/* * Copyright (C) 2003 Christophe Saout * Copyright (C) 2004 Clemens Fruhwirth * Copyright (C) 2006 Red Hat, Inc. All rights reserved. * * This file is released under the GPL. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dm.h" #define DM_MSG_PREFIX "crypt" #define MESG_STR(x) x, sizeof(x) /* * per bio private data */ struct crypt_io { struct dm_target *target; struct bio *base_bio; struct bio *first_clone; struct work_struct work; atomic_t pending; int error; int post_process; }; /* * context holding the current state of a multi-part conversion */ struct convert_context { struct bio *bio_in; struct bio *bio_out; unsigned int offset_in; unsigned int offset_out; unsigned int idx_in; unsigned int idx_out; sector_t sector; int write; }; struct crypt_config; struct crypt_iv_operations { int (*ctr)(struct crypt_config *cc, struct dm_target *ti, const char *opts); void (*dtr)(struct crypt_config *cc); const char *(*status)(struct crypt_config *cc); int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector); }; /* * Crypt: maps a linear range of a block device * and encrypts / decrypts at the same time. */ enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID }; struct crypt_config { struct dm_dev *dev; sector_t start; /* * pool for per bio private data and * for encryption buffer pages */ mempool_t *io_pool; mempool_t *page_pool; /* * crypto related data */ struct crypt_iv_operations *iv_gen_ops; char *iv_mode; struct crypto_cipher *iv_gen_private; sector_t iv_offset; unsigned int iv_size; char cipher[CRYPTO_MAX_ALG_NAME]; char chainmode[CRYPTO_MAX_ALG_NAME]; struct crypto_blkcipher *tfm; unsigned long flags; unsigned int key_size; u8 key[0]; }; #define MIN_IOS 256 #define MIN_POOL_PAGES 32 #define MIN_BIO_PAGES 8 static kmem_cache_t *_crypt_io_pool; /* * Different IV generation algorithms: * * plain: the initial vector is the 32-bit little-endian version of the sector * number, padded with zeros if neccessary. * * essiv: "encrypted sector|salt initial vector", the sector number is * encrypted with the bulk cipher using a salt as key. The salt * should be derived from the bulk cipher's key via hashing. * * plumb: unimplemented, see: * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 */ static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector) { memset(iv, 0, cc->iv_size); *(u32 *)iv = cpu_to_le32(sector & 0xffffffff); return 0; } static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, const char *opts) { struct crypto_cipher *essiv_tfm; struct crypto_hash *hash_tfm; struct hash_desc desc; struct scatterlist sg; unsigned int saltsize; u8 *salt; int err; if (opts == NULL) { ti->error = "Digest algorithm missing for ESSIV mode"; return -EINVAL; } /* Hash the cipher key with the given hash algorithm */ hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(hash_tfm)) { ti->error = "Error initializing ESSIV hash"; return PTR_ERR(hash_tfm); } saltsize = crypto_hash_digestsize(hash_tfm); salt = kmalloc(saltsize, GFP_KERNEL); if (salt == NULL) { ti->error = "Error kmallocing salt storage in ESSIV"; crypto_free_hash(hash_tfm); return -ENOMEM; } sg_set_buf(&sg, cc->key, cc->key_size); desc.tfm = hash_tfm; desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; err = crypto_hash_digest(&desc, &sg, cc->key_size, salt); crypto_free_hash(hash_tfm); if (err) { ti->error = "Error calculating hash in ESSIV"; return err; } /* Setup the essiv_tfm with the given salt */ essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(essiv_tfm)) { ti->error = "Error allocating crypto tfm for ESSIV"; kfree(salt); return PTR_ERR(essiv_tfm); } if (crypto_cipher_blocksize(essiv_tfm) != crypto_blkcipher_ivsize(cc->tfm)) { ti->error = "Block size of ESSIV cipher does " "not match IV size