/* * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "iw_cxgb4.h" static char *states[] = { "idle", "listen", "connecting", "mpa_wait_req", "mpa_req_sent", "mpa_req_rcvd", "mpa_rep_sent", "fpdu_mode", "aborting", "closing", "moribund", "dead", NULL, }; static int dack_mode = 1; module_param(dack_mode, int, 0644); MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)"); int c4iw_max_read_depth = 8; module_param(c4iw_max_read_depth, int, 0644); MODULE_PARM_DESC(c4iw_max_read_depth, "Per-connection max ORD/IRD (default=8)"); static int enable_tcp_timestamps; module_param(enable_tcp_timestamps, int, 0644); MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)"); static int enable_tcp_sack; module_param(enable_tcp_sack, int, 0644); MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)"); static int enable_tcp_window_scaling = 1; module_param(enable_tcp_window_scaling, int, 0644); MODULE_PARM_DESC(enable_tcp_window_scaling, "Enable tcp window scaling (default=1)"); int c4iw_debug; module_param(c4iw_debug, int, 0644); MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)"); static int peer2peer; module_param(peer2peer, int, 0644); MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)"); static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; module_param(p2p_type, int, 0644); MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: " "1=RDMA_READ 0=RDMA_WRITE (default 1)"); static int ep_timeout_secs = 60; module_param(ep_timeout_secs, int, 0644); MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout " "in seconds (default=60)"); static int mpa_rev = 1; module_param(mpa_rev, int, 0644); MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, " "1 is RFC0544 spec compliant, 2 is IETF MPA Peer Connect Draft" " compliant (default=1)"); static int markers_enabled; module_param(markers_enabled, int, 0644); MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)"); static int crc_enabled = 1; module_param(crc_enabled, int, 0644); MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)"); static int rcv_win = 256 * 1024; module_param(rcv_win, int, 0644); MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)"); static int snd_win = 128 * 1024; module_param(snd_win, int, 0644); MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)"); static struct workqueue_struct *workq; static struct sk_buff_head rxq; static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); static void ep_timeout(unsigned long arg); static void connect_reply_upcall(struct c4iw_ep *ep, int status); static LIST_HEAD(timeout_list); static spinlock_t timeout_lock; static void start_ep_timer(struct c4iw_ep *ep) { PDBG("%s ep %p\n", __func__, ep); if (timer_pending(&ep->timer)) { PDBG("%s stopped / restarted timer ep %p\n", __func__, ep); del_timer_sync(&ep->timer); } else c4iw_get_ep(&ep->com); ep->timer.expires = jiffies + ep_timeout_secs * HZ; ep->timer.data = (unsigned long)ep; ep->timer.function = ep_timeout; add_timer(&ep->timer); } static void stop_ep_timer(struct c4iw_ep *ep) { PDBG("%s ep %p\n", __func__, ep); if (!timer_pending(&ep->timer)) { printk(KERN_ERR "%s timer stopped when its not running! " "ep %p state %u\n", __func__, ep, ep->com.state); WARN_ON(1); return; } del_timer_sync(&ep->timer); c4iw_put_ep(&ep->com); } static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb, struct l2t_entry *l2e) { int error = 0; if (c4iw_fatal_error(rdev)) { kfree_skb(skb); PDBG("%s - device in error state - dropping\n", __func__); return -EIO; } error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e); if (error < 0) kfree_skb(skb); return error < 0 ? error : 0; } int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb) { int error = 0; if (c4iw_fatal_error(rdev)) { kfree_skb(skb); PDBG("%s - device in error state - dropping\n", __func__); return -EIO; } error = cxgb4_ofld_send(rdev->lldi.ports[0], skb); if (error < 0) kfree_skb(skb); return error < 0 ? error : 0; } static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb) { struct cpl_tid_release *req; skb = get_skb(skb, sizeof *req, GFP_KERNEL); if (!skb) return; req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req)); INIT_TP_WR(req, hwtid); OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid)); set_wr_txq(skb, CPL_PRIORITY_SETUP, 0); c4iw_ofld_send(rdev, skb); return; } static void set_emss(struct c4iw_ep *ep, u16 opt) { ep->emss = ep->com.dev->rdev.lldi.mtus[GET_TCPOPT_MSS(opt)] - 40; ep->mss = ep->emss; if (GET_TCPOPT_TSTAMP(opt)) ep->emss -= 12; if (ep->emss < 128) ep->emss = 128; PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, GET_TCPOPT_MSS(opt), ep->mss, ep->emss); } static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc) { enum c4iw_ep_state state; mutex_lock(&epc->mutex); state = epc->state; mutex_unlock(&epc->mutex); return state; } static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) { epc->state = new; } static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) { mutex_lock(&epc->mutex); PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]); __state_set(epc, new); mutex_unlock(&epc->mutex); return; } static void *alloc_ep(int size, gfp_t gfp) { struct c4iw_ep_common *epc; epc = kzalloc(size, gfp); if (epc) { kref_init(&epc->kref); mutex_init(&epc->mutex); c4iw_init_wr_wait(&epc->wr_wait); } PDBG("%s alloc ep %p\n", __func__, epc); return epc; } void _c4iw_free_ep(struct kref *kref) { struct c4iw_ep *ep; ep = container_of(kref, struct c4iw_ep, com.kref); PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]); if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) { cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid); dst_release(ep->dst); cxgb4_l2t_release(ep->l2t); } kfree(ep); } static void release_ep_resources(struct c4iw_ep *ep) { set_bit(RELEASE_RESOURCES, &ep->com.flags); c4iw_put_ep(&ep->com); } static int status2errno(int status) { switch (status) { case CPL_ERR_NONE: return 0; case CPL_ERR_CONN_RESET: return -ECONNRESET; case CPL_ERR_ARP_MISS: return -EHOSTUNREACH; case CPL_ERR_CONN_TIMEDOUT: return -ETIMEDOUT; case CPL_ERR_TCAM_FULL: return -ENOMEM; case CPL_ERR_CONN_EXIST: return -EADDRINUSE; default: return -EIO; } } /* * Try and reuse skbs already allocated... */ static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp) { if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) { skb_trim(skb, 0); skb_get(skb); skb_reset_transport_header(skb); } else { skb = alloc_skb(len, gfp); } return skb; } static struct rtable *find_route(struct c4iw_dev *dev, __be32 local_ip, __be32 peer_ip, __be16 local_port, __be16 peer_port, u8 tos) { struct rtable *rt; struct flowi4 fl4; rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip, peer_port, local_port, IPPROTO_TCP, tos, 0); if (IS_ERR(rt)) return NULL; return rt; } static void arp_failure_discard(void *handle, struct sk_buff *skb) { PDBG("%s c4iw_dev %p\n", __func__, handle); kfree_skb(skb); } /* * Handle an ARP failure for an active open. */ static void act_open_req_arp_failure(void *handle, struct sk_buff *skb) { printk(KERN_ERR MOD "ARP failure duing connect\n"); kfree_skb(skb); } /* * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant * and send it along. */ static void abort_arp_failure(void *handle, struct sk_buff *skb) { struct c4iw_rdev *rdev = handle; struct cpl_abort_req *req = cplhdr(skb); PDBG("%s rdev %p\n", __func__, rdev); req->cmd = CPL_ABORT_NO_RST; c4iw_ofld_send(rdev, skb); } static void send_flowc(struct c4iw_ep *ep, struct sk_buff *skb) { unsigned int flowclen = 80; struct fw_flowc_wr *flowc; int i; skb = get_skb(skb, flowclen, GFP_KERNEL); flowc = (struct fw_flowc_wr *)__skb_put(skb, flowclen); flowc->op_to_nparams = cpu_to_be32(FW_WR_OP(FW_FLOWC_WR) | FW_FLOWC_WR_NPARAMS(8)); flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16(DIV_ROUND_UP(flowclen, 16)) | FW_WR_FLOWID(ep->hwtid)); flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; flowc->mnemval[0].val = cpu_to_be32(PCI_FUNC(ep->com.dev->rdev.lldi.pdev->devfn) << 8); flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan); flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan); flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid); flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT; flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq); flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT; flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq); flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF; flowc->mnemval[6].val = cpu_to_be32(snd_win); flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS; flowc->mnemval[7].val = cpu_to_be32(ep->emss); /* Pad WR to 16 byte boundary */ flowc->mnemval[8].mnemonic = 0; flowc->mnemval[8].val = 0; for (i = 0; i < 9; i++) { flowc->mnemval[i].r4[0] = 0; flowc->mnemval[i].r4[1] = 0; flowc->mnemval[i].r4[2] = 0; } set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); c4iw_ofld_send(&ep->com.dev->rdev, skb); } static int send_halfclose(struct c4iw_ep *ep, gfp_t gfp) { struct cpl_close_con_req *req; struct sk_buff *skb; int wrlen = roundup(sizeof *req, 16); PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); skb = get_skb(NULL, wrlen, gfp); if (!skb) { printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__); return -ENOMEM; } set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); t4_set_arp_err_handler(skb, NULL, arp_failure_discard); req = (struct cpl_close_con_req *) skb_put(skb, wrlen); memset(req, 0, wrlen); INIT_TP_WR(req, ep->hwtid); OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid)); return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); } static int send_abort(struct c4iw_ep *ep, struct sk_buff *skb, gfp_t gfp) { struct cpl_abort_req *req; int wrlen = roundup(sizeof *req, 16); PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); skb = get_skb(skb, wrlen, gfp); if (!skb) { printk(KERN_ERR MOD "%s - failed to alloc skb.\n", __func__); return -ENOMEM; } set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); t4_set_arp_err_handler(skb, &ep->com.dev->rdev, abort_arp_failure); req = (struct cpl_abort_req *) skb_put(skb, wrlen); memset(req, 0, wrlen); INIT_TP_WR(req, ep->hwtid); OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid)); req->cmd = CPL_ABORT_SEND_RST; return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); } static int send_connect(struct c4iw_ep *ep) { struct cpl_act_open_req *req; struct sk_buff *skb; u64 opt0; u32 opt2; unsigned int mtu_idx; int wscale; int wrlen = roundup(sizeof *req, 16); PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid); skb = get_skb(NULL, wrlen, GFP_KERNEL); if (!skb) { printk(KERN_ERR MOD "%s - failed to alloc skb.\n", __func__); return -ENOMEM; } set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); cxgb4_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx); wscale = compute_wscale(rcv_win); opt0 = KEEP_ALIVE(1) | DELACK(1) | WND_SCALE(wscale) | MSS_IDX(mtu_idx) | L2T_IDX(ep->l2t->idx) | TX_CHAN(ep->tx_chan) | SMAC_SEL(ep->smac_idx) | DSCP(ep->tos) | ULP_MODE(ULP_MODE_TCPDDP) | RCV_BUFSIZ(rcv_win>>10); opt2 = RX_CHANNEL(0) | RSS_QUEUE_VALID | RSS_QUEUE(ep->rss_qid); if (enable_tcp_timestamps) opt2 |= TSTAMPS_EN(1); if (enable_tcp_sack) opt2 |= SACK_EN(1); if (wscale && enable_tcp_window_scaling) opt2 |= WND_SCALE_EN(1); t4_set_arp_err_handler(skb, NULL, act_open_req_arp_failure); req = (struct cpl_act_open_req *) skb_put(skb, wrlen); INIT_TP_WR(req, 0); OPCODE_TID(req) = cpu_to_be32( MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ((ep->rss_qid<<14)|ep->atid))); req->local_port = ep->com.local_addr.sin_port; req->peer_port = ep->com.remote_addr.sin_port; req->local_ip = ep->com.local_addr.sin_addr.s_addr; req->peer_ip = ep->com.remote_addr.sin_addr.s_addr; req->opt0 = cpu_to_be64(opt0); req->params = 0; req->opt2 = cpu_to_be32(opt2); return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); } static void send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb, u8 mpa_rev_to_use) { int mpalen, wrlen; struct fw_ofld_tx_data_wr *req; struct mpa_message *mpa; struct mpa_v2_conn_params mpa_v2_params; PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen); BUG_ON(skb_cloned(skb)); mpalen = sizeof(*mpa) + ep->plen; if (mpa_rev_to_use == 2) mpalen += sizeof(struct mpa_v2_conn_params); wrlen = roundup(mpalen + sizeof *req, 16); skb = get_skb(skb, wrlen, GFP_KERNEL); if (!skb) { connect_reply_upcall(ep, -ENOMEM); return; } set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen); memset(req, 0, wrlen); req->op_to_immdlen = cpu_to_be32( FW_WR_OP(FW_OFLD_TX_DATA_WR) | FW_WR_COMPL(1) | FW_WR_IMMDLEN(mpalen)); req->flowid_len16 = cpu_to_be32( FW_WR_FLOWID(ep->hwtid) | FW_WR_LEN16(wrlen >> 4)); req->plen = cpu_to_be32(mpalen); req->tunnel_to_proxy = cpu_to_be32( FW_OFLD_TX_DATA_WR_FLUSH(1) | FW_OFLD_TX_DATA_WR_SHOVE(1)); mpa = (struct mpa_message *)(req + 1); memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)); mpa->flags = (crc_enabled ? MPA_CRC : 0) | (markers_enabled ? MPA_MARKERS : 0) | (mpa_rev_to_use == 2 ? MPA_ENHANCED_RDMA_CONN : 0); mpa->private_data_size = htons(ep->plen); mpa->revision = mpa_rev_to_use; if (mpa_rev_to_use == 1) ep->tried_with_mpa_v1 = 1; if (mpa_rev_to_use == 2) { mpa->private_data_size += htons(sizeof(struct mpa_v2_conn_params)); mpa_v2_params.ird = htons((u16)ep->ird); mpa_v2_params.ord = htons((u16)ep->ord); if (peer2peer) { mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) mpa_v2_params.ord |= htons(MPA_V2_RDMA_WRITE_RTR); else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) mpa_v2_params.ord |= htons(MPA_V2_RDMA_READ_RTR); } memcpy(mpa->private_data, &mpa_v2_params, sizeof(struct mpa_v2_conn_params)); if (ep->plen) memcpy(mpa->private_data + sizeof(struct mpa_v2_conn_params), ep->mpa_pkt + sizeof(*mpa), ep->plen); } else if (ep->plen) memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen); /* * Reference the mpa skb. This ensures the data area * will remain in memory until the hw acks the tx. * Function fw4_ack() will deref it. */ skb_get(skb); t4_set_arp_err_handler(skb, NULL, arp_failure_discard); BUG_ON(ep->mpa_skb); ep->mpa_skb = skb; c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); start_ep_timer(ep); state_set(&ep->com, MPA_REQ_SENT); ep->mpa_attr.initiator = 1; return; } static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen) { int mpalen, wrlen; struct fw_ofld_tx_data_wr *req; struct mpa_message *mpa; struct sk_buff *skb; struct mpa_v2_conn_params mpa_v2_params; PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen); mpalen = sizeof(*mpa) + plen; if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) mpalen += sizeof(struct mpa_v2_conn_params); wrlen = roundup(mpalen + sizeof *req, 16); skb = get_skb(NULL, wrlen, GFP_KERNEL); if (!skb) { printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__); return -ENOMEM; } set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen); memset(req, 0, wrlen); req->op_to_immdlen = cpu_to_be32( FW_WR_OP(FW_OFLD_TX_DATA_WR) | FW_WR_COMPL(1) | FW_WR_IMMDLEN(mpalen)); req->flowid_len16 = cpu_to_be32( FW_WR_FLOWID(ep->hwtid) | FW_WR_LEN16(wrlen >> 4)); req->plen = cpu_to_be32(mpalen); req->tunnel_to_proxy = cpu_to_be32( FW_OFLD_TX_DATA_WR_FLUSH(1) | FW_OFLD_TX_DATA_WR_SHOVE(1)); mpa = (struct mpa_message *)(req + 1); memset(mpa, 0, sizeof(*mpa)); memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); mpa->flags = MPA_REJECT; mpa->revision = mpa_rev; mpa->private_data_size = htons(plen); if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { mpa->flags |= MPA_ENHANCED_RDMA_CONN; mpa->private_data_size += htons(sizeof(struct mpa_v2_conn_params)); mpa_v2_params.ird = htons(((u16)ep->ird) | (peer2peer ? MPA_V2_PEER2PEER_MODEL : 0)); mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ? (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE ? MPA_V2_RDMA_WRITE_RTR : p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ ? MPA_V2_RDMA_READ_RTR : 0) : 0)); memcpy(mpa->private_data, &mpa_v2_params, sizeof(struct mpa_v2_conn_params)); if (ep->plen) memcpy(mpa->private_data + sizeof(struct mpa_v2_conn_params), pdata, plen); } else if (plen) memcpy(mpa->private_data, pdata, plen); /* * Reference the mpa skb again. This ensures the data area * will remain in memory until the hw acks the tx. * Function fw4_ack() will deref it. */ skb_get(skb); set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); t4_set_arp_err_handler(skb, NULL, arp_failure_discard); BUG_ON(ep->mpa_skb); ep->mpa_skb = skb; return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); } static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen) { int mpalen, wrlen; struct fw_ofld_tx_data_wr *req; struct