/* * (C) Copyright 2008 Intel Corporation * Authors: * Andy Henroid <andrew.d.henroid@intel.com> * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> */ /* * Save DIMM power on Intel 7300-based platforms when all CPUs/cores * are idle, using the DIMM thermal throttling capability. * * This driver depends on the Intel integrated DMA controller (I/O AT). * If the driver for I/O AT (drivers/dma/ioatdma*) is also enabled, * this driver should work cooperatively. */ /* #define DEBUG */ #include <linux/module.h> #include <linux/pci.h> #include <linux/sched.h> #include <linux/notifier.h> #include <linux/cpumask.h> #include <linux/ktime.h> #include <linux/delay.h> #include <linux/debugfs.h> #include <linux/stop_machine.h> #include <linux/i7300_idle.h> #include <asm/idle.h> #include "../dma/ioatdma_hw.h" #include "../dma/ioatdma_registers.h" #define I7300_IDLE_DRIVER_VERSION "1.55" #define I7300_PRINT "i7300_idle:" #define MAX_STOP_RETRIES 10 static int debug; module_param_named(debug, debug, uint, 0644); MODULE_PARM_DESC(debug, "Enable debug printks in this driver"); #define dprintk(fmt, arg...) \ do { if (debug) printk(KERN_INFO I7300_PRINT fmt, ##arg); } while (0) /* * Value to set THRTLOW to when initiating throttling * 0 = No throttling * 1 = Throttle when > 4 activations per eval window (Maximum throttling) * 2 = Throttle when > 8 activations * 168 = Throttle when > 672 activations (Minimum throttling) */ #define MAX_THROTTLE_LOW_LIMIT 168 static uint throttle_low_limit = 1; module_param_named(throttle_low_limit, throttle_low_limit, uint, 0644); MODULE_PARM_DESC(throttle_low_limit, "Value for THRTLOWLM activation field " "(0 = disable throttle, 1 = Max throttle, 168 = Min throttle)"); /* * simple invocation and duration statistics */ static unsigned long total_starts; static unsigned long total_us; #ifdef DEBUG static unsigned long past_skip; #endif static struct pci_dev *fbd_dev; static spinlock_t i7300_idle_lock; static int i7300_idle_active; static u8 i7300_idle_thrtctl_saved; static u8 i7300_idle_thrtlow_saved; static u32 i7300_idle_mc_saved; static cpumask_t idle_cpumask; static ktime_t start_ktime; static unsigned long avg_idle_us; static struct dentry *debugfs_dir; /* Begin: I/O AT Helper routines */ #define IOAT_CHANBASE(ioat_ctl, chan) (ioat_ctl + 0x80 + 0x80 * chan) /* Snoop control (disable snoops when coherency is not important) */ #define IOAT_DESC_SADDR_SNP_CTL (1UL << 1) #define IOAT_DESC_DADDR_SNP_CTL (1UL << 2) static struct pci_dev *ioat_dev; static struct ioat_dma_descriptor *ioat_desc; /* I/O AT desc & data (1 page) */ static unsigned long ioat_desc_phys; static u8 *ioat_iomap; /* I/O AT memory-mapped control regs (aka CB_BAR) */ static u8 *ioat_chanbase; /* Start I/O AT memory copy */ static int i7300_idle_ioat_start(void) { u32 err; /* Clear error (due to circular descriptor pointer) */ err = readl(ioat_chanbase + IOAT_CHANERR_OFFSET); if (err) writel(err, ioat_chanbase + IOAT_CHANERR_OFFSET); writeb(IOAT_CHANCMD_START, ioat_chanbase + IOAT1_CHANCMD_OFFSET); return 0; } /* Stop I/O AT memory copy */ static void i7300_idle_ioat_stop(void) { int i; u64 sts; for (i = 0; i < MAX_STOP_RETRIES; i++) { writeb(IOAT_CHANCMD_RESET, ioat_chanbase + IOAT1_CHANCMD_OFFSET); udelay(10); sts = readq(ioat_chanbase + IOAT1_CHANSTS_OFFSET) & IOAT_CHANSTS_DMA_TRANSFER_STATUS; if (sts != IOAT_CHANSTS_DMA_TRANSFER_STATUS_ACTIVE) break; } if (i == MAX_STOP_RETRIES) { dprintk("failed to stop I/O AT after %d retries\n", MAX_STOP_RETRIES); } } /* Test I/O AT by copying 1024 byte from 2k to 1k */ static int __init i7300_idle_ioat_selftest(u8 *ctl, struct ioat_dma_descriptor *desc, unsigned long desc_phys) { u64 chan_sts; memset(desc, 0, 2048); memset((u8 *) desc + 2048, 0xab, 1024); desc[0].size = 1024; desc[0].ctl = 0; desc[0].src_addr = desc_phys + 2048; desc[0].dst_addr = desc_phys + 1024; desc[0].next = 0; writeb(IOAT_CHANCMD_RESET, ioat_chanbase + IOAT1_CHANCMD_OFFSET); writeb(IOAT_CHANCMD_START, ioat_chanbase + IOAT1_CHANCMD_OFFSET); udelay(1000); chan_sts = readq(ioat_chanbase + IOAT1_CHANSTS_OFFSET) & IOAT_CHANSTS_DMA_TRANSFER_STATUS; if (chan_sts != IOAT_CHANSTS_DMA_TRANSFER_STATUS_DONE) { /* Not complete, reset the channel */ writeb(IOAT_CHANCMD_RESET, ioat_chanbase + IOAT1_CHANCMD_OFFSET); return -1; } if (*(u32 *) ((u8 *) desc + 3068) != 0xabababab || *(u32 *) ((u8 *) desc + 2044) != 0xabababab) { dprintk("Data values src 0x%x, dest 0x%x, memset 0x%x\n", *(u32 *) ((u8 *) desc + 2048), *(u32 *) ((u8 *) desc + 1024), *(u32 *) ((u8 *) desc + 3072)); return -1; } return 0; } static struct device dummy_dma_dev = { .init_name = "fallback device", .coherent_dma_mask = DMA_64BIT_MASK, .dma_mask = &dummy_dma_dev.coherent_dma_mask, }; /* Setup and initialize I/O AT */ /* This driver needs I/O AT as the throttling takes effect only when there is * some memory activity. We use I/O AT to set up a dummy copy, while all CPUs * go idle and memory is throttled. */ static int __init i7300_idle_ioat_init(void) { u8 ver, chan_count, ioat_chan; u16 chan_ctl; ioat_iomap = (u8 *) ioremap_nocache(pci_resource_start(ioat_dev, 0), pci_resource_len(ioat_dev, 0)); if (!ioat_iomap) { printk(KERN_ERR I7300_PRINT "failed to map I/O AT registers\n"); goto err_ret; } ver = readb(ioat_iomap + IOAT_VER_OFFSET); if (ver != IOAT_VER_1_2) { printk(KERN_ERR I7300_PRINT "unknown I/O AT version (%u.%u)\n", ver >> 4, ver & 0xf); goto err_unmap; } chan_count = readb(ioat_iomap + IOAT_CHANCNT_OFFSET); if (!chan_count) { printk(KERN_ERR I7300_PRINT "unexpected # of I/O AT channels " "(%u)\n", chan_count); goto err_unmap; } ioat_chan = chan_count - 1; ioat_chanbase = IOAT_CHANBASE(ioat_iomap, ioat_chan); chan_ctl = readw(ioat_chanbase + IOAT_CHANCTRL_OFFSET); if (chan_ctl & IOAT_CHANCTRL_CHANNEL_IN_USE) { printk(KERN_ERR I7300_PRINT "channel %d in use\n", ioat_chan); goto err_unmap; } writew(IOAT_CHANCTRL_CHANNEL_IN_USE, ioat_chanbase + IOAT_CHANCTRL_OFFSET); ioat_desc = (struct