/* * Device driver for the PMU on 68K-based Apple PowerBooks * * The VIA (versatile interface adapter) interfaces to the PMU, * a 6805 microprocessor core whose primary function is to control * battery charging and system power on the PowerBooks. * The PMU also controls the ADB (Apple Desktop Bus) which connects * to the keyboard and mouse, as well as the non-volatile RAM * and the RTC (real time clock) chip. * * Adapted for 68K PMU by Joshua M. Thompson * * Based largely on the PowerMac PMU code by Paul Mackerras and * Fabio Riccardi. * * Also based on the PMU driver from MkLinux by Apple Computer, Inc. * and the Open Software Foundation, Inc. */ #include <stdarg.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/miscdevice.h> #include <linux/blkdev.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/adb.h> #include <linux/pmu.h> #include <linux/cuda.h> #include <asm/macintosh.h> #include <asm/macints.h> #include <asm/machw.h> #include <asm/mac_via.h> #include <asm/pgtable.h> #include <asm/system.h> #include <asm/irq.h> #include <asm/uaccess.h> /* Misc minor number allocated for /dev/pmu */ #define PMU_MINOR 154 /* VIA registers - spaced 0x200 bytes apart */ #define RS 0x200 /* skip between registers */ #define B 0 /* B-side data */ #define A RS /* A-side data */ #define DIRB (2*RS) /* B-side direction (1=output) */ #define DIRA (3*RS) /* A-side direction (1=output) */ #define T1CL (4*RS) /* Timer 1 ctr/latch (low 8 bits) */ #define T1CH (5*RS) /* Timer 1 counter (high 8 bits) */ #define T1LL (6*RS) /* Timer 1 latch (low 8 bits) */ #define T1LH (7*RS) /* Timer 1 latch (high 8 bits) */ #define T2CL (8*RS) /* Timer 2 ctr/latch (low 8 bits) */ #define T2CH (9*RS) /* Timer 2 counter (high 8 bits) */ #define SR (10*RS) /* Shift register */ #define ACR (11*RS) /* Auxiliary control register */ #define PCR (12*RS) /* Peripheral control register */ #define IFR (13*RS) /* Interrupt flag register */ #define IER (14*RS) /* Interrupt enable register */ #define ANH (15*RS) /* A-side data, no handshake */ /* Bits in B data register: both active low */ #define TACK 0x02 /* Transfer acknowledge (input) */ #define TREQ 0x04 /* Transfer request (output) */ /* Bits in ACR */ #define SR_CTRL 0x1c /* Shift register control bits */ #define SR_EXT 0x0c /* Shift on external clock */ #define SR_OUT 0x10 /* Shift out if 1 */ /* Bits in IFR and IER */ #define SR_INT 0x04 /* Shift register full/empty */ #define CB1_INT 0x10 /* transition on CB1 input */ static enum pmu_state { idle, sending, intack, reading, reading_intr, } pmu_state; static struct adb_request *current_req; static struct adb_request *last_req; static struct adb_request *req_awaiting_reply; static unsigned char interrupt_data[32]; static unsigned char *reply_ptr; static int data_index; static int data_len; static int adb_int_pending; static int pmu_adb_flags; static int adb_dev_map = 0; static struct adb_request bright_req_1, bright_req_2, bright_req_3; static int pmu_kind = PMU_UNKNOWN; static int pmu_fully_inited = 0; int asleep; BLOCKING_NOTIFIER_HEAD(sleep_notifier_list); static int pmu_probe(void); static int pmu_init(void); static void pmu_start(void); static irqreturn_t pmu_interrupt(int irq, void *arg, struct pt_regs *regs); static int pmu_send_request(struct adb_request *req, int sync); static int pmu_autopoll(int devs); void pmu_poll(void); static int pmu_reset_bus(void); static int pmu_queue_request(struct