inode; if (!inode) { r = -ENOENT; goto out; } if (!S_ISBLK(inode->i_mode)) { r = -ENOTBLK; goto out; } *dev = inode->i_rdev; out: path_release(&nd); return r; } /* * See if we've already got a device in the list. */ static struct dm_dev *find_device(struct list_head *l, dev_t dev) { struct dm_dev *dd; list_for_each_entry (dd, l, list) if (dd->bdev->bd_dev == dev) return dd; return NULL; } /* * Open a device so we can use it as a map destination. */ static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md) { static char *_claim_ptr = "I belong to device-mapper"; struct block_device *bdev; int r; BUG_ON(d->bdev); bdev = open_by_devnum(dev, d->mode); if (IS_ERR(bdev)) return PTR_ERR(bdev); r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); if (r) blkdev_put(bdev); else d->bdev = bdev; return r; } /* * Close a device that we've been using. */ static void close_dev(struct dm_dev *d, struct mapped_device *md) { if (!d->bdev) return; bd_release_from_disk(d->bdev, dm_disk(md)); blkdev_put(d->bdev); d->bdev = NULL; } /* * If possible, this checks an area of a destination device is valid. */ static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len) { sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT; if (!dev_size) return 1; return ((start < dev_size) && (len <= (dev_size - start))); } /* * This upgrades the mode on an already open dm_dev. Being * careful to leave things as they were if we fail to reopen the * device. */ static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md) { int r; struct dm_dev dd_copy; dev_t dev = dd->bdev->bd_dev; dd_copy = *dd; dd->mode |= new_mode; dd->bdev = NULL; r = open_dev(dd, dev, md); if (!r) close_dev(&dd_copy, md); else *dd = dd_copy; return r; } /* * Add a device to the list, or just increment the usage count if * it's already present. */ static int __table_get_device(struct dm_table *t, struct dm_target *ti, const char *path, sector_t start, sector_t len, int mode, struct dm_dev **result) { int r; dev_t dev; struct dm_dev *dd; unsigned int major, minor; BUG_ON(!t); if (sscanf(path, "%u:%u", &major, &minor) == 2) { /* Extract the major/minor numbers */ dev = MKDEV(major, minor); if (MAJOR(dev) != major || MINOR(dev) != minor) return -EOVERFLOW; } else { /* convert the path to a device */ if ((r = lookup_device(path, &dev))) return r; } dd = find_device(&t->devices, dev); if (!dd) { dd = kmalloc(sizeof(*dd), GFP_KERNEL); if (!dd) return -ENOMEM; dd->mode = mode; dd->bdev = NULL; if ((r = open_dev(dd, dev, t->md))) { kfree(dd); return r; } format_dev_t(dd->name, dev); atomic_set(&dd->count, 0); list_add(&dd->list, &t->devices); } else if (dd->mode != (mode | dd->mode)) { r = upgrade_mode(dd, mode, t->md); if (r) return r; } atomic_inc(&dd->count); if (!check_device_area(dd, start, len)) { DMWARN("device %s too small for target", path); dm_put_device(ti, dd); return -EINVAL; } *result = dd; return 0; } void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); struct io_restrictions *rs = &ti->limits; /* * Combine the device limits low. * * FIXME: if we move an io_restriction struct * into q this would just be a call to * combine_restrictions_low() */ rs->max_sectors = min_not_zero(rs->max_sectors, q->max_sectors); /* FIXME: Device-Mapper on top of RAID-0 breaks because DM * currently doesn't honor MD's merge_bvec_fn routine. * In this case, we'll force DM to use PAGE_SIZE or * smaller I/O, just to be safe. A better fix is in the * works, but add this for the time being so it will at * least operate correctly. */ if (q->merge_bvec_fn) rs->max_sectors = min_not_zero(rs->max_sectors, (unsigned int) (PAGE_SIZE >> 9)); rs->max_phys_segments = min_not_zero(rs->max_phys_segments, q->max_phys_segments); rs->max_hw_segments = min_not_zero(rs->max_hw_segments, q->max_hw_segments); rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); rs->max_segment_size = min_not_zero(rs->max_segment_size, q->max_segment_size); rs->max_hw_sectors = min_not_zero(rs->max_hw_sectors, q->max_hw_sectors); rs->seg_boundary_mask = min_not_zero(rs->seg_boundary_mask, q->seg_boundary_mask); rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn); rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); } EXPORT_SYMBOL_GPL(dm_set_device_limits); int dm_get_device(struct dm_target *ti, const char *path, sector_t start, sector_t len, int mode, struct dm_dev **result) { int r = __table_get_device(ti->table, ti, path, start, len, mode, result); if (!r) dm_set_device_limits(ti, (*result)->bdev); return r; } /* * Decrement a devices use count and remove it if necessary. */ void dm_put_device(struct dm_target *ti, struct dm_dev *dd) { if (atomic_dec_and_test(&dd->count)) { close_dev(dd, ti->table->md); list_del(&dd->list); kfree(dd); } } /* * Checks to see if the target joins onto the end of the table. */ static int adjoin(struct dm_table *table, struct dm_target *ti) { struct dm_target *prev; if (!table->num_targets) return !ti->begin; prev = &table->targets[table->num_targets - 1]; return (ti->begin == (prev->begin + prev->len)); } /* * Used to dynamically allocate the arg array. */ static char **realloc_argv(unsigned *array_size, char **old_argv) { char **argv; unsigned new_size; new_size = *array_size ? *array_size * 2 : 64; argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); if (argv) { memcpy(argv, old_argv, *array_size * sizeof(*argv)); *array_size = new_size; } kfree(old_argv); return argv; } /* * Destructively splits up the argument list to pass to ctr. */ int dm_split_args(int *argc, char ***argvp, char *input) { char *start, *end = input, *out, **argv = NULL; unsigned array_size = 0; *argc = 0; if (!input) { *argvp = NULL; return 0; } argv = realloc_argv(&array_size, argv); if (!argv) return -ENOMEM; while (1) { start = end; /* Skip whitespace */ while (*start && isspace(*start)) start++; if (!*start) break; /* success, we hit the end */ /* 'out' is used to remove any back-quotes */ end = out = start; while (*end) { /* Everything apart from '\0' can be quoted */ if (*end == '\\' && *(end + 1)) { *out++ = *(end + 1); end += 2; continue; } if (isspace(*end)) break; /* end of token */ *out++ = *end++; } /* have we already filled the array ? */ if ((*argc + 1) > array_size) { argv = realloc_argv(&array_size, argv); if (!argv) return -ENOMEM; } /* we know this is whitespace */ if (*end) end++; /* terminate the string and put it in the array */ *out = '\0'; argv[*argc] = start; (*argc)++; } *argvp = argv; return 0; } static void check_for_valid_limits(struct io_restrictions *rs) { if (!rs->max_sectors) rs->max_sectors = SAFE_MAX_SECTORS; if (!rs->max_hw_sectors) rs->max_hw_sectors = SAFE_MAX_SECTORS; if (!rs->max_phys_segments) rs->max_phys_segments = MAX_PHYS_SEGMENTS; if (!rs->max_hw_segments) rs->max_hw_segments = MAX_HW_SEGMENTS; if (!rs->hardsect_size) rs->hardsect_size = 1 << SECTOR_SHIFT; if (!rs->max_segment_size) rs->max_segment_size = MAX_SEGMENT_SIZE; if (!rs->seg_boundary_mask) rs->seg_boundary_mask = -1; if (!rs->bounce_pfn) rs->bounce_pfn = -1; } int dm_table_add_target(struct dm_table *t, const char *type, sector_t start, sector_t len, char *params) { int r = -EINVAL, argc; char **argv; struct dm_target *tgt; if ((r = check_space(t))) return r; tgt = t->targets + t->num_targets; memset(tgt, 0, sizeof(*tgt)); if (!len) { DMERR("%s: zero-length target", dm_device_name(t->md)); return -EINVAL; } tgt->type = dm_get_target_type(type); if (!tgt->type) { DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); return -EINVAL; } tgt->table = t; tgt->begin = start; tgt->len = len; tgt->error = "Unknown error"; /* * Does this target adjoin the previous one ? */ if (!adjoin(t, tgt)) { tgt->error = "Gap in table"; r = -EINVAL; goto bad; } r = dm_split_args(&argc, &argv, params); if (r) { tgt->error = "couldn't split parameters (insufficient memory)"; goto bad; } r = tgt->type->ctr(tgt, argc, argv); kfree(argv); if (r) goto bad; t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; /* FIXME: the plan is to combine high here and then have * the merge fn apply the target level restrictions. */ combine_restrictions_low(&t->limits, &tgt->limits); return 0; bad: DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); dm_put_target_type(tgt->type); return r; } static int setup_indexes(struct dm_table *t) { int i; unsigned int total = 0; sector_t *indexes; /* allocate the space for *all* the indexes */ for (i = t->depth - 2; i >= 0; i--) { t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); total += t->counts[i]; } indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); if (!indexes) return -ENOMEM; /* set up internal nodes, bottom-up */ for (i = t->depth - 2, total = 0; i >= 0; i--) { t->index[i] = indexes; indexes += (KEYS_PER_NODE * t->counts[i]); setup_btree_index(i, t); } return 