ioat_dma_descriptor *)dma_alloc_coherent( &dummy_dma_dev, 4096, (dma_addr_t *)&ioat_desc_phys, GFP_KERNEL); if (!ioat_desc) { printk(KERN_ERR I7300_PRINT "failed to allocate I/O AT desc\n"); goto err_mark_unused; } writel(ioat_desc_phys & 0xffffffffUL, ioat_chanbase + IOAT1_CHAINADDR_OFFSET_LOW); writel(ioat_desc_phys >> 32, ioat_chanbase + IOAT1_CHAINADDR_OFFSET_HIGH); if (i7300_idle_ioat_selftest(ioat_iomap, ioat_desc, ioat_desc_phys)) { printk(KERN_ERR I7300_PRINT "I/O AT self-test failed\n"); goto err_free; } /* Setup circular I/O AT descriptor chain */ ioat_desc[0].ctl = IOAT_DESC_SADDR_SNP_CTL | IOAT_DESC_DADDR_SNP_CTL; ioat_desc[0].src_addr = ioat_desc_phys + 2048; ioat_desc[0].dst_addr = ioat_desc_phys + 3072; ioat_desc[0].size = 128; ioat_desc[0].next = ioat_desc_phys + sizeof(struct ioat_dma_descriptor); ioat_desc[1].ctl = ioat_desc[0].ctl; ioat_desc[1].src_addr = ioat_desc[0].src_addr; ioat_desc[1].dst_addr = ioat_desc[0].dst_addr; ioat_desc[1].size = ioat_desc[0].size; ioat_desc[1].next = ioat_desc_phys; return 0; err_free: dma_free_coherent(&dummy_dma_dev, 4096, (void *)ioat_desc, 0); err_mark_unused: writew(0, ioat_chanbase + IOAT_CHANCTRL_OFFSET); err_unmap: iounmap(ioat_iomap); err_ret: return -ENODEV; } /* Cleanup I/O AT */ static void __exit i7300_idle_ioat_exit(void) { int i; u64 chan_sts; i7300_idle_ioat_stop(); /* Wait for a while for the channel to halt before releasing */ for (i = 0; i < MAX_STOP_RETRIES; i++) { writeb(IOAT_CHANCMD_RESET, ioat_chanbase + IOAT1_CHANCMD_OFFSET); chan_sts = readq(ioat_chanbase + IOAT1_CHANSTS_OFFSET) & IOAT_CHANSTS_DMA_TRANSFER_STATUS; if (chan_sts != IOAT_CHANSTS_DMA_TRANSFER_STATUS_ACTIVE) { writew(0, ioat_chanbase + IOAT_CHANCTRL_OFFSET); break; } udelay(1000); } chan_sts = readq(ioat_chanbase + IOAT1_CHANSTS_OFFSET) & IOAT_CHANSTS_DMA_TRANSFER_STATUS; /* * We tried to reset multiple times. If IO A/T channel is still active * flag an error and return without cleanup. Memory leak is better * than random corruption in that extreme error situation. */ if (chan_sts == IOAT_CHANSTS_DMA_TRANSFER_STATUS_ACTIVE) { printk(KERN_ERR I7300_PRINT "Unable to stop IO A/T channels." " Not freeing resources\n"); return; } dma_free_coherent(&dummy_dma_dev, 4096, (void *)ioat_desc, 0); iounmap(ioat_iomap); } /* End: I/O AT Helper routines */ #define DIMM_THRTLOW 0x64 #define DIMM_THRTCTL 0x67 #define DIMM_THRTCTL_THRMHUNT (1UL << 0) #define DIMM_MC 0x40 #define DIMM_GTW_MODE (1UL << 17) #define DIMM_GBLACT 0x60 /* * Keep track of an exponential-decaying average of recent idle durations. * The latest duration gets DURATION_WEIGHT_PCT percentage weight * in this average, with the old average getting the remaining weight. * * High weights emphasize recent history, low weights include long history. */ #define DURATION_WEIGHT_PCT 55 /* * When the decaying average of recent durations or the predicted duration * of the next timer interrupt is shorter than duration_threshold, the * driver will