mpa_message *mpa; struct sk_buff *skb; struct mpa_v2_conn_params mpa_v2_params; PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen); mpalen = sizeof(*mpa) + plen; if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) mpalen += sizeof(struct mpa_v2_conn_params); wrlen = roundup(mpalen + sizeof *req, 16); skb = get_skb(NULL, wrlen, GFP_KERNEL); if (!skb) { printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__); return -ENOMEM; } set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen); memset(req, 0, wrlen); req->op_to_immdlen = cpu_to_be32( FW_WR_OP(FW_OFLD_TX_DATA_WR) | FW_WR_COMPL(1) | FW_WR_IMMDLEN(mpalen)); req->flowid_len16 = cpu_to_be32( FW_WR_FLOWID(ep->hwtid) | FW_WR_LEN16(wrlen >> 4)); req->plen = cpu_to_be32(mpalen); req->tunnel_to_proxy = cpu_to_be32( FW_OFLD_TX_DATA_WR_FLUSH(1) | FW_OFLD_TX_DATA_WR_SHOVE(1)); mpa = (struct mpa_message *)(req + 1); memset(mpa, 0, sizeof(*mpa)); memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) | (markers_enabled ? MPA_MARKERS : 0); mpa->revision = ep->mpa_attr.version; mpa->private_data_size = htons(plen); if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { mpa->flags |= MPA_ENHANCED_RDMA_CONN; mpa->private_data_size += htons(sizeof(struct mpa_v2_conn_params)); mpa_v2_params.ird = htons((u16)ep->ird); mpa_v2_params.ord = htons((u16)ep->ord); if (peer2peer && (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED)) { mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) mpa_v2_params.ord |= htons(MPA_V2_RDMA_WRITE_RTR); else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) mpa_v2_params.ord |= htons(MPA_V2_RDMA_READ_RTR); } memcpy(mpa->private_data, &mpa_v2_params, sizeof(struct mpa_v2_conn_params)); if (ep->plen) memcpy(mpa->private_data + sizeof(struct mpa_v2_conn_params), pdata, plen); } else if (plen) memcpy(mpa->private_data, pdata, plen); /* * Reference the mpa skb. This ensures the data area * will remain in memory until the hw acks the tx. * Function fw4_ack() will deref it. */ skb_get(skb); t4_set_arp_err_handler(skb, NULL, arp_failure_discard); ep->mpa_skb = skb; state_set(&ep->com, MPA_REP_SENT); return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); } static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct cpl_act_establish *req = cplhdr(skb); unsigned int tid = GET_TID(req); unsigned int atid = GET_TID_TID(ntohl(req->tos_atid)); struct tid_info *t = dev->rdev.lldi.tids; ep = lookup_atid(t, atid); PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid, be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn)); dst_confirm(ep->dst); /* setup the hwtid for this connection */ ep->hwtid = tid; cxgb4_insert_tid(t, ep, tid); ep->snd_seq = be32_to_cpu(req->snd_isn); ep->rcv_seq = be32_to_cpu(req->rcv_isn); set_emss(ep, ntohs(req->tcp_opt)); /* dealloc the atid */ cxgb4_free_atid(t, atid); /* start MPA negotiation */ send_flowc(ep, NULL); if (ep->retry_with_mpa_v1) send_mpa_req(ep, skb, 1); else send_mpa_req(ep, skb, mpa_rev); return 0; } static void close_complete_upcall(struct c4iw_ep *ep) { struct iw_cm_event event; PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_CLOSE; if (ep->com.cm_id) { PDBG("close complete delivered ep %p cm_id %p tid %u\n", ep, ep->com.cm_id, ep->hwtid); ep->com.cm_id->event_handler(ep->com.cm_id, &event); ep->com.cm_id->rem_ref(ep->com.cm_id); ep->com.cm_id = NULL; ep->com.qp = NULL; } } static int abort_connection(struct c4iw_ep *ep, struct sk_buff *skb, gfp_t gfp) { PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); close_complete_upcall(ep); state_set(&ep->com, ABORTING); return send_abort(ep, skb, gfp); } static void peer_close_upcall(struct c4iw_ep *ep) { struct iw_cm_event event; PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_DISCONNECT; if (ep->com.cm_id) { PDBG("peer close delivered ep %p cm_id %p tid %u\n", ep, ep->com.cm_id, ep->hwtid); ep->com.cm_id->event_handler(ep->com.cm_id, &event); } } static void peer_abort_upcall(struct c4iw_ep *ep) { struct iw_cm_event event; PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_CLOSE; event.status = -ECONNRESET; if (ep->com.cm_id) { PDBG("abort delivered ep %p cm_id %p tid %u\n", ep, ep->com.cm_id, ep->hwtid); ep->com.cm_id->event_handler(ep->com.cm_id, &event); ep->com.cm_id->rem_ref(ep->com.cm_id); ep->com.cm_id = NULL; ep->com.qp = NULL; } } static void connect_reply_upcall(struct c4iw_ep *ep, int status) { struct iw_cm_event event; PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_CONNECT_REPLY; event.status = status; event.local_addr = ep->com.local_addr; event.remote_addr = ep->com.remote_addr; if ((status == 0) || (status == -ECONNREFUSED)) { if (!ep->tried_with_mpa_v1) { /* this means MPA_v2 is used */ event.private_data_len = ep->plen - sizeof(struct mpa_v2_conn_params); event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + sizeof(struct mpa_v2_conn_params); } else { /* this means MPA_v1 is used */ event.private_data_len = ep->plen; event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); } } PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status); ep->com.cm_id->event_handler(ep->com.cm_id, &event); if (status < 0) { ep->com.cm_id->rem_ref(ep->com.cm_id); ep->com.cm_id = NULL; ep->com.qp = NULL; } } static void connect_request_upcall(struct c4iw_ep *ep) { struct iw_cm_event event; PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_CONNECT_REQUEST; event.local_addr = ep->com.local_addr; event.remote_addr = ep->com.remote_addr; event.provider_data = ep; if (!ep->tried_with_mpa_v1) { /* this means MPA_v2 is used */ event.ord = ep->ord; event.ird = ep->ird; event.private_data_len = ep->plen - sizeof(struct mpa_v2_conn_params); event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + sizeof(struct mpa_v2_conn_params); } else { /* this means MPA_v1 is used. Send max supported */ event.ord = c4iw_max_read_depth; event.ird = c4iw_max_read_depth; event.private_data_len = ep->plen; event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); } if (state_read(&ep->parent_ep->com) != DEAD) { c4iw_get_ep(&ep->com); ep->parent_ep->com.cm_id->event_handler( ep->parent_ep->com.cm_id, &event); } c4iw_put_ep(&ep->parent_ep->com); ep->parent_ep = NULL; } static void established_upcall(struct c4iw_ep *ep) { struct iw_cm_event event; PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_ESTABLISHED; event.ird = ep->ird; event.ord = ep->ord; if (ep->com.cm_id) { PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); ep->com.cm_id->event_handler(ep->com.cm_id, &event); } } static int update_rx_credits(struct c4iw_ep *ep, u32 credits) { struct cpl_rx_data_ack *req; struct sk_buff *skb; int wrlen = roundup(sizeof *req, 16); PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits); skb = get_skb(NULL, wrlen, GFP_KERNEL); if (!skb) { printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n"); return 0; } req = (struct cpl_rx_data_ack *) skb_put(skb, wrlen); memset(req, 0, wrlen); INIT_TP_WR(req, ep->hwtid); OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid)); req->credit_dack = cpu_to_be32(credits | RX_FORCE_ACK(1) | F_RX_DACK_CHANGE | V_RX_DACK_MODE(dack_mode)); set_wr_txq(skb, CPL_PRIORITY_ACK, ep->ctrlq_idx); c4iw_ofld_send(&ep->com.dev->rdev, skb); return credits; } static void process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb) { struct mpa_message *mpa; struct mpa_v2_conn_params *mpa_v2_params; u16 plen; u16 resp_ird, resp_ord; u8 rtr_mismatch = 0, insuff_ird = 0; struct c4iw_qp_attributes attrs; enum c4iw_qp_attr_mask mask; int err; PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); /* * Stop mpa timer. If it expired, then the state has * changed and we bail since ep_timeout already aborted * the connection. */ stop_ep_timer(ep); if (state_read(&ep->com) != MPA_REQ_SENT) return; /* * If we get more than the supported amount of private data * then we must fail this connection. */ if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { err = -EINVAL; goto err; } /* * copy the new data into our accumulation buffer. */ skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), skb->len); ep->mpa_pkt_len += skb->len; /* * if we don't even have the mpa message, then bail. */ if (ep->mpa_pkt_len < sizeof(*mpa)) return; mpa = (struct mpa_message *) ep->mpa_pkt; /* Validate MPA header. */ if (mpa->revision > mpa_rev) { printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d," " Received = %d\n", __func__, mpa_rev, mpa->revision); err = -EPROTO; goto err; } if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) { err = -EPROTO; goto err; } plen = ntohs(mpa->private_data_size); /* * Fail if there's too much private data. */ if (plen > MPA_MAX_PRIVATE_DATA) { err = -EPROTO; goto err; } /* * If plen does not account for pkt size */ if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { err = -EPROTO; goto err; } ep->plen = (u8) plen; /* * If we don't have all the pdata yet, then bail. * We'll continue process when more data arrives. */ if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) return; if (mpa->flags & MPA_REJECT) { err = -ECONNREFUSED; goto err; } /* * If we get here we have accumulated the entire mpa * start reply message including private data. And * the MPA header is valid. */ state_set(&ep->com, FPDU_MODE); ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; ep->mpa_attr.recv_marker_enabled = markers_enabled; ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; ep->mpa_attr.version = mpa->revision; ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; if (mpa->revision == 2) { ep->mpa_attr.enhanced_rdma_conn = mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; if (ep->mpa_attr.enhanced_rdma_conn) { mpa_v2_params = (struct mpa_v2_conn_params *) (ep->mpa_pkt + sizeof(*mpa)); resp_ird = ntohs(mpa_v2_params->ird) & MPA_V2_IRD_ORD_MASK; resp_ord = ntohs(mpa_v2_params->ord) & MPA_V2_IRD_ORD_MASK; /* * This is a double-check. Ideally, below checks are * not required since ird/ord stuff has been taken * care of in c4iw_accept_cr */ if ((ep->ird < resp_ord) || (ep->ord > resp_ird)) { err = -ENOMEM; ep->ird = resp_ord; ep->ord = resp_ird; insuff_ird = 1; } if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) { if (ntohs(mpa_v2_params->ord) & MPA_V2_RDMA_WRITE_RTR) ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_RDMA_WRITE; else if (ntohs(mpa_v2_params->ord) & MPA_V2_RDMA_READ_RTR) ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; } } } else if (mpa->revision == 1) if (peer2peer) ep->mpa_attr.p2p_type = p2p_type; PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, " "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = " "%d\n", __func__, ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, ep->mpa_attr.p2p_type, p2p_type); /* * If responder's RTR does not match with that of initiator, assign * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not * generated when moving QP to RTS state. * A TERM message will be sent after QP has moved to RTS state */ if ((ep->mpa_attr.version == 2) && (ep->mpa_attr.p2p_type != p2p_type)) { ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; rtr_mismatch = 1; } attrs.mpa_attr = ep->mpa_attr; attrs.max_ird = ep->ird; attrs.max_ord = ep->ord; attrs.llp_stream_handle = ep; attrs.next_state = C4IW_QP_STATE_RTS; mask = C4IW_QP_ATTR_NEXT_STATE | C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; /* bind QP and TID with INIT_WR */ err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, mask, &attrs, 1); if (err) goto err; /* * If responder's RTR requirement did not match with what initiator * supports, generate TERM message */ if (rtr_mismatch) { printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__); attrs.layer_etype = LAYER_MPA | DDP_LLP; attrs.ecode = MPA_NOMATCH_RTR; attrs.next_state = C4IW_QP_STATE_TERMINATE; err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 0); err = -ENOMEM; goto out; } /* * Generate TERM if initiator IRD is not sufficient for responder * provided ORD. Currently, we do the same behaviour even when * responder provided IRD is also not sufficient as regards to * initiator ORD. */ if (insuff_ird) { printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n", __func__); attrs.layer_etype = LAYER_MPA | DDP_LLP; attrs.ecode = MPA_INSUFF_IRD; attrs.next_state = C4IW_QP_STATE_TERMINATE; err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 0); err = -ENOMEM; goto out; } goto out; err: state_set(&ep->com, ABORTING); send_abort(ep, skb, GFP_KERNEL); out: connect_reply_upcall(ep, err); return; } static void process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb) { struct mpa_message *mpa; struct mpa_v2_conn_params *mpa_v2_params; u16 plen; PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); if (state_read(&ep->com) != MPA_REQ_WAIT) return; /* * If we get more than the supported amount of private data * then we must fail this connection. */ if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { stop_ep_timer(ep); abort_connection(ep, skb, GFP_KERNEL); return; } PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); /* * Copy the new data into our accumulation buffer. */ skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), skb->len); ep->mpa_pkt_len += skb->len; /* * If we don't even have the mpa message, then bail. * We'll continue process when more data arrives. */ if (ep->mpa_pkt_len < sizeof(*mpa)) return; PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); stop_ep_timer(ep); mpa = (struct mpa_message *) ep->mpa_pkt; /* * Validate MPA Header. */ if (mpa->revision > mpa_rev) { printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d," " Received = %d\n", __func__, mpa_rev, mpa->revision); abort_connection(ep, skb, GFP_KERNEL); return; } if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) { abort_connection(ep, skb, GFP_KERNEL); return; } plen = ntohs(mpa->private_data_size); /* * Fail if there's too much private data. */ if (plen > MPA_MAX_PRIVATE_DATA) { abort_connection(ep, skb, GFP_KERNEL); return; } /* * If plen does not account for pkt size */ if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { abort_connection(ep, skb, GFP_KERNEL); return; } ep->plen = (u8) plen; /* * If we don't have all the pdata yet, then bail. */ if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) return; /* * If we get here we have accumulated the entire mpa * start reply message including private data. */ ep->mpa_attr.initiator = 0; ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; ep->mpa_attr.recv_marker_enabled = markers_enabled; ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; ep->mpa_attr.version = mpa->revision; if (mpa->revision == 1) ep->tried_with_mpa_v1 = 1; ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; if (mpa->revision == 2) { ep->mpa_attr.enhanced_rdma_conn = mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; if (ep->mpa_attr.enhanced_rdma_conn) { mpa_v2_params = (struct mpa_v2_conn_params *) (ep->mpa_pkt + sizeof(*mpa)); ep->ird = ntohs(mpa_v2_params->ird) & MPA_V2_IRD_ORD_MASK; ep->ord = ntohs(mpa_v2_params->ord) & MPA_V2_IRD_ORD_MASK; if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) if (peer2peer) { if (ntohs(mpa_v2_params->ord) & MPA_V2_RDMA_WRITE_RTR) ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_RDMA_WRITE; else if (ntohs(mpa_v2_params->ord) & MPA_V2_RDMA_READ_RTR) ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; } } } else if (mpa->revision == 1) if (peer2peer) ep->mpa_attr.p2p_type = p2p_type; PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, " "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__, ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, ep->mpa_attr.p2p_type); state_set(&ep->com, MPA_REQ_RCVD); /* drive upcall */ connect_request_upcall(ep); return; } static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct cpl_rx_data *hdr = cplhdr(skb); unsigned int dlen = ntohs(hdr->len); unsigned int tid = GET_TID(hdr); struct tid_info *t = dev->rdev.lldi.tids; ep = lookup_tid(t, tid); PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen); skb_pull(skb, sizeof(*hdr)); skb_trim(skb, dlen); ep->rcv_seq += dlen; BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen)); /* update RX credits */ update_rx_credits(ep, dlen); switch (state_read(&ep->com)) { case MPA_REQ_SENT: process_mpa_reply(ep, skb); break; case MPA_REQ_WAIT: process_mpa_request(ep, skb); break; case MPA_REP_SENT: break; default: printk(KERN_ERR MOD "%s Unexpected streaming data." " ep %p state %d tid %u\n", __func__, ep, state_read(&ep->com), ep->hwtid); /* * The ep will timeout and inform the ULP of the failure. * See ep_timeout(). */ break; } return 