adb_request *req); static void pmu_start(void); static void send_byte(int x); static void recv_byte(void); static void pmu_done(struct adb_request *req); static void pmu_handle_data(unsigned char *data, int len, struct pt_regs *regs); static void set_volume(int level); static void pmu_enable_backlight(int on); static void pmu_set_brightness(int level); struct adb_driver via_pmu_driver = { "68K PMU", pmu_probe, pmu_init, pmu_send_request, pmu_autopoll, pmu_poll, pmu_reset_bus }; /* * This table indicates for each PMU opcode: * - the number of data bytes to be sent with the command, or -1 * if a length byte should be sent, * - the number of response bytes which the PMU will return, or * -1 if it will send a length byte. */ static s8 pmu_data_len[256][2] = { /* 0 1 2 3 4 5 6 7 */ /*00*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*08*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, /*10*/ { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*18*/ { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0, 0}, /*20*/ {-1, 0},{ 0, 0},{ 2, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0}, /*28*/ { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0,-1}, /*30*/ { 4, 0},{20, 0},{-1, 0},{ 3, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*38*/ { 0, 4},{ 0,20},{ 2,-1},{ 2, 1},{ 3,-1},{-1,-1},{-1,-1},{ 4, 0}, /*40*/ { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*48*/ { 0, 1},{ 0, 1},{-1,-1},{ 1, 0},{ 1, 0},{-1,-1},{-1,-1},{-1,-1}, /*50*/ { 1, 0},{ 0, 0},{ 2, 0},{ 2, 0},{-1, 0},{ 1, 0},{ 3, 0},{ 1, 0}, /*58*/ { 0, 1},{ 1, 0},{ 0, 2},{ 0, 2},{ 0,-1},{-1,-1},{-1,-1},{-1,-1}, /*60*/ { 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*68*/ { 0, 3},{ 0, 3},{ 0, 2},{ 0, 8},{ 0,-1},{ 0,-1},{-1,-1},{-1,-1}, /*70*/ { 1, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*78*/ { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{ 5, 1},{ 4, 1},{ 4, 1}, /*80*/ { 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*88*/ { 0, 5},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, /*90*/ { 1, 0},{ 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*98*/ { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, /*a0*/ { 2, 0},{ 2, 0},{ 2, 0},{ 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0}, /*a8*/ { 1, 1},{ 1, 0},{ 3, 0},{ 2, 0},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, /*b0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*b8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, /*c0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*c8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, /*d0*/ { 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*d8*/ { 1, 1},{ 1, 1},{-1,-1},{-1,-1},{ 0, 1},{ 0,-1},{-1,-1},{-1,-1}, /*e0*/ {-1, 0},{ 4, 0},{ 0, 1},{-1, 0},{-1, 0},{ 4, 0},{-1, 0},{-1, 0}, /*e8*/ { 3,-1},{-1,-1},{ 0, 1},{-1,-1},{ 0,-1},{-1,-1},{-1,-1},{ 0, 0}, /*f0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, /*f8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, }; int pmu_probe(void) { if (macintosh_config->adb_type == MAC_ADB_PB1) { pmu_kind = PMU_68K_V1; } else if (macintosh_config->adb_type == MAC_ADB_PB2) { pmu_kind = PMU_68K_V2; } else { return -ENODEV; } pmu_state = idle; return 0; } static int pmu_init(void) { int timeout; volatile struct adb_request req; via2[B] |= TREQ; /* negate TREQ */ via2[DIRB] = (via2[DIRB] | TREQ) & ~TACK; /* TACK in, TREQ out */ pmu_request((struct adb_request *) &req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB); timeout = 100000; while (!req.complete) { if (--timeout < 0) { printk(KERN_ERR "pmu_init: no response from PMU\n"); return -EAGAIN; } udelay(10); pmu_poll(); } /* ack all pending interrupts */ timeout = 100000; interrupt_data[0] = 1; while (interrupt_data[0] || pmu_state != idle) { if (--timeout < 0) { printk(KERN_ERR "pmu_init: timed out acking intrs\n"); return -EAGAIN; } if (pmu_state == idle) { adb_int_pending = 1; pmu_interrupt(0, NULL, NULL); } pmu_poll(); udelay(10); } pmu_request((struct adb_request *) &req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB_AUTO|PMU_INT_SNDBRT|PMU_INT_ADB); timeout = 100000; while (!req.complete) { if (--timeout < 0) { printk(KERN_ERR "pmu_init: no response from PMU\n"); return -EAGAIN; } udelay(10); pmu_poll(); } bright_req_1.complete = 1; bright_req_2.complete = 1; bright_req_3.complete = 1; if (request_irq(IRQ_MAC_ADB_SR, pmu_interrupt, 0, "pmu-shift", pmu_interrupt)) { printk(KERN_ERR "pmu_init: can't get irq %d\n", IRQ_MAC_ADB_SR); return -EAGAIN; } if (request_irq(IRQ_MAC_ADB_CL, pmu_interrupt, 0, "pmu-clock", pmu_interrupt)) { printk(KERN_ERR "pmu_init: can't get irq %d\n", IRQ_MAC_ADB_CL); free_irq(IRQ_MAC_ADB_SR, pmu_interrupt); return -EAGAIN; } pmu_fully_inited = 1; /* Enable backlight */ pmu_enable_backlight(1); printk("adb: PMU 68K driver v0.5 for Unified ADB.\n"); return 0; } int pmu_get_model(void) { return pmu_kind; } /* Send an ADB command */ static int pmu_send_request(struct adb_request *req, int sync) { int i, ret; if (!pmu_fully_inited) { req->complete = 1; return -ENXIO; } ret = -EINVAL; switch (req->data[0]) { case PMU_PACKET: for (i = 0; i < req->nbytes - 1; ++i) req->data[i] = req->data[i+1]; --req->nbytes; if (pmu_data_len[req->data[0]][1] != 0) { req->reply[0] = ADB_RET_OK; req->reply_len = 1; } else req->reply_len = 0; ret = pmu_queue_request(req); break; case CUDA_PACKET: switch (req->data[1]) { case CUDA_GET_TIME: if (req->nbytes != 2) break; req->data[0] = PMU_READ_RTC; req->nbytes = 1; req->reply_len = 3; req->reply[0] = CUDA_PACKET; req->reply[1] = 0; req->reply[2] = CUDA_GET_TIME; ret = pmu_queue_request(req); break; case CUDA_SET_TIME: if (req->nbytes != 6) break; req->data[0] = PMU_SET_RTC; req->nbytes = 5; for (i = 1; i <= 4; ++i) req->data[i] = req->data[i+1]; req->reply_len = 3; req->reply[0] = CUDA_PACKET; req->reply[1] = 0; req->reply[2] = CUDA_SET_TIME; ret = pmu_queue_request(req); break; case CUDA_GET_PRAM: if (req->nbytes != 4) break; req->data[0] = PMU_READ_NVRAM; req->data[1] = req->data[2]; req->data[2] = req->data[3]; req->nbytes = 3; req->reply_len = 3; req->reply[0] = CUDA_PACKET; req->reply[1] = 0; req->reply[2] = CUDA_GET_PRAM; ret = pmu_queue_request(req); break; case CUDA_SET_PRAM: if (req->nbytes != 5) break; req->data[0] = PMU_WRITE_NVRAM; req->data[1] = req->data[2]; req->data[2] = req->data[3]; req->data[3] = req->data[4]; req->nbytes = 4; req->reply_len = 3; req->reply[0] = CUDA_PACKET; req->reply[1] = 0; req->reply[2] = CUDA_SET_PRAM; ret = pmu_queue_request(req); break; } break; case ADB_PACKET: for (i = req->nbytes - 1; i > 1; --i) req->data[i+2] = req->data[i]; req->data[3] = req->nbytes - 2; req->data[2] = pmu_adb_flags; /*req->data[1] = req->data[1];*/ req->data[0] = PMU_ADB_CMD; req->nbytes += 2; req->reply_expected = 1; req->reply_len = 0; ret = pmu_queue_request(req); break; } if (ret) { req->complete = 1; return ret; } if (sync) { while (!req->complete) pmu_poll(); } return 0; } /* Enable/disable autopolling */ static int pmu_autopoll(int devs) { struct adb_request req; if (!pmu_fully_inited) return -ENXIO; if (devs) { adb_dev_map = devs; pmu_request(&req, NULL, 5, PMU_ADB_CMD, 0, 0x86, adb_dev_map >> 8, adb_dev_map); pmu_adb_flags = 2; } else { pmu_request(&req, NULL, 1, PMU_ADB_POLL_OFF); pmu_adb_flags = 0; } while (!req.complete) pmu_poll(); return 0; } /* Reset the ADB bus */ static int pmu_reset_bus(void) { struct adb_request req; long timeout; int save_autopoll = adb_dev_map; if (!pmu_fully_inited) return -ENXIO; /* anyone got a better idea?? */ pmu_autopoll(0); req.nbytes = 5; req.done = NULL; req.data[0] = PMU_ADB_CMD; req.data[1] = 0; req.data[2] = 3; /* ADB_BUSRESET ??? */ req.data[3] = 0; req.data[4] = 0; req.reply_len = 0; req.reply_expected = 1; if (pmu_queue_request(&req) != 0) { printk(KERN_ERR "pmu_adb_reset_bus: pmu_queue_request failed\n"); return -EIO; } while (!req.complete) pmu_poll(); timeout = 100000; while (!req.complete) { if (--timeout < 0) { printk(KERN_ERR "pmu_adb_reset_bus (reset): no response from PMU\n"); return -EIO; } udelay(10); pmu_poll(); } if (save_autopoll != 0) pmu_autopoll(save_autopoll); return 0; } /* Construct and send a pmu request */ int pmu_request(struct adb_request *req, void (*done)(struct adb_request *), int nbytes, ...) { va_list list; int i; if (nbytes < 0 || nbytes > 32) { printk(KERN_ERR "pmu_request: bad nbytes (%d)\n", nbytes); req->complete = 1; return -EINVAL; } req->nbytes = nbytes; req->done = done; va_start(list, nbytes); for (i = 0; i < nbytes; ++i) req->data[i] = va_arg(list, int); va_end(list); if (pmu_data_len[req->data[0]][1] != 0) { req->reply[0] = ADB_RET_OK; req->reply_len = 1; } else req->reply_len = 0; req->reply_expected = 0; return pmu_queue_request(req); } static int pmu_queue_request(struct adb_request *req) { unsigned long flags; int nsend; if (req->nbytes <= 0) { req->complete = 1; return 0; } nsend = pmu_data_len[req->data[0]][0]; if (nsend >= 0 && req->nbytes != nsend + 1) { req->complete = 1; return -EINVAL; } req->next = NULL; req->sent = 0; req->complete = 0; local_irq_save(flags); if (current_req != 0) { last_req->next = req; last_req = req; } else { current_req = req; last_req = req; if (pmu_state == idle) pmu_start(); } local_irq_restore(flags); return 0; } static void send_byte(int x) { via1[ACR] |= SR_CTRL; via1[SR] = x; via2[B] &= ~TREQ; /* assert TREQ */ } static void recv_byte(void) { char c; via1[ACR] = (via1[ACR] | SR_EXT) & ~SR_OUT; c = via1[SR]; /* resets SR */ via2[B] &= ~TREQ; } static void pmu_start(void) { unsigned long flags; struct adb_request *req; /* assert pmu_state == idle */ /* get the packet to send */ local_irq_save(flags); req = current_req; if (req == 0 || pmu_state != idle || (req->reply_expected && req_awaiting_reply)) goto out; pmu_state = sending; data_index = 1; data_len = pmu_data_len[req->data[0]][0]; /* set the shift register to shift out and send a byte */ send_byte(req->data[0]); out: local_irq_restore(flags); } void pmu_poll(void) { unsigned long flags; local_irq_save(flags); if (via1[IFR] & SR_INT) { via1[IFR] = SR_INT; pmu_interrupt(IRQ_MAC_ADB_SR, NULL, NULL); } if (via1[IFR] & CB1_INT) { via1[IFR] = CB1_INT; pmu_interrupt(IRQ_MAC_ADB_CL, NULL, NULL); } local_irq_restore(flags); } static irqreturn_t