decline to throttle. */ #define DURATION_THRESHOLD_US 100 /* Store DIMM thermal throttle configuration */ static int i7300_idle_thrt_save(void) { u32 new_mc_val; u8 gblactlm; pci_read_config_byte(fbd_dev, DIMM_THRTCTL, &i7300_idle_thrtctl_saved); pci_read_config_byte(fbd_dev, DIMM_THRTLOW, &i7300_idle_thrtlow_saved); pci_read_config_dword(fbd_dev, DIMM_MC, &i7300_idle_mc_saved); /* * Make sure we have Global Throttling Window Mode set to have a * "short" window. This (mostly) works around an issue where * throttling persists until the end of the global throttling window * size. On the tested system, this was resulting in a maximum of * 64 ms to exit throttling (average 32 ms). The actual numbers * depends on system frequencies. Setting the short window reduces * this by a factor of 4096. * * We will only do this only if the system is set for * unlimited-activations while in open-loop throttling (i.e., when * Global Activation Throttle Limit is zero). */ pci_read_config_byte(fbd_dev, DIMM_GBLACT, &gblactlm); dprintk("thrtctl_saved = 0x%02x, thrtlow_saved = 0x%02x\n", i7300_idle_thrtctl_saved, i7300_idle_thrtlow_saved); dprintk("mc_saved = 0x%08x, gblactlm = 0x%02x\n", i7300_idle_mc_saved, gblactlm); if (gblactlm == 0) { new_mc_val = i7300_idle_mc_saved | DIMM_GTW_MODE; pci_write_config_dword(fbd_dev, DIMM_MC, new_mc_val); return 0; } else { dprintk("could not set GTW_MODE = 1 (OLTT enabled)\n"); return -ENODEV; } } /* Restore DIMM thermal throttle configuration */ static void i7300_idle_thrt_restore(void) { pci_write_config_dword(fbd_dev, DIMM_MC, i7300_idle_mc_saved); pci_write_config_byte(fbd_dev, DIMM_THRTLOW, i7300_idle_thrtlow_saved); pci_write_config_byte(fbd_dev, DIMM_THRTCTL, i7300_idle_thrtctl_saved); } /* Enable DIMM thermal throttling */ static void i7300_idle_start(void) { u8 new_ctl; u8 limit; new_ctl = i7300_idle_thrtctl_saved & ~DIMM_THRTCTL_THRMHUNT; pci_write_config_byte(fbd_dev, DIMM_THRTCTL, new_ctl); limit = throttle_low_limit; if (unlikely(limit > MAX_THROTTLE_LOW_LIMIT)) limit = MAX_THROTTLE_LOW_LIMIT; pci_write_config_byte(fbd_dev, DIMM_THRTLOW, limit); new_ctl = i7300_idle_thrtctl_saved | DIMM_THRTCTL_THRMHUNT; pci_write_config_byte(fbd_dev, DIMM_THRTCTL, new_ctl); } /* Disable DIMM thermal throttling */ static void i7300_idle_stop(void) { u8 new_ctl; u8 got_ctl; new_ctl = i7300_idle_thrtctl_saved & ~DIMM_THRTCTL_THRMHUNT; pci_write_config_byte(fbd_dev, DIMM_THRTCTL, new_ctl); pci_write_config_byte(fbd_dev, DIMM_THRTLOW, i7300_idle_thrtlow_saved); pci_write_config_byte(fbd_dev, DIMM_THRTCTL, i7300_idle_thrtctl_saved); pci_read_config_byte(fbd_dev, DIMM_THRTCTL, &got_ctl); WARN_ON_ONCE(got_ctl != i7300_idle_thrtctl_saved); } /* * i7300_avg_duration_check() * return 0 if the decaying average of recent idle durations is * more than DURATION_THRESHOLD_US */ static int i7300_avg_duration_check(void) { if (avg_idle_us >= DURATION_THRESHOLD_US) return 0; #ifdef DEBUG past_skip++; #endif return 1; } /* Idle