/* * Node information (ConfigROM) collection and management. * * Copyright (C) 2000 Andreas E. Bombe * 2001-2003 Ben Collins * * This code is licensed under the GPL. See the file COPYING in the root * directory of the kernel sources for details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "csr.h" #include "highlevel.h" #include "hosts.h" #include "ieee1394.h" #include "ieee1394_core.h" #include "ieee1394_hotplug.h" #include "ieee1394_types.h" #include "ieee1394_transactions.h" #include "nodemgr.h" static int ignore_drivers; module_param(ignore_drivers, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(ignore_drivers, "Disable automatic probing for drivers."); struct nodemgr_csr_info { struct hpsb_host *host; nodeid_t nodeid; unsigned int generation; unsigned int speed_unverified:1; }; /* * Correct the speed map entry. This is necessary * - for nodes with link speed < phy speed, * - for 1394b nodes with negotiated phy port speed < IEEE1394_SPEED_MAX. * A possible speed is determined by trial and error, using quadlet reads. */ static int nodemgr_check_speed(struct nodemgr_csr_info *ci, u64 addr, quadlet_t *buffer) { quadlet_t q; u8 i, *speed, old_speed, good_speed; int error; speed = &(ci->host->speed[NODEID_TO_NODE(ci->nodeid)]); old_speed = *speed; good_speed = IEEE1394_SPEED_MAX + 1; /* Try every speed from S100 to old_speed. * If we did it the other way around, a too low speed could be caught * if the retry succeeded for some other reason, e.g. because the link * just finished its initialization. */ for (i = IEEE1394_SPEED_100; i <= old_speed; i++) { *speed = i; error = hpsb_read(ci->host, ci->nodeid, ci->generation, addr, &q, sizeof(quadlet_t)); if (error) break; *buffer = q; good_speed = i; } if (good_speed <= IEEE1394_SPEED_MAX) { HPSB_DEBUG("Speed probe of node " NODE_BUS_FMT " yields %s", NODE_BUS_ARGS(ci->host, ci->nodeid), hpsb_speedto_str[good_speed]); *speed = good_speed; ci->speed_unverified = 0; return 0; } *speed = old_speed; return error; } static int nodemgr_bus_read(struct csr1212_csr *csr, u64 addr, u16 length, void *buffer, void *__ci) { struct nodemgr_csr_info *ci = (struct nodemgr_csr_info*)__ci; int i, error; for (i = 1; ; i++) { error = hpsb_read(ci->host, ci->nodeid, ci->generation, addr, buffer, length); if (!error) { ci->speed_unverified = 0; break; } /* Give up after 3rd failure. */ if (i == 3) break; /* The ieee1394_core guessed the node's speed capability from * the self ID. Check whether a lower speed works. */ if (ci->speed_unverified && length == sizeof(quadlet_t)) { error = nodemgr_check_speed(ci, addr, buffer); if (!error) break; } if (msleep_interruptible(334)) return -EINTR; } return error; } static int nodemgr_get_max_rom(quadlet_t *bus_info_data, void *__ci) { return (be32_to_cpu(bus_info_data[2]) >> 8) & 0x3; } static struct csr1212_bus_ops nodemgr_csr_ops = { .bus_read = nodemgr_bus_read, .get_max_rom = nodemgr_get_max_rom }; /* * Basically what we do here is start off retrieving the bus_info block. * From there will fill in some info about the node, verify it is of IEEE * 1394 type, and that the crc checks out ok. After that we start off with * the root directory, and subdirectories. To do this, we retrieve the * quadlet header for a directory, find out the length, and retrieve the * complete directory entry (be it a leaf or a directory). We then process * it and add the info to our structure for that particular node. * * We verify CRC's along the way for each directory/block/leaf. The entire * node structure is generic, and simply stores the information in a way * that's easy to parse by the protocol interface. */ /* * The nodemgr relies heavily on the Driver Model for device callbacks and * driver/device mappings. The old nodemgr used to handle all this itself, * but now we are much simpler because of the LDM. */ struct host_info { struct hpsb_host *host; struct list_head list; struct task_struct *thread; }; static int nodemgr_bus_match(struct device * dev, struct device_driver * drv); static int nodemgr_uevent(struct device *dev, struct kobj_uevent_env *env); static void nodemgr_resume_ne(struct node_entry *ne); static void nodemgr_remove_ne(struct node_entry *ne); static struct node_entry *find_entry_by_guid(u64 guid); struct bus_type ieee1394_bus_type = { .name = "ieee1394", .match = nodemgr_bus_match, }; static void host_cls_release(struct device *dev) { put_device(&container_of((dev), struct hpsb_host, host_dev)->device); } struct class hpsb_host_class = { .name = "ieee1394_host", .dev_release = host_cls_release, }; static void ne_cls_release(struct device *dev) { put_device(&container_of((dev), struct node_entry, node_dev)->device); } static struct class nodemgr_ne_class = { .name = "ieee1394_node", .dev_release = ne_cls_release, }; static void ud_cls_release(struct device *dev) { put_device(&container_of((dev), struct unit_directory, unit_dev)->device); } /* The name here is only so that unit directory hotplug works with old * style hotplug, which only ever did unit directories anyway. */ static struct class nodemgr_ud_class = { .name = "ieee1394", .dev_release = ud_cls_release, .dev_uevent = nodemgr_uevent, }; static struct hpsb_highlevel nodemgr_highlevel; static void nodemgr_release_ud(struct device *dev) { struct unit_directory *ud = container_of(dev, struct unit_directory, device); if (ud->vendor_name_kv) csr1212_release_keyval(ud->vendor_name_kv); if (ud->model_name_kv) csr1212_release_keyval(ud->model_name_kv); kfree(ud); } static void nodemgr_release_ne(struct device *dev) { struct node_entry *ne = container_of(dev, struct node_entry, device); if (ne->vendor_name_kv) csr1212_release_keyval(ne->vendor_name_kv); kfree(ne); } static void nodemgr_release_host(struct device *dev) { struct hpsb_host *host = container_of(dev, struct hpsb_host, device); csr1212_destroy_csr(host->csr.rom); kfree(host); } static int nodemgr_ud_platform_data; static struct device nodemgr_dev_template_ud = { .bus = &ieee1394_bus_type, .release = nodemgr_release_ud, .platform_data = &nodemgr_ud_platform_data, }; static struct device nodemgr_dev_template_ne = { .bus = &ieee1394_bus_type, .release = nodemgr_release_ne, }; /* This dummy driver prevents the host devices from being scanned. We have no * useful drivers for them yet, and there