pmu_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct adb_request *req; int timeout, bite = 0; /* to prevent compiler warning */ #if 0 printk("pmu_interrupt: irq %d state %d acr %02X, b %02X data_index %d/%d adb_int_pending %d\n", irq, pmu_state, (uint) via1[ACR], (uint) via2[B], data_index, data_len, adb_int_pending); #endif if (irq == IRQ_MAC_ADB_CL) { /* CB1 interrupt */ adb_int_pending = 1; } else if (irq == IRQ_MAC_ADB_SR) { /* SR interrupt */ if (via2[B] & TACK) { printk(KERN_DEBUG "PMU: SR_INT but ack still high! (%x)\n", via2[B]); } /* if reading grab the byte */ if ((via1[ACR] & SR_OUT) == 0) bite = via1[SR]; /* reset TREQ and wait for TACK to go high */ via2[B] |= TREQ; timeout = 3200; while (!(via2[B] & TACK)) { if (--timeout < 0) { printk(KERN_ERR "PMU not responding (!ack)\n"); goto finish; } udelay(10); } switch (pmu_state) { case sending: req = current_req; if (data_len < 0) { data_len = req->nbytes - 1; send_byte(data_len); break; } if (data_index <= data_len) { send_byte(req->data[data_index++]); break; } req->sent = 1; data_len = pmu_data_len[req->data[0]][1]; if (data_len == 0) { pmu_state = idle; current_req = req->next; if (req->reply_expected) req_awaiting_reply = req; else pmu_done(req); } else { pmu_state = reading; data_index = 0; reply_ptr = req->reply + req->reply_len; recv_byte(); } break; case intack: data_index = 0; data_len = -1; pmu_state = reading_intr; reply_ptr = interrupt_data; recv_byte(); break; case reading: case reading_intr: if (data_len == -1) { data_len = bite; if (bite > 32) printk(KERN_ERR "PMU: bad reply len %d\n", bite); } else { reply_ptr[data_index++] = bite; } if (data_index < data_len) { recv_byte(); break; } if (pmu_state == reading_intr) { pmu_handle_data(interrupt_data, data_index, regs); } else { req = current_req; current_req = req->next; req->reply_len += data_index; pmu_done(req); } pmu_state = idle; break; default: printk(KERN_ERR "pmu_interrupt: unknown state %d?\n", pmu_state); } } finish: if (pmu_state == idle) { if (adb_int_pending) { pmu_state = intack; send_byte(PMU_INT_ACK); adb_int_pending = 0; } else if (current_req) { pmu_start(); } } #if 0 printk("pmu_interrupt: exit state %d acr %02X, b %02X data_index %d/%d adb_int_pending %d\n", pmu_state, (uint) via1[ACR], (uint) via2[B], data_index, data_len, adb_int_pending); #endif return IRQ_HANDLED; } static void pmu_done(struct adb_request *req) { req->complete = 1; if (req->done) (*req->done)(req); } /* Interrupt data could be the result data from an ADB cmd */ static void pmu_handle_data(unsigned char *data, int len, struct pt_regs *regs) { static int show_pmu_ints = 1; asleep = 0; if (len < 1) { adb_int_pending = 0; return; } if (data[0] & PMU_INT_ADB) { if ((data[0] & PMU_INT_ADB_AUTO) == 0) { struct adb_request *req = req_awaiting_reply; if (req == 0) { printk(KERN_ERR "PMU: extra ADB reply\n"); return; } req_awaiting_reply = NULL; if (len <= 2) req->reply_len = 0; else { memcpy(req->reply, data + 1, len - 1); req->reply_len = len - 1; } pmu_done(req); } else { adb_input(data+1, len-1, regs, 1); } } else { if (data[0] == 0x08 && len == 3) { /* sound/brightness buttons pressed */ pmu_set_brightness(data[1] >> 3); set_volume(data[2]); } else if (show_pmu_ints && !(data[0] == PMU_INT_TICK && len == 1)) { int i; printk(KERN_DEBUG "pmu intr"); for (i = 0; i < len; ++i) printk(" %.2x", data[i]); printk("\n"); } } } int backlight_level = -1; int backlight_enabled = 0; #define LEVEL_TO_BRIGHT(lev) ((lev) < 1? 