0; } static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct cpl_abort_rpl_rss *rpl = cplhdr(skb); int release = 0; unsigned int tid = GET_TID(rpl); struct tid_info *t = dev->rdev.lldi.tids; ep = lookup_tid(t, tid); PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); BUG_ON(!ep); mutex_lock(&ep->com.mutex); switch (ep->com.state) { case ABORTING: __state_set(&ep->com, DEAD); release = 1; break; default: printk(KERN_ERR "%s ep %p state %d\n", __func__, ep, ep->com.state); break; } mutex_unlock(&ep->com.mutex); if (release) release_ep_resources(ep); return 0; } /* * Return whether a failed active open has allocated a TID */ static inline int act_open_has_tid(int status) { return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST && status != CPL_ERR_ARP_MISS; } static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct cpl_act_open_rpl *rpl = cplhdr(skb); unsigned int atid = GET_TID_TID(GET_AOPEN_ATID( ntohl(rpl->atid_status))); struct tid_info *t = dev->rdev.lldi.tids; int status = GET_AOPEN_STATUS(ntohl(rpl->atid_status)); ep = lookup_atid(t, atid); PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid, status, status2errno(status)); if (status == CPL_ERR_RTX_NEG_ADVICE) { printk(KERN_WARNING MOD "Connection problems for atid %u\n", atid); return 0; } connect_reply_upcall(ep, status2errno(status)); state_set(&ep->com, DEAD); if (status && act_open_has_tid(status)) cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl)); cxgb4_free_atid(t, atid); dst_release(ep->dst); cxgb4_l2t_release(ep->l2t); c4iw_put_ep(&ep->com); return 0; } static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_pass_open_rpl *rpl = cplhdr(skb); struct tid_info *t = dev->rdev.lldi.tids; unsigned int stid = GET_TID(rpl); struct c4iw_listen_ep *ep = lookup_stid(t, stid); if (!ep) { printk(KERN_ERR MOD "stid %d lookup failure!\n", stid); return 0; } PDBG("%s ep %p status %d error %d\n", __func__, ep, rpl->status, status2errno(rpl->status)); c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status)); return 0; } static int listen_stop(struct c4iw_listen_ep *ep) { struct sk_buff *skb; struct cpl_close_listsvr_req *req; PDBG("%s ep %p\n", __func__, ep); skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); if (!skb) { printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__); return -ENOMEM; } req = (struct cpl_close_listsvr_req *) skb_put(skb, sizeof(*req)); INIT_TP_WR(req, 0); OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid)); req->reply_ctrl = cpu_to_be16( QUEUENO(ep->com.dev->rdev.lldi.rxq_ids[0])); set_wr_txq(skb, CPL_PRIORITY_SETUP, 0); return c4iw_ofld_send(&ep->com.dev->rdev, skb); } static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_close_listsvr_rpl *rpl = cplhdr(skb); struct tid_info *t = dev->rdev.lldi.tids; unsigned int stid = GET_TID(rpl); struct c4iw_listen_ep *ep = lookup_stid(t, stid); PDBG("%s ep %p\n", __func__, ep); c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status)); return 0; } static void accept_cr(struct c4iw_ep *ep, __be32 peer_ip, struct sk_buff *skb, struct cpl_pass_accept_req *req) { struct cpl_pass_accept_rpl *rpl; unsigned int mtu_idx; u64 opt0; u32 opt2; int wscale; PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); BUG_ON(skb_cloned(skb)); skb_trim(skb, sizeof(*rpl)); skb_get(skb); cxgb4_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx); wscale = compute_wscale(rcv_win); opt0 = KEEP_ALIVE(1) | DELACK(1) | WND_SCALE(wscale) | MSS_IDX(mtu_idx) | L2T_IDX(ep->l2t->idx) | TX_CHAN(ep->tx_chan) | SMAC_SEL(ep->smac_idx) | DSCP(ep->tos) | ULP_MODE(ULP_MODE_TCPDDP) | RCV_BUFSIZ(rcv_win>>10); opt2 = RX_CHANNEL(0) | RSS_QUEUE_VALID | RSS_QUEUE(ep->rss_qid); if (enable_tcp_timestamps && req->tcpopt.tstamp) opt2 |= TSTAMPS_EN(1); if (enable_tcp_sack && req->tcpopt.sack) opt2 |= SACK_EN(1); if (wscale && enable_tcp_window_scaling) opt2 |= WND_SCALE_EN(1); rpl = cplhdr(skb); INIT_TP_WR(rpl, ep->hwtid); OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid)); rpl->opt0 = cpu_to_be64(opt0); rpl->opt2 = cpu_to_be32(opt2); set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); return; } static void reject_cr(struct c4iw_dev *dev, u32 hwtid, __be32 peer_ip, struct sk_buff *skb) { PDBG("%s c4iw_dev %p tid %u peer_ip %x\n", __func__, dev, hwtid, peer_ip); BUG_ON(skb_cloned(skb)); skb_trim(skb, sizeof(struct cpl_tid_release)); skb_get(skb); release_tid(&dev->rdev, hwtid, skb); return; } static void get_4tuple(struct cpl_pass_accept_req *req, __be32 *local_ip, __be32 *peer_ip, __be16 *local_port, __be16 *peer_port) { int eth_len = G_ETH_HDR_LEN(be32_to_cpu(req->hdr_len)); int ip_len = G_IP_HDR_LEN(be32_to_cpu(req->hdr_len)); struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len); struct tcphdr *tcp = (struct tcphdr *) ((u8 *)(req + 1) + eth_len + ip_len); PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__, ntohl(ip->saddr), ntohl(ip->daddr), ntohs(tcp->source), ntohs(tcp->dest)); *peer_ip = ip->saddr; *local_ip = ip->daddr; *peer_port = tcp->source; *local_port = tcp->dest; return; } static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *child_ep, *parent_ep; struct cpl_pass_accept_req *req = cplhdr(skb); unsigned int stid = GET_POPEN_TID(ntohl(req->tos_stid)); struct tid_info *t = dev->rdev.lldi.tids; unsigned int hwtid = GET_TID(req); struct neighbour *neigh; struct dst_entry *dst; struct l2t_entry *l2t; struct rtable *rt; __be32 local_ip, peer_ip; __be16 local_port, peer_port; struct net_device *pdev; u32 tx_chan, smac_idx; u16 rss_qid; u32 mtu; int step; int txq_idx, ctrlq_idx; parent_ep = lookup_stid(t, stid); PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid); get_4tuple(req, &local_ip, &peer_ip, &local_port, &peer_port); if (state_read(&parent_ep->com) != LISTEN) { printk(KERN_ERR "%s - listening ep not in LISTEN\n", __func__); goto reject; } /* Find output route */ rt = find_route(dev, local_ip, peer_ip, local_port, peer_port, GET_POPEN_TOS(ntohl(req->tos_stid))); if (!rt) { printk(KERN_ERR MOD "%s - failed to find dst entry!\n", __func__); goto reject; } dst = &rt->dst; rcu_read_lock(); neigh = dst_get_neighbour(dst); if (neigh->dev->flags & IFF_LOOPBACK) { pdev = ip_dev_find(&init_net, peer_ip); BUG_ON(!pdev); l2t = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, pdev, 0); mtu = pdev->mtu; tx_chan = cxgb4_port_chan(pdev); smac_idx = (cxgb4_port_viid(pdev) & 0x7F) << 1; step = dev->rdev.lldi.ntxq / dev->rdev.lldi.nchan; txq_idx = cxgb4_port_idx(pdev) * step; ctrlq_idx = cxgb4_port_idx(pdev); step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan; rss_qid = dev->rdev.lldi.rxq_ids[cxgb4_port_idx(pdev) * step]; dev_put(pdev); } else { l2t = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, neigh->dev, 0); mtu = dst_mtu(dst); tx_chan = cxgb4_port_chan(neigh->dev); smac_idx = (cxgb4_port_viid(neigh->dev) & 0x7F) << 1; step = dev->rdev.lldi.ntxq / dev->rdev.lldi.nchan; txq_idx = cxgb4_port_idx(neigh->dev) * step; ctrlq_idx = cxgb4_port_idx(neigh->dev); step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan; rss_qid = dev->rdev.lldi.rxq_ids[ cxgb4_port_idx(neigh->dev) * step]; } rcu_read_unlock(); if (!l2t) { printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n", __func__); dst_release(dst); goto reject; } child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL); if (!child_ep) { printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n", __func__); cxgb4_l2t_release(l2t); dst_release(dst); goto reject; } state_set(&child_ep->com, CONNECTING); child_ep->com.dev = dev; child_ep->com.cm_id = NULL; child_ep->com.local_addr.sin_family = PF_INET; child_ep->com.local_addr.sin_port = local_port; child_ep->com.local_addr.sin_addr.s_addr = local_ip; child_ep->com.remote_addr.sin_family = PF_INET; child_ep->com.remote_addr.sin_port = peer_port; child_ep->com.remote_addr.sin_addr.s_addr = peer_ip; c4iw_get_ep(&parent_ep->com); child_ep->parent_ep = parent_ep; child_ep->tos = GET_POPEN_TOS(ntohl(req->tos_stid)); child_ep->l2t = l2t; child_ep->dst = dst; child_ep->hwtid = hwtid; child_ep->tx_chan = tx_chan; child_ep->smac_idx = smac_idx; child_ep->rss_qid = rss_qid; child_ep->mtu = mtu; child_ep->txq_idx = txq_idx; child_ep->ctrlq_idx = ctrlq_idx; PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__, tx_chan, smac_idx, rss_qid); init_timer(&child_ep->timer); cxgb4_insert_tid(t, child_ep, hwtid); accept_cr(child_ep, peer_ip, skb, req); goto