would be a deadlock possible if the * driver core scans the host device while the host's low-level driver (i.e. * the host's parent device) is being removed. */ static struct device_driver nodemgr_mid_layer_driver = { .bus = &ieee1394_bus_type, .name = "nodemgr", .owner = THIS_MODULE, }; struct device nodemgr_dev_template_host = { .bus = &ieee1394_bus_type, .release = nodemgr_release_host, }; #define fw_attr(class, class_type, field, type, format_string) \ static ssize_t fw_show_##class##_##field (struct device *dev, struct device_attribute *attr, char *buf)\ { \ class_type *class; \ class = container_of(dev, class_type, device); \ return sprintf(buf, format_string, (type)class->field); \ } \ static struct device_attribute dev_attr_##class##_##field = { \ .attr = {.name = __stringify(field), .mode = S_IRUGO }, \ .show = fw_show_##class##_##field, \ }; #define fw_attr_td(class, class_type, td_kv) \ static ssize_t fw_show_##class##_##td_kv (struct device *dev, struct device_attribute *attr, char *buf)\ { \ int len; \ class_type *class = container_of(dev, class_type, device); \ len = (class->td_kv->value.leaf.len - 2) * sizeof(quadlet_t); \ memcpy(buf, \ CSR1212_TEXTUAL_DESCRIPTOR_LEAF_DATA(class->td_kv), \ len); \ while (buf[len - 1] == '\0') \ len--; \ buf[len++] = '\n'; \ buf[len] = '\0'; \ return len; \ } \ static struct device_attribute dev_attr_##class##_##td_kv = { \ .attr = {.name = __stringify(td_kv), .mode = S_IRUGO }, \ .show = fw_show_##class##_##td_kv, \ }; #define fw_drv_attr(field, type, format_string) \ static ssize_t fw_drv_show_##field (struct device_driver *drv, char *buf) \ { \ struct hpsb_protocol_driver *driver; \ driver = container_of(drv, struct hpsb_protocol_driver, driver); \ return sprintf(buf, format_string, (type)driver->field);\ } \ static struct driver_attribute driver_attr_drv_##field = { \ .attr = {.name = __stringify(field), .mode = S_IRUGO }, \ .show = fw_drv_show_##field, \ }; static ssize_t fw_show_ne_bus_options(struct device *dev, struct device_attribute *attr, char *buf) { struct node_entry *ne = container_of(dev, struct node_entry, device); return sprintf(buf, "IRMC(%d) CMC(%d) ISC(%d) BMC(%d) PMC(%d) GEN(%d) " "LSPD(%d) MAX_REC(%d) MAX_ROM(%d) CYC_CLK_ACC(%d)\n", ne->busopt.irmc, ne->busopt.cmc, ne->busopt.isc, ne->busopt.bmc, ne->busopt.pmc, ne->busopt.generation, ne->busopt.lnkspd, ne->busopt.max_rec, ne->busopt.max_rom, ne->busopt.cyc_clk_acc); } static DEVICE_ATTR(bus_options,S_IRUGO,fw_show_ne_bus_options,NULL); #ifdef HPSB_DEBUG_TLABELS static ssize_t fw_show_ne_tlabels_free(struct device *dev, struct device_attribute *attr, char *buf) { struct node_entry *ne = container_of(dev, struct node_entry, device); unsigned long flags; unsigned long *tp = ne->host->tl_pool[NODEID_TO_NODE(ne->nodeid)].map; int tf; spin_lock_irqsave(&hpsb_tlabel_lock, flags); tf = 64 - bitmap_weight(tp, 64); spin_unlock_irqrestore(&hpsb_tlabel_lock, flags); return sprintf(buf, "%d\n", tf); } static DEVICE_ATTR(tlabels_free,S_IRUGO,fw_show_ne_tlabels_free,NULL); static ssize_t fw_show_ne_tlabels_mask(struct device *dev, struct device_attribute *attr, char *buf) { struct node_entry *ne = container_of(dev, struct node_entry, device); unsigned long flags; unsigned long *tp = ne->host->tl_pool[NODEID_TO_NODE(ne->nodeid)].map; u64 tm; spin_lock_irqsave(&hpsb_tlabel_lock, flags); #if (BITS_PER_LONG <= 32) tm = ((u64)tp[0] << 32) + tp[1]; #else tm = tp[0]; #endif spin_unlock_irqrestore(&hpsb_tlabel_lock, flags); return sprintf(buf, "0x%016llx\n", (unsigned long long)tm); } static DEVICE_ATTR(tlabels_mask, S_IRUGO, fw_show_ne_tlabels_mask, NULL); #endif /* HPSB_DEBUG_TLABELS */ static ssize_t fw_set_ignore_driver(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct unit_directory *ud = container_of(dev, struct unit_directory, device); int state = simple_strtoul(buf, NULL, 10); if (state == 1) { ud->ignore_driver = 1; device_release_driver(dev); } else if (state == 0) ud->ignore_driver = 0; return count; } static ssize_t fw_get_ignore_driver(struct device *dev, struct device_attribute *attr, char *buf) { struct unit_directory *ud = container_of(dev, struct unit_directory, device); return sprintf(buf, "%d\n", ud->ignore_driver); } static DEVICE_ATTR(ignore_driver, S_IWUSR | S_IRUGO, fw_get_ignore_driver, fw_set_ignore_driver); static ssize_t fw_set_destroy_node(struct bus_type *bus, const char *buf, size_t count) { struct node_entry *ne; u64 guid = (u64)simple_strtoull(buf, NULL, 16); ne = find_entry_by_guid(guid); if (ne == NULL || !ne->in_limbo) return -EINVAL; nodemgr_remove_ne(ne); return count; } static ssize_t fw_get_destroy_node(struct bus_type *bus, char *buf) { return sprintf(buf, "You can destroy in_limbo nodes by writing their GUID to this file\n"); } static BUS_ATTR(destroy_node, S_IWUSR | S_IRUGO, fw_get_destroy_node, fw_set_destroy_node); static ssize_t fw_set_rescan(struct bus_type *bus, const char *buf, size_t count) { int error = 0; if (simple_strtoul(buf, NULL, 10) == 1) error = bus_rescan_devices(&ieee1394_bus_type); return error ? error : count; } static ssize_t fw_get_rescan(struct bus_type *bus, char *buf) { return sprintf(buf, "You can force a rescan of the bus for " "drivers by writing a 1 to this file\n"); } static BUS_ATTR(rescan, S_IWUSR | S_IRUGO, fw_get_rescan, fw_set_rescan); static ssize_t fw_set_ignore_drivers(struct bus_type *bus, const char *buf, size_t count) { int state = simple_strtoul(buf, NULL, 10); if (state == 1) ignore_drivers = 1; else if (state == 0) ignore_drivers = 0; return count; } static ssize_t fw_get_ignore_drivers(struct bus_type *bus, char *buf) { return sprintf(buf, "%d\n", ignore_drivers); } static BUS_ATTR(ignore_drivers, S_IWUSR | S_IRUGO, fw_get_ignore_drivers, fw_set_ignore_drivers); struct bus_attribute *const fw_bus_attrs[] = { &bus_attr_destroy_node, &bus_attr_rescan, &bus_attr_ignore_drivers, NULL }; fw_attr(ne, struct node_entry, capabilities, unsigned int, "0x%06x\n") fw_attr(ne, struct node_entry, nodeid, unsigned int, "0x%04x\n") fw_attr(ne, struct node_entry, vendor_id, unsigned int, "0x%06x\n") fw_attr_td(ne, struct node_entry, vendor_name_kv) fw_attr(ne, struct node_entry, guid, unsigned long long, "0x%016Lx\n") fw_attr(ne, struct node_entry, guid_vendor_id, unsigned int, "0x%06x\n") fw_attr(ne, struct