0; } /* * Builds the btree to index the map. */ int dm_table_complete(struct dm_table *t) { int r = 0; unsigned int leaf_nodes; check_for_valid_limits(&t->limits); /* how many indexes will the btree have ? */ leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); /* leaf layer has already been set up */ t->counts[t->depth - 1] = leaf_nodes; t->index[t->depth - 1] = t->highs; if (t->depth >= 2) r = setup_indexes(t); return r; } static DEFINE_MUTEX(_event_lock); void dm_table_event_callback(struct dm_table *t, void (*fn)(void *), void *context) { mutex_lock(&_event_lock); t->event_fn = fn; t->event_context = context; mutex_unlock(&_event_lock); } void dm_table_event(struct dm_table *t) { /* * You can no longer call dm_table_event() from interrupt * context, use a bottom half instead. */ BUG_ON(in_interrupt()); mutex_lock(&_event_lock); if (t->event_fn) t->event_fn(t->event_context); mutex_unlock(&_event_lock); } sector_t dm_table_get_size(struct dm_table *t) { return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; } struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) { if (index >= t->num_targets) return NULL; return t->targets + index; } /* * Search the btree for the correct target. * * Caller should check returned pointer with dm_target_is_valid() * to trap I/O beyond end of device. */ struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) { unsigned int l, n = 0, k = 0; sector_t *node; for (l = 0; l < t->depth; l++) { n = get_child(n, k); node = get_node(t, l, n); for (k = 0; k < KEYS_PER_NODE; k++) if (node[k] >= sector) break; } return &t->targets[(KEYS_PER_NODE * n) + k]; } void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) { /* * Make sure we obey the optimistic sub devices * restrictions. */ blk_queue_max_sectors(q, t->limits.max_sectors); q->max_phys_segments = t->limits.max_phys_segments; q->max_hw_segments = t->limits.max_hw_segments; q->hardsect_size = t->limits.hardsect_size; q->max_segment_size = t->limits.max_segment_size; q->max_hw_sectors = t->limits.max_hw_sectors; q->seg_boundary_mask = t->limits.seg_boundary_mask; q->bounce_pfn = t->limits.bounce_pfn; if (t->limits.no_cluster) q->queue_flags &= ~(1 << QUEUE_FLAG_CLUSTER); else q->queue_flags |= (1 << QUEUE_FLAG_CLUSTER); } unsigned int dm_table_get_num_targets(struct dm_table *t) { return t->num_targets; } struct list_head *dm_table_get_devices(struct dm_table *t) { return &t->devices; } int dm_table_get_mode(struct dm_table *t) { return t->mode; } static void suspend_targets(struct dm_table *t, unsigned postsuspend) { int i = t->num_targets; struct dm_target *ti = t->targets; while (i--) { if (postsuspend) { if (ti->type->postsuspend) ti->type->postsuspend(ti); } else if (ti->type->presuspend) ti->type->presuspend(ti); ti++; } } void dm_table_presuspend_targets(struct dm_table *t) { if (!t) return; return suspend_targets(t, 0); } void dm_table_postsuspend_targets(struct dm_table *t) { if (!t) return; return suspend_targets(t, 1); } int dm_table_resume_targets(struct dm_table *t) { int i, r = 0; for (i = 0; i < t->num_targets; i++) { struct dm_target *ti = t->targets + i; if (!ti->type->preresume) continue; r = ti->type->preresume(ti); if (r) return r; } for (i = 0; i < t->num_targets; i++) { struct dm_target *ti = t->targets + i; if (ti->type->resume) ti->type->resume(ti); } return 0; } int dm_table_any_congested(struct dm_table *t, int bdi_bits) { struct list_head *d, *devices; int r = 0; devices = dm_table_get_devices(t); for (d = devices->next; d != devices; d = d->next) { struct dm_dev *dd = list_entry(d, struct dm_dev, list); struct request_queue *q = bdev_get_queue(dd->bdev); r |= bdi_congested(&q->backing_dev_info, bdi_bits); } return r; } void dm_table_unplug_all(struct dm_table *t) { struct list_head *d, *devices = dm_table_get_devices(t); for (d = devices->next; d != devices; d = d->next) { struct dm_dev *dd = list_entry(d, struct dm_dev, list); struct request_queue *q = bdev_get_queue(dd->bdev); blk_unplug(q); } } struct mapped_device *dm_table_get_md(struct dm_table *t) { dm_get(t->md); return t->md; } EXPORT_SYMBOL(dm_vcalloc); EXPORT_SYMBOL(dm_get_device); EXPORT_SYMBOL(dm_put_device); EXPORT_SYMBOL(dm_table_event); EXPORT_SYMBOL(dm_table_get_size); EXPORT_SYMBOL(dm_table_get_mode); EXPORT_SYMBOL(dm_table_get_md); EXPORT_SYMBOL(dm_table_put); EXPORT_SYMBOL(dm_table_get); EXPORT_SYMBOL(dm_table_unplug_all);