out; reject: reject_cr(dev, hwtid, peer_ip, skb); out: return 0; } static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct cpl_pass_establish *req = cplhdr(skb); struct tid_info *t = dev->rdev.lldi.tids; unsigned int tid = GET_TID(req); ep = lookup_tid(t, tid); PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); ep->snd_seq = be32_to_cpu(req->snd_isn); ep->rcv_seq = be32_to_cpu(req->rcv_isn); set_emss(ep, ntohs(req->tcp_opt)); dst_confirm(ep->dst); state_set(&ep->com, MPA_REQ_WAIT); start_ep_timer(ep); send_flowc(ep, skb); return 0; } static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_peer_close *hdr = cplhdr(skb); struct c4iw_ep *ep; struct c4iw_qp_attributes attrs; int disconnect = 1; int release = 0; struct tid_info *t = dev->rdev.lldi.tids; unsigned int tid = GET_TID(hdr); int ret; ep = lookup_tid(t, tid); PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); dst_confirm(ep->dst); mutex_lock(&ep->com.mutex); switch (ep->com.state) { case MPA_REQ_WAIT: __state_set(&ep->com, CLOSING); break; case MPA_REQ_SENT: __state_set(&ep->com, CLOSING); connect_reply_upcall(ep, -ECONNRESET); break; case MPA_REQ_RCVD: /* * We're gonna mark this puppy DEAD, but keep * the reference on it until the ULP accepts or * rejects the CR. Also wake up anyone waiting * in rdma connection migration (see c4iw_accept_cr()). */ __state_set(&ep->com, CLOSING); PDBG("waking up ep %p tid %u\n", ep, ep->hwtid); c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); break; case MPA_REP_SENT: __state_set(&ep->com, CLOSING); PDBG("waking up ep %p tid %u\n", ep, ep->hwtid); c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); break; case FPDU_MODE: start_ep_timer(ep); __state_set(&ep->com, CLOSING); attrs.next_state = C4IW_QP_STATE_CLOSING; ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); if (ret != -ECONNRESET) { peer_close_upcall(ep); disconnect = 1; } break; case ABORTING: disconnect = 0; break; case CLOSING: __state_set(&ep->com, MORIBUND); disconnect = 0; break; case MORIBUND: stop_ep_timer(ep); if (ep->com.cm_id && ep->com.qp) { attrs.next_state = C4IW_QP_STATE_IDLE; c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); } close_complete_upcall(ep); __state_set(&ep->com, DEAD); release = 1; disconnect = 0; break; case DEAD: disconnect = 0; break; default: BUG_ON(1); } mutex_unlock(&ep->com.mutex); if (disconnect) c4iw_ep_disconnect(ep, 0, GFP_KERNEL); if (release) release_ep_resources(ep); return 0; } /* * Returns whether an ABORT_REQ_RSS message is a negative advice. */ static int is_neg_adv_abort(unsigned int status) { return status == CPL_ERR_RTX_NEG_ADVICE || status == CPL_ERR_PERSIST_NEG_ADVICE; } static int c4iw_reconnect(struct c4iw_ep *ep) { int err = 0; struct rtable *rt; struct net_device *pdev; struct neighbour *neigh; int step; PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id); init_timer(&ep->timer); /* * Allocate an active TID to initiate a TCP connection. */ ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep); if (ep->atid == -1) { printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__); err = -ENOMEM; goto fail2; } /* find a route */ rt = find_route(ep->com.dev, ep->com.cm_id->local_addr.sin_addr.s_addr, ep->com.cm_id->remote_addr.sin_addr.s_addr, ep->com.cm_id->local_addr.sin_port, ep->com.cm_id->remote_addr.sin_port, 0); if (!rt) { printk(KERN_ERR MOD "%s - cannot find route.\n", __func__); err = -EHOSTUNREACH; goto fail3; } ep->dst = &rt->dst; rcu_read_lock(); neigh = dst_get_neighbour(ep->dst); /* get a l2t entry */ if (neigh->dev->flags & IFF_LOOPBACK) { PDBG("%s LOOPBACK\n", __func__); pdev = ip_dev_find(&init_net, ep->com.cm_id->remote_addr.sin_addr.s_addr); ep->l2t = cxgb4_l2t_get(ep->com.dev->rdev.lldi.l2t, neigh, pdev, 0); ep->mtu = pdev->mtu; ep->tx_chan = cxgb4_port_chan(pdev); ep->smac_idx = (cxgb4_port_viid(pdev) & 0x7F) << 1; step = ep->com.dev->rdev.lldi.ntxq / ep->com.dev->rdev.lldi.nchan; ep->txq_idx = cxgb4_port_idx(pdev) * step; step = ep->com.dev->rdev.lldi.nrxq / ep->com.dev->rdev.lldi.nchan; ep->ctrlq_idx = cxgb4_port_idx(pdev); ep->rss_qid = ep->com.dev->rdev.lldi.rxq_ids[ cxgb4_port_idx(pdev) * step]; dev_put(pdev); } else { ep->l2t = cxgb4_l2t_get(ep->com.dev->rdev.lldi.l2t, neigh, neigh->dev, 0); ep->mtu = dst_mtu(ep->dst); ep->tx_chan = cxgb4_port_chan(neigh->dev); ep->smac_idx = (cxgb4_port_viid(neigh->dev) & 0x7F) << 1; step = ep->com.dev->rdev.lldi.ntxq / ep->com.dev->rdev.lldi.nchan; ep->txq_idx = cxgb4_port_idx(neigh->dev) * step; ep->ctrlq_idx = cxgb4_port_idx(neigh->dev); step = ep->com.dev->rdev.lldi.nrxq / ep->com.dev->rdev.lldi.nchan; ep->rss_qid = ep->com.dev->rdev.lldi.rxq_ids[ cxgb4_port_idx(neigh->dev) * step]; } rcu_read_unlock(); if (!ep->l2t) { printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__); err = -ENOMEM; goto fail4; } PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, ep->l2t->idx); state_set(&ep->com, CONNECTING); ep->tos = 0; /* send connect request to rnic */ err = send_connect(ep); if (!err) goto out; cxgb4_l2t_release(ep->l2t); fail4: dst_release(ep->dst); fail3: cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); fail2: /* * remember to send notification to upper layer. * We are in here so the upper layer is not aware that this is * re-connect attempt and so, upper layer is still waiting for * response of 1st connect request. */ connect_reply_upcall(ep, -ECONNRESET); c4iw_put_ep(&ep->com); out: return err; } static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_abort_req_rss *req = cplhdr(skb); struct c4iw_ep *ep; struct cpl_abort_rpl *rpl; struct sk_buff *rpl_skb; struct c4iw_qp_attributes attrs; int ret; int release = 0; struct tid_info *t = dev->rdev.lldi.tids; unsigned int tid = GET_TID(req); ep = lookup_tid(t, tid); if (is_neg_adv_abort(req->status)) { PDBG("%s neg_adv_abort ep %p tid %u\n", __func__, ep, ep->hwtid); return 0; } PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid, ep->com.state); /* * Wake up any threads in rdma_init() or rdma_fini(). * However, this is not needed if com state is just * MPA_REQ_SENT */ if (ep->com.state != MPA_REQ_SENT) c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); mutex_lock(&ep->com.mutex); switch (ep->com.state) { case CONNECTING: break; case MPA_REQ_WAIT: stop_ep_timer(ep); break; case MPA_REQ_SENT: stop_ep_timer(ep); if (mpa_rev == 2 && ep->tried_with_mpa_v1) connect_reply_upcall(ep, -ECONNRESET); else { /* * we just don't send notification upwards because we * want to retry with mpa_v1 without upper layers even * knowing it. * * do some housekeeping so as to re-initiate the * connection */ PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__, mpa_rev); ep->retry_with_mpa_v1 = 1; } break; case MPA_REP_SENT: break; case MPA_REQ_RCVD: break; case MORIBUND: case CLOSING: stop_ep_timer(ep); /*FALLTHROUGH*/ case FPDU_MODE: if (ep->com.cm_id && ep->com.qp) { attrs.next_state = C4IW_QP_STATE_ERROR; ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); if (ret) printk(KERN_ERR MOD "%s - qp <- error failed!\n", __func__); } peer_abort_upcall(ep); break; case ABORTING: break; case DEAD: PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__); mutex_unlock(&ep->com.mutex); return 0; default: BUG_ON(1); break; } dst_confirm(ep->dst); if (ep->com.state != ABORTING) { __state_set(&ep->com, DEAD); /* we don't release if we want to retry with mpa_v1 */ if (!ep->retry_with_mpa_v1) release = 1; } mutex_unlock(&ep->com.mutex); rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL); if (!rpl_skb) { printk(KERN_ERR MOD "%s - cannot allocate skb!