node_entry, in_limbo, int, "%d\n"); static struct device_attribute *const fw_ne_attrs[] = { &dev_attr_ne_guid, &dev_attr_ne_guid_vendor_id, &dev_attr_ne_capabilities, &dev_attr_ne_vendor_id, &dev_attr_ne_nodeid, &dev_attr_bus_options, #ifdef HPSB_DEBUG_TLABELS &dev_attr_tlabels_free, &dev_attr_tlabels_mask, #endif }; fw_attr(ud, struct unit_directory, address, unsigned long long, "0x%016Lx\n") fw_attr(ud, struct unit_directory, length, int, "%d\n") /* These are all dependent on the value being provided */ fw_attr(ud, struct unit_directory, vendor_id, unsigned int, "0x%06x\n") fw_attr(ud, struct unit_directory, model_id, unsigned int, "0x%06x\n") fw_attr(ud, struct unit_directory, specifier_id, unsigned int, "0x%06x\n") fw_attr(ud, struct unit_directory, version, unsigned int, "0x%06x\n") fw_attr_td(ud, struct unit_directory, vendor_name_kv) fw_attr_td(ud, struct unit_directory, model_name_kv) static struct device_attribute *const fw_ud_attrs[] = { &dev_attr_ud_address, &dev_attr_ud_length, &dev_attr_ignore_driver, }; fw_attr(host, struct hpsb_host, node_count, int, "%d\n") fw_attr(host, struct hpsb_host, selfid_count, int, "%d\n") fw_attr(host, struct hpsb_host, nodes_active, int, "%d\n") fw_attr(host, struct hpsb_host, in_bus_reset, int, "%d\n") fw_attr(host, struct hpsb_host, is_root, int, "%d\n") fw_attr(host, struct hpsb_host, is_cycmst, int, "%d\n") fw_attr(host, struct hpsb_host, is_irm, int, "%d\n") fw_attr(host, struct hpsb_host, is_busmgr, int, "%d\n") static struct device_attribute *const fw_host_attrs[] = { &dev_attr_host_node_count, &dev_attr_host_selfid_count, &dev_attr_host_nodes_active, &dev_attr_host_in_bus_reset, &dev_attr_host_is_root, &dev_attr_host_is_cycmst, &dev_attr_host_is_irm, &dev_attr_host_is_busmgr, }; static ssize_t fw_show_drv_device_ids(struct device_driver *drv, char *buf) { struct hpsb_protocol_driver *driver; struct ieee1394_device_id *id; int length = 0; char *scratch = buf; driver = container_of(drv, struct hpsb_protocol_driver, driver); for (id = driver->id_table; id->match_flags != 0; id++) { int need_coma = 0; if (id->match_flags & IEEE1394_MATCH_VENDOR_ID) { length += sprintf(scratch, "vendor_id=0x%06x", id->vendor_id); scratch = buf + length; need_coma++; } if (id->match_flags & IEEE1394_MATCH_MODEL_ID) { length += sprintf(scratch, "%smodel_id=0x%06x", need_coma++ ? "," : "", id->model_id); scratch = buf + length; } if (id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) { length += sprintf(scratch, "%sspecifier_id=0x%06x", need_coma++ ? "," : "", id->specifier_id); scratch = buf + length; } if (id->match_flags & IEEE1394_MATCH_VERSION) { length += sprintf(scratch, "%sversion=0x%06x", need_coma++ ? "," : "", id->version); scratch = buf + length; } if (need_coma) { *scratch++ = '\n'; length++; } } return length; } static DRIVER_ATTR(device_ids,S_IRUGO,fw_show_drv_device_ids,NULL); fw_drv_attr(name, const char *, "%s\n") static struct driver_attribute *const fw_drv_attrs[] = { &driver_attr_drv_name, &driver_attr_device_ids, }; static void nodemgr_create_drv_files(struct hpsb_protocol_driver *driver) { struct device_driver *drv = &driver->driver; int i; for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++) if (driver_create_file(drv, fw_drv_attrs[i])) goto fail; return; fail: HPSB_ERR("Failed to add sysfs attribute"); } static void nodemgr_remove_drv_files(struct hpsb_protocol_driver *driver) { struct device_driver *drv = &driver->driver; int i; for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++) driver_remove_file(drv, fw_drv_attrs[i]); } static void nodemgr_create_ne_dev_files(struct node_entry *ne) { struct device *dev = &ne->device; int i; for (i = 0; i < ARRAY_SIZE(fw_ne_attrs); i++) if (device_create_file(dev, fw_ne_attrs[i])) goto fail; return; fail: HPSB_ERR("Failed to add sysfs attribute"); } static void nodemgr_create_host_dev_files(struct hpsb_host *host) { struct device *dev = &host->device; int i; for (i = 0; i < ARRAY_SIZE(fw_host_attrs); i++) if (device_create_file(dev, fw_host_attrs[i])) goto fail; return; fail: HPSB_ERR("Failed to add sysfs attribute"); } static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host, nodeid_t nodeid); static void nodemgr_update_host_dev_links(struct hpsb_host *host) { struct device *dev = &host->device; struct node_entry *ne; sysfs_remove_link(&dev->kobj, "irm_id"); sysfs_remove_link(&dev->kobj, "busmgr_id"); sysfs_remove_link(&dev->kobj, "host_id"); if ((ne = find_entry_by_nodeid(host, host->irm_id)) && sysfs_create_link(&dev->kobj, &ne->device.kobj, "irm_id")) goto fail; if ((ne = find_entry_by_nodeid(host, host->busmgr_id)) && sysfs_create_link(&dev->kobj, &ne->device.kobj, "busmgr_id")) goto fail; if ((ne = find_entry_by_nodeid(host, host->node_id)) && sysfs_create_link(&dev->kobj, &ne->device.kobj, "host_id")) goto fail; return; fail: HPSB_ERR("Failed to update sysfs attributes for host %d", host->id); } static void nodemgr_create_ud_dev_files(struct unit_directory *ud) { struct device *dev = &ud->device; int i; for (i = 0; i < ARRAY_SIZE(fw_ud_attrs); i++) if (device_create_file(dev, fw_ud_attrs[i])) goto fail; if (ud->flags & UNIT_DIRECTORY_SPECIFIER_ID) if (device_create_file(dev, &dev_attr_ud_specifier_id)) goto fail; if (ud->flags & UNIT_DIRECTORY_VERSION) if (device_create_file(dev, &dev_attr_ud_version)) goto fail; if (ud->flags & UNIT_DIRECTORY_VENDOR_ID) { if (device_create_file(dev, &dev_attr_ud_vendor_id)) goto fail; if (ud->vendor_name_kv && device_create_file(dev, &dev_attr_ud_vendor_name_kv)) goto fail; } if (ud->flags & UNIT_DIRECTORY_MODEL_ID) { if (device_create_file(dev, &dev_attr_ud_model_id)) goto fail; if (ud->model_name_kv && device_create_file(dev, &dev_attr_ud_model_name_kv)) goto fail; } return; fail: HPSB_ERR("Failed to add sysfs attribute"); } static int nodemgr_bus_match(struct device * dev, struct device_driver * drv) { struct hpsb_protocol_driver *driver; struct unit_directory *ud; struct ieee1394_device_id *id; /* We only match unit directories */ if (dev->platform_data != &nodemgr_ud_platform_data) return 0; ud = container_of(dev, struct unit_directory, device); if (ud->ne->in_limbo || ud->ignore_driver) return 0; /* We only match drivers of type hpsb_protocol_driver */ if (drv == &nodemgr_mid_layer_driver) return 0; driver = container_of(drv, struct hpsb_protocol_driver, driver); for (id = driver->id_table; id->match_flags != 0; id++) { if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) && id->vendor_id != ud->vendor_id) continue; if ((id->match_flags & IEEE1394_MATCH_MODEL_ID) && id->model_id != ud->model_id) continue; if ((id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) && id->specifier_id != ud->specifier_id) continue; if ((id->match_flags & IEEE1394_MATCH_VERSION) && id->version != ud->version) continue; return 1; } return 0; } static DEFINE_MUTEX(nodemgr_serialize_remove_uds); static void nodemgr_remove_uds(struct node_entry *ne) { struct device *dev; struct unit_directory *tmp, *ud; /* Iteration over nodemgr_ud_class.devices has to be protected by * nodemgr_ud_class.sem, but device_unregister() will eventually * take nodemgr_ud_class.sem too. Therefore pick out one ud at a time, * release the semaphore, and then unregister the ud. Since this code * may be called from other contexts besides the knodemgrds, protect the * gap after release of the semaphore by nodemgr_serialize_remove_uds. */ mutex_lock(&nodemgr_serialize_remove_uds); for (;;) { ud = NULL; down(&nodemgr_ud_class.sem); list_for_each_entry(dev, &nodemgr_ud_class.devices, node) { tmp = container_of(dev, struct unit_directory, unit_dev); if (tmp->ne == ne) { ud = tmp; break; } } up(&nodemgr_ud_class.sem); if (ud == NULL) break; device_unregister(&ud->unit_dev); device_unregister(&ud->device); } mutex_unlock(&nodemgr_serialize_remove_uds); } static void nodemgr_remove_ne(struct node_entry *ne) { struct device *dev; dev = get_device(&ne->device); if (!dev) return; HPSB_DEBUG("Node removed: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]", NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid); nodemgr_remove_uds(ne); device_unregister(&ne->node_dev); device_unregister(dev); put_device(dev); } static int __nodemgr_remove_host_dev(struct device *dev, void *data) { if (dev->bus == &ieee1394_bus_type) nodemgr_remove_ne(container_of(dev, struct node_entry, device)); return 0; } static void nodemgr_remove_host_dev(struct device *dev) { WARN_ON(device_for_each_child(dev, NULL, __nodemgr_remove_host_dev)); sysfs_remove_link(&dev->kobj, "irm_id"); sysfs_remove_link(&dev->kobj, "busmgr_id"); sysfs_remove_link(&dev->kobj, "host_id"); } static void nodemgr_update_bus_options(struct node_entry *ne) { #ifdef CONFIG_IEEE1394_VERBOSEDEBUG static const u16 mr[] = { 4, 64, 1024, 0}; #endif quadlet_t busoptions = be32_to_cpu(ne->csr->bus_info_data[2]); ne->busopt.irmc = (busoptions >> 31) & 1; ne->busopt.cmc = (busoptions >> 30) & 1; ne->busopt.isc = (busoptions >> 29) & 1; ne->busopt.bmc = (busoptions >> 28) & 1; ne->busopt.pmc = (busoptions >> 27) & 1; ne->busopt.cyc_clk_acc = (busoptions >> 16) & 0xff; ne->busopt.max_rec = 1 << (((busoptions >> 12) & 0xf) + 1); ne->busopt.max_rom = (busoptions >> 8) & 0x3; ne->busopt.generation = (busoptions >> 4) & 0xf; ne->busopt.lnkspd = busoptions & 0x7; HPSB_VERBOSE("NodeMgr: raw=0x%08x irmc=%d cmc=%d isc=%d bmc=%d pmc=%d " "cyc_clk_acc=%d max_rec=%d max_rom=%d gen=%d lspd=%d", busoptions, ne->busopt.irmc, ne->busopt.cmc, ne->busopt.isc, ne->busopt.bmc, ne->busopt.pmc, ne->busopt.cyc_clk_acc, ne->busopt.max_rec, mr[ne->busopt.max_rom], ne->busopt.generation, ne->busopt.lnkspd); } static struct node_entry *nodemgr_create_node(octlet_t guid, struct csr1212_csr *csr, struct host_info *hi, nodeid_t nodeid, unsigned int generation) { struct hpsb_host *host = hi->host; struct node_entry *ne; ne = kzalloc(sizeof(*ne), GFP_KERNEL); if (!ne) goto fail_alloc; ne->host = host; ne->nodeid = nodeid; ne->generation = generation; ne->needs_probe = 1; ne->guid = guid; ne->guid_vendor_id = (guid >> 40) & 0xffffff; ne->csr = csr; memcpy(&ne->device, &nodemgr_dev_template_ne, sizeof(ne->device)); ne->device.parent = &host->device; snprintf(ne->device.bus_id, BUS_ID_SIZE, "%016Lx", (unsigned long long)(ne->guid)); ne->node_dev.parent = &ne->device; ne->node_dev.class = &nodemgr_ne_class; snprintf(ne->node_dev.bus_id, BUS_ID_SIZE, "%016Lx", (unsigned long long)(ne->guid)); if (device_register(&ne->device)) goto fail_devreg; if (device_register(&ne->node_dev)) goto fail_classdevreg; get_device(&ne->device); nodemgr_create_ne_dev_files(ne); nodemgr_update_bus_options(ne); HPSB_DEBUG("%s added: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]", (host->node_id == nodeid) ? "Host" : "Node", NODE_BUS_ARGS(host, nodeid), (unsigned long long)guid); return ne; fail_classdevreg: device_unregister(&ne->device); fail_devreg: kfree(ne); fail_alloc: HPSB_ERR("Failed to create node ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]", NODE_BUS_ARGS(host, nodeid), (unsigned long long)guid); return NULL; } static struct node_entry *find_entry_by_guid(u64 guid) { struct device *dev; struct node_entry *ne, *ret_ne = NULL; down(&nodemgr_ne_class.sem); list_for_each_entry(dev, &nodemgr_ne_class.devices, node) { ne = container_of(dev, struct node_entry, node_dev); if (ne->guid == guid) { ret_ne = ne; break; } } up(&nodemgr_ne_class.sem); return ret_ne; } static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host, nodeid_t nodeid) { struct device *dev; struct node_entry *ne, *ret_ne = NULL; down(&nodemgr_ne_class.sem); list_for_each_entry(dev, &nodemgr_ne_class.devices, node) { ne = container_of(dev, struct node_entry, node_dev); if (ne->host == host && ne->nodeid == nodeid) { ret_ne = ne; break; } } up(&nodemgr_ne_class.sem); return ret_ne; } static void nodemgr_register_device(struct node_entry *ne, struct unit_directory *ud, struct device *parent) { memcpy(&ud->device, &nodemgr_dev_template_ud, sizeof(ud->device)); ud->device.parent = parent; snprintf(ud->device.bus_id, BUS_ID_SIZE, "%s-%u", ne->device.bus_id, ud->id); ud->unit_dev.parent = &ud->device; ud->unit_dev.class = &nodemgr_ud_class; snprintf(ud->unit_dev.bus_id, BUS_ID_SIZE, "%s-%u", ne->device.bus_id, ud->id); if (device_register(&ud->device)) goto fail_devreg; if (device_register(&ud->unit_dev)) goto fail_classdevreg; get_device(&ud->device); nodemgr_create_ud_dev_files(ud); return; fail_classdevreg: device_unregister(&ud->device); fail_devreg: HPSB_ERR("Failed to create unit %s", ud->device.bus_id); } /* This implementation currently only scans