0x7f: 0x4a - ((lev) << 1)) static void pmu_enable_backlight(int on) { struct adb_request req; if (on) { /* first call: get current backlight value */ if (backlight_level < 0) { switch(pmu_kind) { case PMU_68K_V1: case PMU_68K_V2: pmu_request(&req, NULL, 3, PMU_READ_NVRAM, 0x14, 0xe); while (!req.complete) pmu_poll(); printk(KERN_DEBUG "pmu: nvram returned bright: %d\n", (int)req.reply[1]); backlight_level = req.reply[1]; break; default: backlight_enabled = 0; return; } } pmu_request(&req, NULL, 2, PMU_BACKLIGHT_BRIGHT, LEVEL_TO_BRIGHT(backlight_level)); while (!req.complete) pmu_poll(); } pmu_request(&req, NULL, 2, PMU_POWER_CTRL, PMU_POW_BACKLIGHT | (on ? PMU_POW_ON : PMU_POW_OFF)); while (!req.complete) pmu_poll(); backlight_enabled = on; } static void pmu_set_brightness(int level) { int bright; backlight_level = level; bright = LEVEL_TO_BRIGHT(level); if (!backlight_enabled) return; if (bright_req_1.complete) pmu_request(&bright_req_1, NULL, 2, PMU_BACKLIGHT_BRIGHT, bright); if (bright_req_2.complete) pmu_request(&bright_req_2, NULL, 2, PMU_POWER_CTRL, PMU_POW_BACKLIGHT | (bright < 0x7f ? PMU_POW_ON : PMU_POW_OFF)); } void pmu_enable_irled(int on) { struct adb_request req; pmu_request(&req, NULL, 2, PMU_POWER_CTRL, PMU_POW_IRLED | (on ? PMU_POW_ON : PMU_POW_OFF)); while (!req.complete) pmu_poll(); } static void set_volume(int level) { } int pmu_present(void) { return (pmu_kind != PMU_UNKNOWN); } #if 0 /* needs some work for 68K */ /* * This struct is used to store config register values for * PCI devices which may get powered off when we sleep. */ static struct pci_save { u16 command; u16 cache_lat; u16 intr; } *pbook_pci_saves; static int n_pbook_pci_saves; static inline void pbook_pci_save(void) { int npci; struct pci_dev *pd = NULL; struct pci_save *ps; npci = 0; while ((pd = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) ++npci; n_pbook_pci_saves = npci; if (npci == 0) return; ps = (struct pci_save *) kmalloc(npci * sizeof(*ps), GFP_KERNEL); pbook_pci_saves = ps; if (ps == NULL) return; pd = NULL; while ((pd = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) { pci_read_config_word(pd, PCI_COMMAND, &ps->command); pci_read_config_word(pd, PCI_CACHE_LINE_SIZE, &ps->cache_lat); pci_read_config_word(pd, PCI_INTERRUPT_LINE, &ps->intr); ++ps; --npci; } } static inline void pbook_pci_restore(void) { u16 cmd; struct pci_save *ps = pbook_pci_saves; struct pci_dev *pd = NULL; int j; while ((pd = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) { if (ps->command == 0) continue; pci_read_config_word(pd, PCI_COMMAND, &cmd); if ((ps->command & ~cmd) == 0) continue; switch (pd->hdr_type) { case PCI_HEADER_TYPE_NORMAL: for (j = 0; j < 6; ++j) pci_write_config_dword(pd, PCI_BASE_ADDRESS_0 + j*4, pd->resource[j].start); pci_write_config_dword(pd, PCI_ROM_ADDRESS, pd->resource[PCI_ROM_RESOURCE].start); pci_write_config_word(pd, PCI_CACHE_LINE_SIZE, ps->cache_lat); pci_write_config_word(pd, PCI_INTERRUPT_LINE, ps->intr); pci_write_config_word(pd, PCI_COMMAND, ps->command); break; /* other header types not restored at present */ } } } /* * Put the powerbook to sleep. */ #define IRQ_ENABLE ((unsigned int *)0xf3000024) #define MEM_CTRL ((unsigned int *)0xf8000070) int powerbook_sleep(void) { int ret, i, x; static int save_backlight; static unsigned int save_irqen; unsigned long msr; unsigned int