of block cipher"; crypto_free_cipher(essiv_tfm); kfree(salt); return -EINVAL; } err = crypto_cipher_setkey(essiv_tfm, salt, saltsize); if (err) { ti->error = "Failed to set key for ESSIV cipher"; crypto_free_cipher(essiv_tfm); kfree(salt); return err; } kfree(salt); cc->iv_gen_private = essiv_tfm; return 0; } static void crypt_iv_essiv_dtr(struct crypt_config *cc) { crypto_free_cipher(cc->iv_gen_private); cc->iv_gen_private = NULL; } static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector) { memset(iv, 0, cc->iv_size); *(u64 *)iv = cpu_to_le64(sector); crypto_cipher_encrypt_one(cc->iv_gen_private, iv, iv); return 0; } static struct crypt_iv_operations crypt_iv_plain_ops = { .generator = crypt_iv_plain_gen }; static struct crypt_iv_operations crypt_iv_essiv_ops = { .ctr = crypt_iv_essiv_ctr, .dtr = crypt_iv_essiv_dtr, .generator = crypt_iv_essiv_gen }; static int crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out, struct scatterlist *in, unsigned int length, int write, sector_t sector) { u8 iv[cc->iv_size]; struct blkcipher_desc desc = { .tfm = cc->tfm, .info = iv, .flags = CRYPTO_TFM_REQ_MAY_SLEEP, }; int r; if (cc->iv_gen_ops) { r = cc->iv_gen_ops->generator(cc, iv, sector); if (r < 0) return r; if (write) r = crypto_blkcipher_encrypt_iv(&desc, out, in, length); else r = crypto_blkcipher_decrypt_iv(&desc, out, in, length); } else { if (write) r = crypto_blkcipher_encrypt(&desc, out, in, length); else r = crypto_blkcipher_decrypt(&desc, out, in, length); } return r; } static void crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx, struct bio *bio_out, struct bio *bio_in, sector_t sector, int write) { ctx->bio_in = bio_in; ctx->bio_out = bio_out; ctx->offset_in = 0; ctx->offset_out = 0; ctx->idx_in = bio_in ? bio_in->bi_idx : 0; ctx->idx_out = bio_out ? bio_out->bi_idx : 0; ctx->sector = sector + cc->iv_offset; ctx->write = write; } /* * Encrypt / decrypt data from one bio to another one (can be the same one) */ static int crypt_convert(struct crypt_config *cc, struct convert_context *ctx) { int r = 0; while(ctx->idx_in < ctx->bio_in->bi_vcnt && ctx->idx_out < ctx->bio_out->bi_vcnt) { struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in); struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out); struct scatterlist sg_in = { .page = bv_in->bv_page, .offset = bv_in->bv_offset + ctx->offset_in, .length = 1 << SECTOR_SHIFT }; struct scatterlist sg_out = { .page = bv_out->bv_page, .offset = bv_out->bv_offset + ctx->offset_out, .length = 1 << SECTOR_SHIFT }; ctx->offset_in += sg_in.length; if (ctx->offset_in >= bv_in->bv_len) { ctx->offset_in = 0; ctx->idx_in++; } ctx->offset_out += sg_out.length; if (ctx->offset_out >= bv_out->bv_len) { ctx->offset_out = 0; ctx->idx_out++; } r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length, ctx->write, ctx->sector); if (r < 0) break; ctx->sector++; } return r; } /* * Generate a new unfragmented bio with the given size * This should never violate the device limitations * May return a smaller bio when running out of pages */ static struct bio * crypt_alloc_buffer(struct crypt_config *cc, unsigned int size, struct bio *base_bio, unsigned int *bio_vec_idx) { struct bio *clone; unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM; unsigned int i; /* * Use __GFP_NOMEMALLOC to tell the VM to act less aggressively and * to fail earlier. This is not necessary but increases throughput. * FIXME: Is this really intelligent? */ if (base_bio) clone = bio_clone(base_bio, GFP_NOIO|__GFP_NOMEMALLOC); else clone = bio_alloc(GFP_NOIO|__GFP_NOMEMALLOC, nr_iovecs); if (!clone) return NULL; /* if the last bio was not complete, continue where that one ended */ clone->bi_idx = *bio_vec_idx; clone->bi_vcnt = *bio_vec_idx; clone->bi_size = 0; clone->bi_flags &= ~(1 << BIO_SEG_VALID); /* clone->bi_idx pages have already been allocated */ size -= clone->bi_idx * PAGE_SIZE; for (i = clone->bi_idx; i < nr_iovecs; i++) { struct bio_vec *bv = bio_iovec_idx(clone, i); bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask); if (!bv->bv_page) break; /* * if additional pages cannot be allocated without waiting, * return a partially allocated bio, the caller will then try * to allocate additional bios while submitting this partial bio */ if ((i - clone->bi_idx) == (MIN_BIO_PAGES - 1)) gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT; bv->bv_offset = 0; if (size > PAGE_SIZE) bv->bv_len = PAGE_SIZE; else bv->bv_len = size; clone->bi_size += bv->bv_len; clone->bi_vcnt++; size -= bv->bv_len; } if (!clone->bi_size) { bio_put(clone); return NULL; } /* * Remember the last bio_vec allocated to be able * to correctly continue after the splitting. */ *bio_vec_idx = clone->bi_vcnt; return clone; } static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone, unsigned int bytes) { unsigned int i, start, end; struct bio_vec *bv; /* * This is ugly, but Jens Axboe thinks that using bi_idx in the * endio function is too dangerous at the moment, so I calculate the * correct position using bi_vcnt and bi_size. * The bv_offset and bv_len fields might already be modified but we * know that we always allocated whole pages. * A fix to the bi_idx issue in the kernel is in the works, so * we will hopefully be able to revert to the cleaner solution soon. */ i = clone->bi_vcnt - 1; bv = bio_iovec_idx(clone, i); end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - clone->bi_size; start = end - bytes; start >>= PAGE_SHIFT; if (!clone->bi_size) end = clone->bi_vcnt; else end >>= PAGE_SHIFT; for (i = start; i < end; i++) { bv = bio_iovec_idx(clone, i); BUG_ON(!bv->bv_page); mempool_free(bv->bv_page, cc->page_pool); bv->bv_page = NULL; } } /* * One of the bios was finished. Check for completion of * the whole request and correctly clean up the buffer. */ static void dec_pending(struct crypt_io *io, int error) { struct crypt_config *cc = (struct crypt_config *) io->target->private; if (error < 0) io->error = error; if (!atomic_dec_and_test(&io->pending)) return; if (io->first_clone) bio_put(io->first_clone); bio_endio(io->base_bio, io->base_bio->bi_size, io->error); mempool_free(io, cc->io_pool); } /* * kcryptd: * * Needed because it would be very unwise to do decryption in an * interrupt context. */ static struct workqueue_struct *_kcryptd_workqueue; static void kcryptd_do_work(void *data); static void kcryptd_queue_io(struct crypt_io *io) { INIT_WORK(&io->work, kcryptd_do_work, io); queue_work(_kcryptd_workqueue, &io->work); } static int crypt_endio(struct bio *clone, unsigned int done, int error) { struct crypt_io *io = clone->bi_private; struct crypt_config *cc = io->target->private; unsigned read_io = bio_data_dir(clone) == READ; /* * free the processed pages, even if * it's only a partially completed write */ if (!read_io) crypt_free_buffer_pages(cc, clone, done); /* keep going - not finished yet */ if (unlikely(clone->bi_size)) return 1; if (!read_io) goto out; if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) { error = -EIO; goto out; } bio_put(clone); io->post_process = 1; kcryptd_queue_io(io); return 0; out: bio_put(clone); dec_pending(io, error); return error; } static void clone_init(struct crypt_io *io, struct bio *clone) { struct crypt_config *cc = io->target->private; clone->bi_private = io; clone->bi_end_io = crypt_endio; clone->bi_bdev = cc->dev->bdev; clone->bi_rw = io->base_bio->bi_rw; } static void process_read(struct crypt_io *io) { struct crypt_config *cc = io->target->private; struct bio *base_bio = io->base_bio; struct bio *clone; sector_t sector = base_bio->bi_sector - io->target->begin; atomic_inc(&io->pending); /* * The block layer might modify the bvec array, so always * copy the required bvecs because we need the original * one in order to decrypt the whole bio data *afterwards*. */ clone = bio_alloc(GFP_NOIO, bio_segments(base_bio)); if (unlikely(!clone)) { dec_pending(io, -ENOMEM); return; } clone_init(io, clone); clone->bi_idx = 0; clone->bi_vcnt = bio_segments(base_bio); clone->bi_size = base_bio->bi_size; clone->bi_sector = cc->start + sector; memcpy(clone->bi_io_vec, bio_iovec(base_bio), sizeof(struct bio_vec) * clone->bi_vcnt); generic_make_request(clone); } static void process_write(struct crypt_io *io) { struct crypt_config *cc = io->target->private; struct bio *base_bio = io->base_bio; struct bio *clone; struct convert_context ctx; unsigned remaining = base_bio->bi_size; sector_t sector = base_bio->bi_sector - io->target->begin; unsigned bvec_idx = 0; atomic_inc(&io->pending); crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1); /* * The allocated buffers can be smaller than the whole bio, * so repeat the whole process until all the data can be handled. */ while (remaining) { clone = crypt_alloc_buffer(cc, base_bio->bi_size, io->first_clone, &bvec_idx); if (unlikely(!clone)) { dec_pending(io, -ENOMEM); return; } ctx.bio_out = clone; if (unlikely(crypt_convert(cc, &ctx) < 0)) { crypt_free_buffer_pages(cc, clone, clone->bi_size); bio_put(clone); dec_pending(io, -EIO); return; } clone_init(io, clone); clone->bi_sector = cc->start + sector; if (!io->first_clone) { /* * hold a reference to the first clone, because it * holds the bio_vec array and that can't be freed * before all other clones are released */ bio_get(clone); io->first_clone = clone; } remaining -= clone->bi_size; sector += bio_sectors(clone); /* prevent bio_put of first_clone */ if (remaining) atomic_inc(&io->pending); generic_make_request(clone); /* out of memory -> run queues */ if (remaining) blk_congestion_wait(bio_data_dir(clone), HZ/100); } } static void process_read_endio(struct crypt_io *io) { struct crypt_config *cc = io->target->private; struct convert_context ctx; crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio, io->base_bio->bi_sector - io->target->begin, 0); dec_pending(io, crypt_convert(cc, &ctx)); } static void kcryptd_do_work(void *data) { struct crypt_io *io = data; if (io->post_process) process_read_endio(io); else if (bio_data_dir(io->base_bio) == READ) process_read(io); else process_write(io); } /* * Decode key from its hex representation */ static int crypt_decode_key(u8 *key, char *hex, unsigned int size) { char buffer[3]; char *endp; unsigned int i; buffer[2] = '\0'; for (i = 0; i < size; i++) { buffer[0] = *hex++; buffer[1] = *hex++; key[i] = (u8)simple_strtoul(buffer, &endp, 16); if (endp != &buffer[2]) return -EINVAL; } if (*hex != '\0') return -EINVAL; return 0; } /* * Encode key into its hex representation */ static void crypt_encode_key(char *hex, u8 *key, unsigned int size) { unsigned int i; for (i = 0; i < size; i++) { sprintf(hex, "%02x", *key); hex += 2; key++; } } static int crypt_set_key(struct crypt_config *cc, char *key) { unsigned key_size = strlen(key) >> 1; if (cc->key_size && cc->key_size != key_size) return -EINVAL; cc->key_size = key_size; /* initial settings */ if ((!key_size && strcmp(key, "-")) || (key_size && crypt_decode_key(cc->key, key, key_size) < 0)) return -EINVAL; set_bit(DM_CRYPT_KEY_VALID, &cc->flags); return 0; } static int crypt_wipe_key(struct crypt_config *cc) { clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); memset(&cc->key, 0, cc->key_size * sizeof(u8)); return 0; } /* * Construct an encryption mapping: * */ static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) { struct crypt_config *cc; struct crypto_blkcipher *tfm; char *tmp; char *cipher; char *chainmode; char *ivmode; char *ivopts; unsigned int key_size; unsigned long long tmpll; if (argc != 5) { ti->error = "Not enough arguments"; return -EINVAL; } tmp = argv[0]; cipher = strsep(&tmp, "-"); chainmode = strsep(&tmp, "-"); ivopts = strsep(&tmp, "-"); ivmode = strsep(&ivopts, ":"); if (tmp) DMWARN("Unexpected additional cipher options"); key_size = strlen(argv[1]) >> 1; cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); if (cc == NULL) { ti->error = "Cannot allocate transparent encryption context"; return -ENOMEM; } if (crypt_set_key(cc, argv[1])) { ti->error = "Error decoding key"; goto bad1; } /* Compatiblity mode for old dm-crypt cipher strings */ if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) { chainmode = "cbc"; ivmode = "plain"; } if (strcmp(chainmode, "ecb") && !ivmode) { ti->error = "This chaining mode requires an IV mechanism"; goto bad1; } if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) { ti->error = "Chain mode + cipher name is too long"; goto bad1; } tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) { ti->error = "Error allocating crypto tfm"; goto bad1; } strcpy(cc->cipher, cipher); strcpy(cc->chainmode, chainmode); cc->tfm = tfm; /* * Choose ivmode. Valid modes: "plain", "essiv:". * See comments at iv code */ if (ivmode == NULL) cc->iv_gen_ops = NULL; else if (strcmp(ivmode, "plain") == 0) cc->iv_gen_ops = &crypt_iv_plain_ops; else if (strcmp(ivmode, "essiv") == 0) cc->iv_gen_ops = &crypt_iv_essiv_ops; else { ti->error = "Invalid IV mode"; goto bad2; } if (cc->iv_gen_ops && cc->iv_gen_ops->ctr && cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0) goto bad2; cc->iv_size = crypto_blkcipher_ivsize(tfm); if (cc->iv_size) /* at least a 64 bit sector number should fit in our buffer */ cc->iv_size = max(cc->iv_size, (unsigned int)(sizeof(u64) / sizeof(u8))); else { if (cc->iv_gen_ops) { DMWARN("Selected cipher does not support IVs"); if (cc->iv_gen_ops->dtr) cc->iv_gen_ops->dtr(cc); cc->iv_gen_ops = NULL; } } cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool); if (!cc->io_pool) { ti->error = "Cannot allocate crypt io mempool"; goto bad3; } cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0); if (!cc->page_pool) { ti->error = "Cannot allocate page mempool"; goto bad4; } if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) { ti->error = "Error setting key"; goto bad5; } if (sscanf(argv[2], "%llu", &tmpll) != 1) { ti->error = "Invalid iv_offset sector"; goto bad5; } cc->iv_offset = tmpll; if (sscanf(argv[4], "%llu", &tmpll) != 1) { ti->error = "Invalid device sector"; goto bad5; } cc->start = tmpll; if (dm_get_device(ti, argv[3], cc->start, ti->len, dm_table_get_mode(ti->table), &cc->dev)) { ti->error = "Device lookup failed"; goto bad5; } if (ivmode && cc->iv_gen_ops) { if (ivopts) *(ivopts - 1) = ':'; cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL); if (!cc->iv_mode) { ti->error = "Error kmallocing iv_mode string"; goto bad5; } strcpy(cc->iv_mode, ivmode); } else cc->iv_mode = NULL; ti->private = cc; return 0; bad5: mempool_destroy(cc->page_pool); bad4: mempool_destroy(cc->io_pool); bad3: if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) cc->iv_gen_ops->dtr(cc); bad2: crypto_free_blkcipher(tfm); bad1: /* Must zero key material before freeing */ memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8)); kfree(cc); return -EINVAL; } static void crypt_dtr(struct dm_target *ti) { struct crypt_config *cc = (struct crypt_config *) ti->private; mempool_destroy(cc->page_pool); mempool_destroy(cc->io_pool); kfree(cc->iv_mode); if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) cc->iv_gen_ops->dtr(cc); crypto_free_blkcipher(cc->tfm); dm_put_device(ti, cc->dev); /* Must