the config rom and its * immediate unit directories looking for software_id and * software_version entries, in order to get driver autoloading working. */ static struct unit_directory *nodemgr_process_unit_directory (struct host_info *hi, struct node_entry *ne, struct csr1212_keyval *ud_kv, unsigned int *id, struct unit_directory *parent) { struct unit_directory *ud; struct unit_directory *ud_child = NULL; struct csr1212_dentry *dentry; struct csr1212_keyval *kv; u8 last_key_id = 0; ud = kzalloc(sizeof(*ud), GFP_KERNEL); if (!ud) goto unit_directory_error; ud->ne = ne; ud->ignore_driver = ignore_drivers; ud->address = ud_kv->offset + CSR1212_REGISTER_SPACE_BASE; ud->directory_id = ud->address & 0xffffff; ud->ud_kv = ud_kv; ud->id = (*id)++; csr1212_for_each_dir_entry(ne->csr, kv, ud_kv, dentry) { switch (kv->key.id) { case CSR1212_KV_ID_VENDOR: if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) { ud->vendor_id = kv->value.immediate; ud->flags |= UNIT_DIRECTORY_VENDOR_ID; } break; case CSR1212_KV_ID_MODEL: ud->model_id = kv->value.immediate; ud->flags |= UNIT_DIRECTORY_MODEL_ID; break; case CSR1212_KV_ID_SPECIFIER_ID: ud->specifier_id = kv->value.immediate; ud->flags |= UNIT_DIRECTORY_SPECIFIER_ID; break; case CSR1212_KV_ID_VERSION: ud->version = kv->value.immediate; ud->flags |= UNIT_DIRECTORY_VERSION; break; case CSR1212_KV_ID_DESCRIPTOR: if (kv->key.type == CSR1212_KV_TYPE_LEAF && CSR1212_DESCRIPTOR_LEAF_TYPE(kv) == 0 && CSR1212_DESCRIPTOR_LEAF_SPECIFIER_ID(kv) == 0 && CSR1212_TEXTUAL_DESCRIPTOR_LEAF_WIDTH(kv) == 0 && CSR1212_TEXTUAL_DESCRIPTOR_LEAF_CHAR_SET(kv) == 0 && CSR1212_TEXTUAL_DESCRIPTOR_LEAF_LANGUAGE(kv) == 0) { switch (last_key_id) { case CSR1212_KV_ID_VENDOR: ud->vendor_name_kv = kv; csr1212_keep_keyval(kv); break; case CSR1212_KV_ID_MODEL: ud->model_name_kv = kv; csr1212_keep_keyval(kv); break; } } /* else if (kv->key.type == CSR1212_KV_TYPE_DIRECTORY) ... */ break; case CSR1212_KV_ID_DEPENDENT_INFO: /* Logical Unit Number */ if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) { if (ud->flags & UNIT_DIRECTORY_HAS_LUN) { ud_child = kmemdup(ud, sizeof(*ud_child), GFP_KERNEL); if (!ud_child) goto unit_directory_error; nodemgr_register_device(ne, ud_child, &ne->device); ud_child = NULL; ud->id = (*id)++; } ud->lun = kv->value.immediate; ud->flags |= UNIT_DIRECTORY_HAS_LUN; /* Logical Unit Directory */ } else if (kv->key.type == CSR1212_KV_TYPE_DIRECTORY) { /* This should really be done in SBP2 as this is * doing SBP2 specific parsing. */ /* first register the parent unit */ ud->flags |= UNIT_DIRECTORY_HAS_LUN_DIRECTORY; if (ud->device.bus != &ieee1394_bus_type) nodemgr_register_device(ne, ud, &ne->device); /* process the child unit */ ud_child = nodemgr_process_unit_directory(hi, ne, kv, id, ud); if (ud_child == NULL) break; /* inherit unspecified values, the driver core picks it up */ if ((ud->flags & UNIT_DIRECTORY_MODEL_ID) && !(ud_child->flags & UNIT_DIRECTORY_MODEL_ID)) { ud_child->flags |= UNIT_DIRECTORY_MODEL_ID; ud_child->model_id = ud->model_id; } if ((ud->flags & UNIT_DIRECTORY_SPECIFIER_ID) && !(ud_child->flags & UNIT_DIRECTORY_SPECIFIER_ID)) { ud_child->flags |= UNIT_DIRECTORY_SPECIFIER_ID; ud_child->specifier_id = ud->specifier_id; } if ((ud->flags & UNIT_DIRECTORY_VERSION) && !(ud_child->flags & UNIT_DIRECTORY_VERSION)) { ud_child->flags |= UNIT_DIRECTORY_VERSION; ud_child->version = ud->version; } /* register the child unit */ ud_child->flags |= UNIT_DIRECTORY_LUN_DIRECTORY; nodemgr_register_device(ne, ud_child, &ud->device); } break; case CSR1212_KV_ID_DIRECTORY_ID: ud->directory_id = kv->value.immediate; break; default: break; } last_key_id = kv->key.id; } /* do not process child units here and only if not already registered */ if (!parent && ud->device.bus != &ieee1394_bus_type) nodemgr_register_device(ne, ud, &ne->device); return ud; unit_directory_error: kfree(ud); return NULL; } static void nodemgr_process_root_directory(struct host_info *hi, struct node_entry *ne) { unsigned int ud_id = 0; struct csr1212_dentry *dentry; struct csr1212_keyval *kv, *vendor_name_kv = NULL; u8 last_key_id = 0; ne->needs_probe = 0; csr1212_for_each_dir_entry(ne->csr, kv, ne->csr->root_kv, dentry) { switch (kv->key.id) { case CSR1212_KV_ID_VENDOR: ne->vendor_id = kv->value.immediate; break; case CSR1212_KV_ID_NODE_CAPABILITIES: ne->capabilities = kv->value.immediate; break; case CSR1212_KV_ID_UNIT: nodemgr_process_unit_directory(hi, ne, kv, &ud_id, NULL); break; case CSR1212_KV_ID_DESCRIPTOR: if (last_key_id == CSR1212_KV_ID_VENDOR) { if (kv->key.type == CSR1212_KV_TYPE_LEAF && CSR1212_DESCRIPTOR_LEAF_TYPE(kv) == 0 && CSR1212_DESCRIPTOR_LEAF_SPECIFIER_ID(kv) == 0 && CSR1212_TEXTUAL_DESCRIPTOR_LEAF_WIDTH(kv) == 0 && CSR1212_TEXTUAL_DESCRIPTOR_LEAF_CHAR_SET(kv) == 0 && CSR1212_TEXTUAL_DESCRIPTOR_LEAF_LANGUAGE(kv) == 0) { csr1212_keep_keyval(kv); vendor_name_kv = kv; } } break; } last_key_id = kv->key.id; } if (ne->vendor_name_kv) { kv = ne->vendor_name_kv; ne->vendor_name_kv = vendor_name_kv; csr1212_release_keyval(kv); } else if (vendor_name_kv) { ne->vendor_name_kv = vendor_name_kv; if (device_create_file(&ne->device, &dev_attr_ne_vendor_name_kv) != 0) HPSB_ERR("Failed to add sysfs attribute"); } } #ifdef CONFIG_HOTPLUG static int nodemgr_uevent(struct device *dev, struct kobj_uevent_env *env) { struct unit_directory *ud; int retval = 0; /* ieee1394:venNmoNspNverN */ char buf[8 + 1 + 3 + 8 + 2 + 8 + 2 + 8 + 3 + 8 + 1]; if (!dev) return -ENODEV; ud = container_of(dev, struct unit_directory, unit_dev); if (ud->ne->in_limbo || ud->ignore_driver) return -ENODEV; #define PUT_ENVP(fmt,val) \ do { \ retval = add_uevent_var(env, fmt, val); \ if (retval) \ return retval; \ } while (0) PUT_ENVP("VENDOR_ID=%06x", ud->vendor_id); PUT_ENVP("MODEL_ID=%06x", ud->model_id); PUT_ENVP("GUID=%016Lx", (unsigned long long)ud->ne->guid); PUT_ENVP("SPECIFIER_ID=%06x", ud->specifier_id); PUT_ENVP("VERSION=%06x", ud->version); snprintf(buf, sizeof(buf), "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", ud->vendor_id, ud->model_id, ud->specifier_id, ud->version); PUT_ENVP("MODALIAS=%s", buf); #undef PUT_ENVP return 0; } #else static int nodemgr_uevent(struct device *dev, struct kobj_uevent_env *env) { return -ENODEV; } #endif /* CONFIG_HOTPLUG */ int __hpsb_register_protocol(struct