hid0; unsigned long p, wait; struct adb_request sleep_req; /* Notify device drivers */ ret = blocking_notifier_call_chain(&sleep_notifier_list, PBOOK_SLEEP, NULL); if (ret & NOTIFY_STOP_MASK) return -EBUSY; /* Sync the disks. */ /* XXX It would be nice to have some way to ensure that * nobody is dirtying any new buffers while we wait. */ sys_sync(); /* Turn off the display backlight */ save_backlight = backlight_enabled; if (save_backlight) pmu_enable_backlight(0); /* Give the disks a little time to actually finish writing */ for (wait = jiffies + (HZ/4); time_before(jiffies, wait); ) mb(); /* Disable all interrupts except pmu */ save_irqen = in_le32(IRQ_ENABLE); for (i = 0; i < 32; ++i) if (i != vias->intrs[0].line && (save_irqen & (1 << i))) disable_irq(i); asm volatile("mtdec %0" : : "r" (0x7fffffff)); /* Save the state of PCI config space for some slots */ pbook_pci_save(); /* Set the memory controller to keep the memory refreshed while we're asleep */ for (i = 0x403f; i >= 0x4000; --i) { out_be32(MEM_CTRL, i); do { x = (in_be32(MEM_CTRL) >> 16) & 0x3ff; } while (x == 0); if (x >= 0x100) break; } /* Ask the PMU to put us to sleep */ pmu_request(&sleep_req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T'); while (!sleep_req.complete) mb(); /* displacement-flush the L2 cache - necessary? */ for (p = KERNELBASE; p < KERNELBASE + 0x100000; p += 0x1000) i = *(volatile int *)p; asleep = 1; /* Put the CPU into sleep mode */ asm volatile("mfspr %0,1008" : "=r" (hid0) :); hid0 = (hid0 & ~(HID0_NAP | HID0_DOZE)) | HID0_SLEEP; asm volatile("mtspr 1008,%0" : : "r" (hid0)); local_save_flags(msr); msr |= MSR_POW | MSR_EE; local_irq_restore(msr); udelay(10); /* OK, we're awake again, start restoring things */ out_be32(MEM_CTRL, 0x3f); pbook_pci_restore(); /* wait for the PMU interrupt sequence to complete */ while (asleep) mb(); /* reenable interrupts */ for (i = 0; i < 32; ++i) if (i != vias->intrs[0].line && (save_irqen & (1 << i))) enable_irq(i); /* Notify drivers */ blocking_notifier_call_chain(&sleep_notifier_list, PBOOK_WAKE, NULL); /* reenable ADB autopoll */ pmu_adb_autopoll(adb_dev_map); /* Turn on the screen backlight, if it was on before */ if (save_backlight) pmu_enable_backlight(1); /* Wait for the hard disk to spin up */ return 0; } /* * Support for /dev/pmu device */ static int pmu_open(struct inode *inode, struct file *file) { return 0; } static ssize_t pmu_read(struct file *file, char *buf, size_t count, loff_t *ppos) { return 0; } static ssize_t pmu_write(struct file *file, const char *buf, size_t count, loff_t *ppos) { return 0; } static int pmu_ioctl(struct inode * inode, struct file *filp, u_int cmd, u_long arg) { int error; __u32 value; switch (cmd) { case PMU_IOC_SLEEP: return -ENOSYS; case PMU_IOC_GET_BACKLIGHT: return put_user(backlight_level, (__u32 *)arg); case PMU_IOC_SET_BACKLIGHT: error = get_user(value, (__u32 *)arg); if (!error) pmu_set_brightness(value); return error; case PMU_IOC_GET_MODEL: return put_user(pmu_kind, (__u32 *)arg); } return -EINVAL; } static struct file_operations pmu_device_fops = { .read = pmu_read, .write = pmu_write, .ioctl = pmu_ioctl, .open = pmu_open, }; static struct miscdevice pmu_device = { PMU_MINOR, "pmu", &pmu_device_fops }; void pmu_device_init(void) { if (!via) return; if (misc_register(&pmu_device) < 0) printk(KERN_ERR "via-pmu68k: cannot register misc device.\n"); } #endif /* CONFIG_PMAC_PBOOK */