zero key material before freeing */ memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8)); kfree(cc); } static int crypt_map(struct dm_target *ti, struct bio *bio, union map_info *map_context) { struct crypt_config *cc = ti->private; struct crypt_io *io; io = mempool_alloc(cc->io_pool, GFP_NOIO); io->target = ti; io->base_bio = bio; io->first_clone = NULL; io->error = io->post_process = 0; atomic_set(&io->pending, 0); kcryptd_queue_io(io); return 0; } static int crypt_status(struct dm_target *ti, status_type_t type, char *result, unsigned int maxlen) { struct crypt_config *cc = (struct crypt_config *) ti->private; const char *cipher; const char *chainmode = NULL; unsigned int sz = 0; switch (type) { case STATUSTYPE_INFO: result[0] = '\0'; break; case STATUSTYPE_TABLE: cipher = crypto_blkcipher_name(cc->tfm); chainmode = cc->chainmode; if (cc->iv_mode) DMEMIT("%s-%s-%s ", cipher, chainmode, cc->iv_mode); else DMEMIT("%s-%s ", cipher, chainmode); if (cc->key_size > 0) { if ((maxlen - sz) < ((cc->key_size << 1) + 1)) return -ENOMEM; crypt_encode_key(result + sz, cc->key, cc->key_size); sz += cc->key_size << 1; } else { if (sz >= maxlen) return -ENOMEM; result[sz++] = '-'; } DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, cc->dev->name, (unsigned long long)cc->start); break; } return 0; } static void crypt_postsuspend(struct dm_target *ti) { struct crypt_config *cc = ti->private; set_bit(DM_CRYPT_SUSPENDED, &cc->flags); } static int crypt_preresume(struct dm_target *ti) { struct crypt_config *cc = ti->private; if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { DMERR("aborting resume - crypt key is not set."); return -EAGAIN; } return 0; } static void crypt_resume(struct dm_target *ti) { struct crypt_config *cc = ti->private; clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); } /* Message interface * key set * key wipe */ static int crypt_message(struct dm_target *ti, unsigned argc, char **argv) { struct crypt_config *cc = ti->private; if (argc < 2) goto error; if (!strnicmp(argv[0], MESG_STR("key"))) { if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { DMWARN("not suspended during key manipulation."); return -EINVAL; } if (argc == 3 && !strnicmp(argv[1], MESG_STR("set"))) return crypt_set_key(cc, argv[2]); if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe"))) return crypt_wipe_key(cc); } error: DMWARN("unrecognised message received."); return -EINVAL; } static struct target_type crypt_target = { .name = "crypt", .version= {1, 3, 0}, .module = THIS_MODULE, .ctr = crypt_ctr, .dtr = crypt_dtr, .map = crypt_map, .status = crypt_status, .postsuspend = crypt_postsuspend, .preresume = crypt_preresume, .resume = crypt_resume, .message = crypt_message, }; static int __init dm_crypt_init(void) { int r; _crypt_io_pool = kmem_cache_create("dm-crypt_io", sizeof(struct crypt_io), 0, 0, NULL, NULL); if (!_crypt_io_pool) return -ENOMEM; _kcryptd_workqueue = create_workqueue("kcryptd"); if (!_kcryptd_workqueue) { r = -ENOMEM; DMERR("couldn't create kcryptd"); goto bad1; } r = dm_register_target(&crypt_target); if (r < 0) { DMERR("register failed %d", r); goto bad2; } return 0; bad2: destroy_workqueue(_kcryptd_workqueue); bad1: kmem_cache_destroy(_crypt_io_pool); return r; } static void __exit dm_crypt_exit(void) { int r = dm_unregister_target(&crypt_target); if (r < 0) DMERR("unregister failed %d", r); destroy_workqueue(_kcryptd_workqueue); kmem_cache_destroy(_crypt_io_pool); } module_init(dm_crypt_init); module_exit(dm_crypt_exit); MODULE_AUTHOR("Christophe Saout "); MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); MODULE_LICENSE("GPL");