hpsb_protocol_driver *drv, struct module *owner) { int error; drv->driver.bus = &ieee1394_bus_type; drv->driver.owner = owner; drv->driver.name = drv->name; /* This will cause a probe for devices */ error = driver_register(&drv->driver); if (!error) nodemgr_create_drv_files(drv); return error; } void hpsb_unregister_protocol(struct hpsb_protocol_driver *driver) { nodemgr_remove_drv_files(driver); /* This will subsequently disconnect all devices that our driver * is attached to. */ driver_unregister(&driver->driver); } /* * This function updates nodes that were present on the bus before the * reset and still are after the reset. The nodeid and the config rom * may have changed, and the drivers managing this device must be * informed that this device just went through a bus reset, to allow * the to take whatever actions required. */ static void nodemgr_update_node(struct node_entry *ne, struct csr1212_csr *csr, struct host_info *hi, nodeid_t nodeid, unsigned int generation) { if (ne->nodeid != nodeid) { HPSB_DEBUG("Node changed: " NODE_BUS_FMT " -> " NODE_BUS_FMT, NODE_BUS_ARGS(ne->host, ne->nodeid), NODE_BUS_ARGS(ne->host, nodeid)); ne->nodeid = nodeid; } if (ne->busopt.generation != ((be32_to_cpu(csr->bus_info_data[2]) >> 4) & 0xf)) { kfree(ne->csr->private); csr1212_destroy_csr(ne->csr); ne->csr = csr; /* If the node's configrom generation has changed, we * unregister all the unit directories. */ nodemgr_remove_uds(ne); nodemgr_update_bus_options(ne); /* Mark the node as new, so it gets re-probed */ ne->needs_probe = 1; } else { /* old cache is valid, so update its generation */ struct nodemgr_csr_info *ci = ne->csr->private; ci->generation = generation; /* free the partially filled now unneeded new cache */ kfree(csr->private); csr1212_destroy_csr(csr); } if (ne->in_limbo) nodemgr_resume_ne(ne); /* Mark the node current */ ne->generation = generation; } static void nodemgr_node_scan_one(struct host_info *hi, nodeid_t nodeid, int generation) { struct hpsb_host *host = hi->host; struct node_entry *ne; octlet_t guid; struct csr1212_csr *csr; struct nodemgr_csr_info *ci; u8 *speed; ci = kmalloc(sizeof(*ci), GFP_KERNEL); if (!ci) return; ci->host = host; ci->nodeid = nodeid; ci->generation = generation; /* Prepare for speed probe which occurs when reading the ROM */ speed = &(host->speed[NODEID_TO_NODE(nodeid)]); if (*speed > host->csr.lnk_spd) *speed = host->csr.lnk_spd; ci->speed_unverified = *speed > IEEE1394_SPEED_100; /* We need to detect when the ConfigROM's generation has changed, * so we only update the node's info when it needs to be. */ csr = csr1212_create_csr(&nodemgr_csr_ops, 5 * sizeof(quadlet_t), ci); if (!csr || csr1212_parse_csr(csr) != CSR1212_SUCCESS) { HPSB_ERR("Error parsing configrom for node " NODE_BUS_FMT, NODE_BUS_ARGS(host, nodeid)); if (csr) csr1212_destroy_csr(csr); kfree(ci); return; } if (csr->bus_info_data[1] != IEEE1394_BUSID_MAGIC) { /* This isn't a 1394 device, but we let it slide. There * was a report of a device with broken firmware which * reported '2394' instead of '1394', which is obviously a * mistake. One would hope that a non-1394 device never * gets connected to Firewire bus. If someone does, we * shouldn't be held responsible, so we'll allow it with a * warning. */ HPSB_WARN("Node " NODE_BUS_FMT " has invalid busID magic [0x%08x]", NODE_BUS_ARGS(host, nodeid), csr->bus_info_data[1]); } guid = ((u64)be32_to_cpu(csr->bus_info_data[3]) << 32) | be32_to_cpu(csr->bus_info_data[4]); ne = find_entry_by_guid(guid); if (ne && ne->host != host && ne->in_limbo) { /* Must have moved this device from one host to another */ nodemgr_remove_ne(ne); ne = NULL; } if (!ne) nodemgr_create_node(guid, csr, hi, nodeid, generation); else nodemgr_update_node(ne, csr, hi, nodeid, generation); } static void nodemgr_node_scan(struct host_info *hi, int generation) { int count; struct hpsb_host *host = hi->host; struct selfid *sid = (struct selfid *)host->topology_map; nodeid_t nodeid = LOCAL_BUS; /* Scan each node on the bus */ for (count = host->selfid_count; count; count--, sid++) { if (sid->extended) continue; if (!sid->link_active) { nodeid++; continue; } nodemgr_node_scan_one(hi, nodeid++, generation); } } static void nodemgr_suspend_ne(struct node_entry *ne) { struct device *dev; struct unit_directory *ud; struct device_driver *drv; int error; HPSB_DEBUG("Node suspended: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]", NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid); ne->in_limbo = 1; WARN_ON(device_create_file(&ne->device, &dev_attr_ne_in_limbo)); down(&nodemgr_ud_class.sem); list_for_each_entry(dev, &nodemgr_ud_class.devices, node) { ud = container_of(dev, struct unit_directory, unit_dev); if (ud->ne != ne) continue; drv = get_driver(ud->device.driver); if (!drv) continue; error = 1; /* release if suspend is not implemented */ if (drv->suspend) { down(&ud->device.sem); error = drv->suspend(&ud->device, PMSG_SUSPEND); up(&ud->device.sem); } if (error) device_release_driver(&ud->device); put_driver(drv); } up(&nodemgr_ud_class.sem); } static void nodemgr_resume_ne(struct node_entry *ne) { struct device *dev; struct unit_directory *ud; struct device_driver *drv; ne->in_limbo = 0; device_remove_file(&ne->device, &dev_attr_ne_in_limbo); down(&nodemgr_ud_class.sem); list_for_each_entry(dev, &nodemgr_ud_class.devices, node) { ud = container_of(dev, struct unit_directory, unit_dev); if (ud->ne != ne) continue; drv = get_driver(ud->device.driver); if (!drv) continue; if (drv->resume) { down(&ud->device.sem); drv->resume(&ud->device); up(&ud->device.sem); } put_driver(drv); } up(&nodemgr_ud_class.sem); HPSB_DEBUG("Node resumed: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]", NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid); } static void nodemgr_update_pdrv(struct node_entry *ne) { struct device *dev; struct unit_directory *ud; struct device_driver *drv; struct hpsb_protocol_driver *pdrv; int error; down(&nodemgr_ud_class.sem); list_for_each_entry(dev, &nodemgr_ud_class.devices, node) { ud = container_of(dev, struct unit_directory, unit_dev); if (ud->ne != ne) continue; drv = get_driver(ud->device.driver); if (!drv) continue; error = 0; pdrv = container_of(drv, struct hpsb_protocol_driver, driver); if (pdrv->update) { down(&ud->device.sem); error = pdrv->update(ud); up(&ud->device.sem); } if (error) device_release_driver(&ud->device); put_driver(drv); } up(&nodemgr_ud_class.sem); } /* Write the BROADCAST_CHANNEL as per IEEE1394a 8.3.2.3.11 and 8.4.2.3. This * seems like an optional service but in the end it is practically mandatory * as a consequence of these clauses. * * Note that we cannot do a broadcast write to all nodes at once because some * pre-1394a devices would hang. */ static void nodemgr_irm_write_bc(struct node_entry *ne, int generation) { const u64 bc_addr = (CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL); quadlet_t bc_remote, bc_local; int error; if (!ne->host->is_irm || ne->generation != generation || ne->nodeid == ne->host->node_id) return; bc_local = cpu_to_be32(ne->host->csr.broadcast_channel); /* Check if the register is implemented and 1394a compliant. */ error = hpsb_read(ne->host, ne->nodeid, generation, bc_addr, &bc_remote, sizeof(bc_remote)); if (!error && bc_remote & cpu_to_be32(0x80000000) && bc_remote != bc_local) hpsb_node_write(ne, bc_addr, &bc_local, sizeof(bc_local)); } static void nodemgr_probe_ne(struct host_info *hi, struct node_entry *ne, int generation) { struct device *dev; if (ne->host != hi->host || ne->in_limbo) return; dev = get_device(&ne->device); if (!dev) return; nodemgr_irm_write_bc(ne, generation); /* If "needs_probe", then this is either a new or changed node we * rescan totally. If the generation matches for an existing node * (one that existed prior to the bus reset) we send update calls * down to the drivers. Otherwise, this is a dead node and we * suspend it. */ if (ne->needs_probe) nodemgr_process_root_directory(hi, ne); else if (ne->generation == generation) nodemgr_update_pdrv(ne); else nodemgr_suspend_ne(ne); put_device(dev); } static void nodemgr_node_probe(struct host_info *hi, int generation) { struct hpsb_host *host = hi->host; struct device *dev; struct node_entry *ne; /* Do some processing of the nodes we've probed. This pulls them * into the sysfs layer if needed, and can result in processing of * unit-directories, or just updating the node and it's * unit-directories. * * Run updates before probes. Usually, updates are time-critical * while probes are time-consuming. (Well, those probes need some * improvement...) */ down(&nodemgr_ne_class.sem); list_for_each_entry(dev, &nodemgr_ne_class.devices, node) { ne = container_of(dev, struct node_entry, node_dev); if (!ne->needs_probe) nodemgr_probe_ne(hi, ne, generation); } list_for_each_entry(dev, &nodemgr_ne_class.devices, node) { ne = container_of(dev, struct node_entry, node_dev); if (ne->needs_probe) nodemgr_probe_ne(hi, ne, generation); } up(&nodemgr_ne_class.sem); /* If we had a bus reset while we were scanning the bus, it is * possible that we did not probe all nodes. In that case, we * skip the clean up for now, since we could remove nodes that * were still on the bus. Another bus scan is pending which will * do the clean up eventually. * * Now let's tell the bus to rescan our devices. This may seem * like overhead, but the driver-model core will only scan a * device for a driver when either the device is added, or when a * new driver is added. A bus reset is a good reason to rescan * devices that were there before. For example, an sbp2 device * may become available for login, if the host that held it was * just removed. */ if (generation == get_hpsb_generation(host)) if (bus_rescan_devices(&ieee1394_bus_type)) HPSB_DEBUG("bus_rescan_devices had an error"); } static int nodemgr_send_resume_packet(struct hpsb_host *host) { struct hpsb_packet *packet; int error = -ENOMEM; packet = hpsb_make_phypacket(host, EXTPHYPACKET_TYPE_RESUME | NODEID_TO_NODE(host->node_id) << PHYPACKET_PORT_SHIFT); if (packet) { packet->no_waiter = 1; packet->generation = get_hpsb_generation(host); error = hpsb_send_packet(packet); } if (error) HPSB_WARN("fw-host%d: Failed to broadcast resume packet", host->id); return error; } /* Perform a few high-level IRM responsibilities. */ static int nodemgr_do_irm_duties(struct hpsb_host *host, int cycles) { quadlet_t bc; /* if irm_id == -1 then there is no IRM on this bus */ if (!host->is_irm || host->irm_id == (nodeid_t)-1) return 1; /* We are a 1394a-2000 compliant IRM. Set the validity bit. */ host->csr.broadcast_channel |= 0x40000000; /* If there is no bus manager then we should set the root node's * force_root bit to promote bus stability per the 1394 * spec. (8.4.2.6) */ if (host->busmgr_id == 0xffff && host->node_count > 1) { u16 root_node = host->node_count - 1; /* get cycle master capability flag from root node */ if (host->is_cycmst || (!hpsb_read(host, LOCAL_BUS | root_node, get_hpsb_generation(host), (CSR_REGISTER_BASE + CSR_CONFIG_ROM + 2 * sizeof(quadlet_t)), &bc, sizeof(quadlet_t)) && be32_to_cpu(bc) & 1 << CSR_CMC_SHIFT)) hpsb_send_phy_config(host, root_node, -1); else { HPSB_DEBUG("The root node is not cycle master capable; " "selecting a new root node and resetting..."); if (cycles >= 5) { /* Oh screw it! Just leave the bus as it is */ HPSB_DEBUG("Stopping reset loop for IRM sanity"); return 1; } hpsb_send_phy_config(host, NODEID_TO_NODE(host->node_id), -1); hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT); return 0; } } /* Some devices suspend their ports while being connected to an inactive * host adapter, i.e. if connected before the low-level driver is * loaded. They become visible either when physically unplugged and * replugged, or when receiving a resume packet. Send one once. */ if (!host->resume_packet_sent && !nodemgr_send_resume_packet(host)) host->resume_packet_sent = 1; return 1; } /* We need to ensure that if we are not the IRM, that the IRM node is capable of * everything we can do, otherwise issue a bus reset and try to become the IRM * ourselves. */ static int nodemgr_check_irm_capability(struct hpsb_host *host, int cycles) { quadlet_t bc; int status; if (hpsb_disable_irm || host->is_irm) return 1; status = hpsb_read(host, LOCAL_BUS | (host->irm_id), get_hpsb_generation(host), (CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL), &bc, sizeof(quadlet_t)); if (status < 0 || !