\n", __func__); release = 1; goto out; } set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl)); INIT_TP_WR(rpl, ep->hwtid); OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid)); rpl->cmd = CPL_ABORT_NO_RST; c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb); out: if (release) release_ep_resources(ep); /* retry with mpa-v1 */ if (ep && ep->retry_with_mpa_v1) { cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid); dst_release(ep->dst); cxgb4_l2t_release(ep->l2t); c4iw_reconnect(ep); } return 0; } static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct c4iw_qp_attributes attrs; struct cpl_close_con_rpl *rpl = cplhdr(skb); int release = 0; struct tid_info *t = dev->rdev.lldi.tids; unsigned int tid = GET_TID(rpl); ep = lookup_tid(t, tid); PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); BUG_ON(!ep); /* The cm_id may be null if we failed to connect */ mutex_lock(&ep->com.mutex); switch (ep->com.state) { case CLOSING: __state_set(&ep->com, MORIBUND); break; case MORIBUND: stop_ep_timer(ep); if ((ep->com.cm_id) && (ep->com.qp)) { attrs.next_state = C4IW_QP_STATE_IDLE; c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); } close_complete_upcall(ep); __state_set(&ep->com, DEAD); release = 1; break; case ABORTING: case DEAD: break; default: BUG_ON(1); break; } mutex_unlock(&ep->com.mutex); if (release) release_ep_resources(ep); return 0; } static int terminate(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_rdma_terminate *rpl = cplhdr(skb); struct tid_info *t = dev->rdev.lldi.tids; unsigned int tid = GET_TID(rpl); struct c4iw_ep *ep; struct c4iw_qp_attributes attrs; ep = lookup_tid(t, tid); BUG_ON(!ep); if (ep && ep->com.qp) { printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid, ep->com.qp->wq.sq.qid); attrs.next_state = C4IW_QP_STATE_TERMINATE; c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); } else printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid); return 0; } /* * Upcall from the adapter indicating data has been transmitted. * For us its just the single MPA request or reply. We can now free * the skb holding the mpa message. */ static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb) { struct c4iw_ep *ep; struct cpl_fw4_ack *hdr = cplhdr(skb); u8 credits = hdr->credits; unsigned int tid = GET_TID(hdr); struct tid_info *t = dev->rdev.lldi.tids; ep = lookup_tid(t, tid); PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits); if (credits == 0) { PDBG("%s 0 credit ack ep %p tid %u state %u\n", __func__, ep, ep->hwtid, state_read(&ep->com)); return 0; } dst_confirm(ep->dst); if (ep->mpa_skb) { PDBG("%s last streaming msg ack ep %p tid %u state %u " "initiator %u freeing skb\n", __func__, ep, ep->hwtid, state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0); kfree_skb(ep->mpa_skb); ep->mpa_skb = NULL; } return 0; } int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len) { int err; struct c4iw_ep *ep = to_ep(cm_id); PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); if (state_read(&ep->com) == DEAD) { c4iw_put_ep(&ep->com); return -ECONNRESET; } BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD); if (mpa_rev == 0) abort_connection(ep, NULL, GFP_KERNEL); else { err = send_mpa_reject(ep, pdata, pdata_len); err = c4iw_ep_disconnect(ep, 0, GFP_KERNEL); } c4iw_put_ep(&ep->com); return 0; } int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) { int err; struct c4iw_qp_attributes attrs; enum c4iw_qp_attr_mask mask; struct c4iw_ep *ep = to_ep(cm_id); struct c4iw_dev *h = to_c4iw_dev(cm_id->device); struct c4iw_qp *qp = get_qhp(h, conn_param->qpn); PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); if (state_read(&ep->com) == DEAD) { err = -ECONNRESET; goto err; } BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD); BUG_ON(!qp); if ((conn_param->ord > c4iw_max_read_depth) || (conn_param->ird > c4iw_max_read_depth)) { abort_connection(ep, NULL, GFP_KERNEL); err = -EINVAL; goto err; } if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { if (conn_param->ord > ep->ird) { ep->ird = conn_param->ird; ep->ord = conn_param->ord; send_mpa_reject(ep, conn_param->private_data, conn_param->private_data_len); abort_connection(ep, NULL, GFP_KERNEL); err = -ENOMEM; goto err; } if (conn_param->ird > ep->ord) { if (!ep->ord) conn_param->ird = 1; else { abort_connection(ep, NULL, GFP_KERNEL); err = -ENOMEM; goto err; } } } ep->ird = conn_param->ird; ep->ord = conn_param->ord; if (ep->mpa_attr.version != 2) if (peer2peer && ep->ird == 0) ep->ird = 1; PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord); cm_id->add_ref(cm_id); ep->com.cm_id = cm_id; ep->com.qp = qp; /* bind QP to EP and move to RTS */ attrs.mpa_attr = ep->mpa_attr; attrs.max_ird = ep->ird; attrs.max_ord = ep->ord; attrs.llp_stream_handle = ep; attrs.next_state = C4IW_QP_STATE_RTS; /* bind QP and TID with INIT_WR */ mask = C4IW_QP_ATTR_NEXT_STATE | C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, mask, &attrs, 1); if (err) goto err1; err = send_mpa_reply(ep, conn_param->private_data, conn_param->private_data_len); if (err) goto err1; state_set(&ep->com, FPDU_MODE); established_upcall(ep); c4iw_put_ep(&ep->com); return 0; err1: ep->com.cm_id = NULL; ep->com.qp = NULL; cm_id->rem_ref(cm_id); err: c4iw_put_ep(&ep->com); return err; } int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) { int err = 0; struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); struct c4iw_ep *ep; struct rtable *rt; struct net_device *pdev; struct neighbour *neigh; int step; if ((conn_param->ord > c4iw_max_read_depth) || (conn_param->ird > c4iw_max_read_depth)) { err = -EINVAL; goto out; } ep = alloc_ep(sizeof(*ep), GFP_KERNEL); if (!ep) { printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__); err = -ENOMEM; goto out; } init_timer(&ep->timer); ep->plen = conn_param->private_data_len; if (ep->plen) memcpy(ep->mpa_pkt + sizeof(struct mpa_message), conn_param->private_data, ep->plen); ep->ird = conn_param->ird; ep->ord = conn_param->ord; if (peer2peer && ep->ord == 0) ep->ord = 1; cm_id->add_ref(cm_id); ep->com.dev = dev; ep->com.cm_id = cm_id; ep->com.qp = get_qhp(dev, conn_param->qpn); BUG_ON(!ep->com.qp); PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn, ep->com.qp, cm_id); /* * Allocate an active TID to initiate a TCP connection. */ ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep); if (ep->atid == -1) { printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__); err = -ENOMEM; goto fail2; } PDBG("%s saddr 0x%x sport 0x%x raddr 0x%x rport 0x%x\n", __func__, ntohl(cm_id->local_addr.sin_addr.s_addr), ntohs(cm_id->local_addr.sin_port), ntohl(cm_id->remote_addr.sin_addr.s_addr), ntohs(cm_id->remote_addr.sin_port)); /* find a route */ rt = find_route(dev, cm_id->local_addr.sin_addr.s_addr, cm_id->remote_addr.sin_addr.s_addr, cm_id->local_addr.sin_port, cm_id->remote_addr.sin_port, 0); if (!rt) { printk(KERN_ERR MOD "%s - cannot find route.\n", __func__); err = -EHOSTUNREACH; goto fail3; } ep->dst = &rt->dst; rcu_read_lock(); neigh = dst_get_neighbour(ep->dst); /* get a l2t entry */ if (neigh->dev->flags & IFF_LOOPBACK) { PDBG("%s LOOPBACK\n", __func__); pdev = ip_dev_find(&init_net, cm_id->remote_addr.sin_addr.s_addr); ep->l2t = cxgb4_l2t_get(ep->com.dev->rdev.lldi.l2t, neigh, pdev, 0); ep->mtu = pdev->mtu; ep->tx_chan = cxgb4_port_chan(pdev); ep->smac_idx = (cxgb4_port_viid(pdev) & 0x7F) << 1; step = ep->com.dev->rdev.lldi.ntxq / ep->com.dev->rdev.lldi.nchan; ep->txq_idx = cxgb4_port_idx(pdev) * step; step = ep->com.dev->rdev.lldi.nrxq / ep->com.dev->rdev.lldi.nchan; ep->ctrlq_idx = cxgb4_port_idx(pdev); ep->rss_qid = ep->com.dev->rdev.lldi.rxq_ids[ cxgb4_port_idx(pdev) * step]; dev_put(pdev); } else { ep->l2t = cxgb4_l2t_get(ep->com.dev->rdev.lldi.l2t, neigh, neigh->dev, 0); ep->mtu = dst_mtu(ep->dst); ep->tx_chan = cxgb4_port_chan(neigh->dev); ep->smac_idx = (cxgb4_port_viid(neigh->dev) & 0x7F) << 1; step = ep->com.dev->rdev.lldi.ntxq / ep->com.dev->rdev.lldi.nchan; ep->txq_idx = cxgb4_port_idx(neigh->dev) * step; ep->ctrlq_idx = cxgb4_port_idx(neigh->dev); step = ep->com.dev->rdev.lldi.nrxq / ep->com.dev->rdev.lldi.nchan; ep->rss_qid = ep->com.dev->rdev.lldi.rxq_ids[ cxgb4_port_idx(neigh->dev) * step]; ep->retry_with_mpa_v1 = 0; ep->tried_with_mpa_v1 = 0; } rcu_read_unlock(); if (!ep->l2t) { printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__); err = -ENOMEM; goto fail4; } PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, ep->l2t->idx); state_set(&ep->com, CONNECTING); ep->tos = 0; ep->com.local_addr = cm_id->local_addr; ep->com.remote_addr = cm_id->remote_addr; /* send connect request to rnic */ err = send_connect(ep); if (!err) goto out; cxgb4_l2t_release(ep->l2t); fail4: dst_release(ep->dst); fail3: cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); fail2: cm_id->rem_ref(cm_id); c4iw_put_ep(&ep->com); out: return err; } int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog) { int err = 0; struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); struct c4iw_listen_ep *ep; might_sleep(); ep = alloc_ep(sizeof(*ep), GFP_KERNEL); if (!ep) { printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__); err = -ENOMEM; goto fail1; } PDBG("%s ep %p\n", __func__, ep); cm_id->add_ref(cm_id); ep->com.cm_id = cm_id; ep->com.dev = dev; ep->backlog = backlog; ep->com.local_addr = cm_id->local_addr; /* * Allocate a server TID. */ ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, PF_INET, ep); if (ep->stid == -1) { printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__); err = -ENOMEM; goto fail2; } state_set(&ep->com, LISTEN); c4iw_init_wr_wait(&ep->com.wr_wait); err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], ep->stid, ep->com.local_addr.sin_addr.s_addr, ep->com.local_addr.sin_port, ep->com.dev->rdev.lldi.rxq_ids[0]); if (err) goto fail3; /* wait for pass_open_rpl */ err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait, 0, 0, __func__); if (!err) { cm_id->provider_data = ep; goto out; } fail3: cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, PF_INET); fail2: cm_id->rem_ref(cm_id); c4iw_put_ep(&ep->com); fail1: out: return err; } int c4iw_destroy_listen(struct iw_cm_id *cm_id) { int err; struct c4iw_listen_ep *ep = to_listen_ep(cm_id); PDBG("%s ep %p\n", __func__, ep); might_sleep(); state_set(&ep->com, DEAD); c4iw_init_wr_wait(&ep->com.wr_wait); err = listen_stop(ep); if (err) goto done; err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait, 0, 0, __func__); cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, PF_INET); done: cm_id->rem_ref(cm_id); c4iw_put_ep(&ep->com); return err; } int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp) { int ret = 0; int close = 0; int fatal = 0; struct c4iw_rdev *rdev; mutex_lock(&ep->com.mutex); PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep, states[ep->com.state], abrupt); rdev = &ep->com.dev->rdev; if (c4iw_fatal_error(rdev)) { fatal = 1; close_complete_upcall(ep); ep->com.state = DEAD; } switch (ep->com.state) { case MPA_REQ_WAIT: case MPA_REQ_SENT: case MPA_REQ_RCVD: case MPA_REP_SENT: case FPDU_MODE: close = 1; if (abrupt) ep->com.state = ABORTING; else { ep->com.state = CLOSING; start_ep_timer(ep); } set_bit(CLOSE_SENT, &ep->com.flags); break; case CLOSING: if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) { close = 1; if (abrupt) { stop_ep_timer(ep); ep->com.state = ABORTING; } else ep->com.state = MORIBUND; } break; case MORIBUND: case ABORTING: case DEAD: PDBG("%s ignoring disconnect ep %p state %u\n", __func__, ep, ep->com.state); break; default: BUG(); break; } if (close) { if (abrupt) { close_complete_upcall(ep); ret = send_abort(ep, NULL, gfp); } else ret = send_halfclose(ep, gfp); if (ret) fatal = 1; } mutex_unlock(&ep->com.mutex); if (fatal) release_ep_resources(ep); return ret; } static int async_event(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_fw6_msg *rpl = cplhdr(skb); c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]); return 0; } /* * These are the real handlers that are called from a * work queue. */ static c4iw_handler_func work_handlers[NUM_CPL_CMDS] = { [CPL_ACT_ESTABLISH] = act_establish, [CPL_ACT_OPEN_RPL] = act_open_rpl, [CPL_RX_DATA] = rx_data, [CPL_ABORT_RPL_RSS] = abort_rpl, [CPL_ABORT_RPL] = abort_rpl, [CPL_PASS_OPEN_RPL] = pass_open_rpl, [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl, [CPL_PASS_ACCEPT_REQ] = pass_accept_req, [CPL_PASS_ESTABLISH] = pass_establish, [CPL_PEER_CLOSE] = peer_close, [CPL_ABORT_REQ_RSS] = peer_abort, [CPL_CLOSE_CON_RPL] = close_con_rpl, [CPL_RDMA_TERMINATE] = terminate, [CPL_FW4_ACK] = fw4_ack, [CPL_FW6_MSG] = async_event }; static void process_timeout(struct c4iw_ep *ep) { struct c4iw_qp_attributes attrs; int abort = 1; mutex_lock(&ep->com.mutex); PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid, ep->com.state); switch (ep->com.state) { case MPA_REQ_SENT: __state_set(&ep->com, ABORTING); connect_reply_upcall(ep, -ETIMEDOUT); break; case MPA_REQ_WAIT: __state_set(&ep->com, ABORTING); break; case CLOSING: case MORIBUND: if (ep->com.cm_id && ep->com.qp) { attrs.next_state = C4IW_QP_STATE_ERROR; c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); } __state_set(&ep->com, ABORTING); break; default: printk(KERN_ERR "%s unexpected state ep %p tid %u state %u\n", __func__, ep, ep->hwtid, ep->com.state); WARN_ON(1); abort = 0; } mutex_unlock(&ep->com.mutex); if (abort) abort_connection(ep, NULL, GFP_KERNEL); c4iw_put_ep(&ep->com); } static void process_timedout_eps(void) { struct c4iw_ep *ep; spin_lock_irq(&timeout_lock); while (!list_empty(&timeout_list)) { struct list_head *tmp; tmp = timeout_list.next; list_del(tmp); spin_unlock_irq(&timeout_lock); ep = list_entry(tmp, struct c4iw_ep, entry); process_timeout(ep); spin_lock_irq(&timeout_lock); } spin_unlock_irq(&timeout_lock); } static void process_work(struct work_struct *work) { struct sk_buff *skb = NULL; struct c4iw_dev *dev; struct cpl_act_establish *rpl; unsigned int opcode; int ret; while ((skb = skb_dequeue(&rxq))) { rpl = cplhdr(skb); dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); opcode = rpl->ot.opcode; BUG_ON(!work_handlers[opcode]); ret = work_handlers[opcode](dev, skb); if (!ret) kfree_skb(skb); } process_timedout_eps(); } static DECLARE_WORK(skb_work, process_work); static void ep_timeout(unsigned long arg) { struct c4iw_ep *ep = (struct c4iw_ep *)arg; spin_lock(&timeout_lock); list_add_tail(&ep->entry, &timeout_list); spin_unlock(&timeout_lock); queue_work(workq, &skb_work); } /* * All the CM events are handled on a work queue to have a safe context. */ static int sched(struct c4iw_dev *dev, struct sk_buff *skb) { /* * Save dev in the skb->cb area. */ *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev; /* * Queue the skb and schedule the worker thread. */ skb_queue_tail(&rxq, skb); queue_work(workq, &skb_work); return 0; } static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_set_tcb_rpl *rpl = cplhdr(skb); if (rpl->status != CPL_ERR_NONE) { printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u " "for tid %u\n", rpl->status, GET_TID(rpl)); } kfree_skb(skb); return 0; } static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_fw6_msg *rpl = cplhdr(skb); struct c4iw_wr_wait *wr_waitp; int ret; PDBG("%s type %u\n", __func__, rpl->type); switch (rpl->type) { case 1: ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff); wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1]; PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret); if (wr_waitp) c4iw_wake_up(wr_waitp, ret ? -ret : 0); kfree_skb(skb); break; case 2: sched(dev, skb); break; default: printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__, rpl->type); kfree_skb(skb); break; } return 0; } static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb) { struct cpl_abort_req_rss *req = cplhdr(skb); struct c4iw_ep *ep; struct tid_info *t = dev->rdev.lldi.tids; unsigned int tid = GET_TID(req); ep = lookup_tid(t, tid); if (is_neg_adv_abort(req->status)) { PDBG("%s neg_adv_abort ep %p tid %u\n", __func__, ep, ep->hwtid); kfree_skb(skb); return 0; } PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid, ep->com.state); /* * Wake up any threads in rdma_init() or rdma_fini(). * However, this is not needed if com state is just * MPA_REQ_SENT */ if (ep->com.state != MPA_REQ_SENT) c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); sched(dev, skb); return 0; } /* * Most upcalls from the T4 Core go to sched() to * schedule the processing on a work queue. */ c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = { [CPL_ACT_ESTABLISH] = sched, [CPL_ACT_OPEN_RPL] = sched, [CPL_RX_DATA] = sched, [CPL_ABORT_RPL_RSS] = sched, [CPL_ABORT_RPL] = sched, [CPL_PASS_OPEN_RPL] = sched, [CPL_CLOSE_LISTSRV_RPL] = sched, [CPL_PASS_ACCEPT_REQ] = sched, [CPL_PASS_ESTABLISH] = sched, [CPL_PEER_CLOSE] = sched, [CPL_CLOSE_CON_RPL] = sched, [CPL_ABORT_REQ_RSS] = peer_abort_intr, [CPL_RDMA_TERMINATE] = sched, [CPL_FW4_ACK] = sched, [CPL_SET_TCB_RPL] = set_tcb_rpl, [CPL_FW6_MSG] = fw6_msg }; int __init c4iw_cm_init(void) { spin_lock_init(&timeout_lock); skb_queue_head_init(&rxq); workq = create_singlethread_workqueue("iw_cxgb4"); if (!workq) return -ENOMEM; return 0; } void __exit c4iw_cm_term(void) { WARN_ON(!list_empty(&timeout_list)); flush_workqueue(workq); destroy_workqueue(workq); }