(be32_to_cpu(bc) & 0x80000000)) { /* The current irm node does not have a valid BROADCAST_CHANNEL * register and we do, so reset the bus with force_root set */ HPSB_DEBUG("Current remote IRM is not 1394a-2000 compliant, resetting..."); if (cycles >= 5) { /* Oh screw it! Just leave the bus as it is */ HPSB_DEBUG("Stopping reset loop for IRM sanity"); return 1; } hpsb_send_phy_config(host, NODEID_TO_NODE(host->node_id), -1); hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT); return 0; } return 1; } static int nodemgr_host_thread(void *__hi) { struct host_info *hi = (struct host_info *)__hi; struct hpsb_host *host = hi->host; unsigned int g, generation = 0; int i, reset_cycles = 0; set_freezable(); /* Setup our device-model entries */ nodemgr_create_host_dev_files(host); for (;;) { /* Sleep until next bus reset */ set_current_state(TASK_INTERRUPTIBLE); if (get_hpsb_generation(host) == generation && !kthread_should_stop()) schedule(); __set_current_state(TASK_RUNNING); /* Thread may have been woken up to freeze or to exit */ if (try_to_freeze()) continue; if (kthread_should_stop()) goto exit; /* Pause for 1/4 second in 1/16 second intervals, * to make sure things settle down. */ g = get_hpsb_generation(host); for (i = 0; i < 4 ; i++) { msleep_interruptible(63); if (kthread_should_stop()) goto exit; /* Now get the generation in which the node ID's we collect * are valid. During the bus scan we will use this generation * for the read transactions, so that if another reset occurs * during the scan the transactions will fail instead of * returning bogus data. */ generation = get_hpsb_generation(host); /* If we get a reset before we are done waiting, then * start the waiting over again */ if (generation != g) g = generation, i = 0; } if (!nodemgr_check_irm_capability(host, reset_cycles) || !nodemgr_do_irm_duties(host, reset_cycles)) { reset_cycles++; continue; } reset_cycles = 0; /* Scan our nodes to get the bus options and create node * entries. This does not do the sysfs stuff, since that * would trigger uevents and such, which is a bad idea at * this point. */ nodemgr_node_scan(hi, generation); /* This actually does the full probe, with sysfs * registration. */ nodemgr_node_probe(hi, generation); /* Update some of our sysfs symlinks */ nodemgr_update_host_dev_links(host); } exit: HPSB_VERBOSE("NodeMgr: Exiting thread"); return 0; } /** * nodemgr_for_each_host - call a function for each IEEE 1394 host * @data: an address to supply to the callback * @cb: function to call for each host * * Iterate the hosts, calling a given function with supplied data for each host. * If the callback fails on a host, i.e. if it returns a non-zero value, the * iteration is stopped. * * Return value: 0 on success, non-zero on failure (same as returned by last run * of the callback). */ int nodemgr_for_each_host(void *data, int (*cb)(struct hpsb_host *, void *)) { struct device *dev; struct hpsb_host *host; int error = 0; down(&hpsb_host_class.sem); list_for_each_entry(dev, &hpsb_host_class.devices, node) { host = container_of(dev, struct hpsb_host, host_dev); if ((error = cb(host, data))) break; } up(&hpsb_host_class.sem); return error; } /* The following two convenience functions use a struct node_entry * for addressing a node on the bus. They are intended for use by any * process context, not just the nodemgr thread, so we need to be a * little careful when reading out the node ID and generation. The * thing that can go wrong is that we get the node ID, then a bus * reset occurs, and then we read the generation. The node ID is * possibly invalid, but the generation is current, and we end up * sending a packet to a the wrong node. * * The solution is to make sure we read the generation first, so that * if a reset occurs in the process, we end up with a stale generation * and the transactions will fail instead of silently using wrong node * ID's. */ /** * hpsb_node_fill_packet - fill some destination information into a packet * @ne: destination node * @packet: packet to fill in * * This will fill in the given, pre-initialised hpsb_packet with the current * information from the node entry (host, node ID, bus generation number). */ void hpsb_node_fill_packet(struct node_entry *ne, struct hpsb_packet *packet) { packet->host = ne->host; packet->generation = ne->generation; barrier(); packet->node_id = ne->nodeid; } int hpsb_node_write(struct node_entry *ne, u64 addr, quadlet_t *buffer, size_t length) { unsigned int generation = ne->generation; barrier(); return hpsb_write(ne->host, ne->nodeid, generation, addr, buffer, length); } static void nodemgr_add_host(struct hpsb_host *host) { struct host_info *hi; hi = hpsb_create_hostinfo(&nodemgr_highlevel, host, sizeof(*hi)); if (!hi) { HPSB_ERR("NodeMgr: out of memory in add host"); return; } hi->host = host; hi->thread = kthread_run(nodemgr_host_thread, hi, "knodemgrd_%d", host->id); if (IS_ERR(hi->thread)) { HPSB_ERR("NodeMgr: cannot start thread for host %d", host->id); hpsb_destroy_hostinfo(&nodemgr_highlevel, host); } } static void nodemgr_host_reset(struct hpsb_host *host) { struct host_info *hi = hpsb_get_hostinfo(&nodemgr_highlevel, host); if (hi) { HPSB_VERBOSE("NodeMgr: Processing reset for host %d", host->id); wake_up_process(hi->thread); } } static void nodemgr_remove_host(struct hpsb_host *host) { struct host_info *hi = hpsb_get_hostinfo(&nodemgr_highlevel, host); if (hi) { kthread_stop(hi->thread); nodemgr_remove_host_dev(&host->device); } } static struct hpsb_highlevel nodemgr_highlevel = { .name = "Node manager", .add_host = nodemgr_add_host, .host_reset = nodemgr_host_reset, .remove_host = nodemgr_remove_host, }; int init_ieee1394_nodemgr(void) { int error; error = class_register(&nodemgr_ne_class); if (error) goto fail_ne; error = class_register(&nodemgr_ud_class); if (error) goto fail_ud; error = driver_register(&nodemgr_mid_layer_driver); if (error) goto fail_ml; /* This driver is not used if nodemgr is off (disable_nodemgr=1). */ nodemgr_dev_template_host.driver = &nodemgr_mid_layer_driver; hpsb_register_highlevel(&nodemgr_highlevel); return 0; fail_ml: class_unregister(&nodemgr_ud_class); fail_ud: class_unregister(&nodemgr_ne_class); fail_ne: return error; } void cleanup_ieee1394_nodemgr(void) { hpsb_unregister_highlevel(&nodemgr_highlevel); driver_unregister(&nodemgr_mid_layer_driver); class_unregister(&nodemgr_ud_class); class_unregister(&nodemgr_ne_class); }