notifier to look at idle CPUs */ static int i7300_idle_notifier(struct notifier_block *nb, unsigned long val, void *data) { unsigned long flags; ktime_t now_ktime; static ktime_t idle_begin_time; static int time_init = 1; if (!throttle_low_limit) return 0; if (unlikely(time_init)) { time_init = 0; idle_begin_time = ktime_get(); } spin_lock_irqsave(&i7300_idle_lock, flags); if (val == IDLE_START) { cpu_set(smp_processor_id(), idle_cpumask); if (cpus_weight(idle_cpumask) != num_online_cpus()) goto end; now_ktime = ktime_get(); idle_begin_time = now_ktime; if (i7300_avg_duration_check()) goto end; i7300_idle_active = 1; total_starts++; start_ktime = now_ktime; i7300_idle_start(); i7300_idle_ioat_start(); } else if (val == IDLE_END) { cpu_clear(smp_processor_id(), idle_cpumask); if (cpus_weight(idle_cpumask) == (num_online_cpus() - 1)) { /* First CPU coming out of idle */ u64 idle_duration_us; now_ktime = ktime_get(); idle_duration_us = ktime_to_us(ktime_sub (now_ktime, idle_begin_time)); avg_idle_us = ((100 - DURATION_WEIGHT_PCT) * avg_idle_us + DURATION_WEIGHT_PCT * idle_duration_us) / 100; if (i7300_idle_active) { ktime_t idle_ktime; idle_ktime = ktime_sub(now_ktime, start_ktime); total_us += ktime_to_us(idle_ktime); i7300_idle_ioat_stop(); i7300_idle_stop(); i7300_idle_active = 0; } } } end: spin_unlock_irqrestore(&i7300_idle_lock, flags); return 0; } static struct notifier_block i7300_idle_nb = { .notifier_call = i7300_idle_notifier, }; MODULE_DEVICE_TABLE(pci, pci_tbl); int stats_open_generic(struct inode *inode, struct file *fp) { fp->private_data = inode->i_private; return 0; } static ssize_t stats_read_ul(struct file *fp, char __user *ubuf, size_t count, loff_t *off) { unsigned long *p = fp->private_data; char buf[32]; int len; len = snprintf(buf, 32, "%lu\n", *p); return simple_read_from_buffer(ubuf, count, off, buf, len); } static const struct file_operations idle_fops = { .open = stats_open_generic, .read = stats_read_ul, }; struct debugfs_file_info { void *ptr; char name[32]; struct dentry *file; } debugfs_file_list[] = { {&total_starts, "total_starts", NULL}, {&total_us, "total_us", NULL}, #ifdef DEBUG {&past_skip, "past_skip", NULL}, #endif {NULL, "", NULL} }; static int __init i7300_idle_init(void) { spin_lock_init(&i7300_idle_lock); cpus_clear(idle_cpumask); total_us = 0; if (i7300_idle_platform_probe(&fbd_dev, &ioat_dev)) return -ENODEV; if (i7300_idle_thrt_save()) return -ENODEV; if (i7300_idle_ioat_init()) return -ENODEV; debugfs_dir = debugfs_create_dir("i7300_idle", NULL); if (debugfs_dir) { int i = 0; while (debugfs_file_list[i].ptr != NULL) { debugfs_file_list[i].file = debugfs_create_file( debugfs_file_list[i].name, S_IRUSR, debugfs_dir, debugfs_file_list[i].ptr, &idle_fops); i++; } } idle_notifier_register(&i7300_idle_nb); printk(KERN_INFO "i7300_idle: loaded v%s\n", I7300_IDLE_DRIVER_VERSION); return 0; } static void __exit i7300_idle_exit(void) { idle_notifier_unregister(&i7300_idle_nb); if (debugfs_dir) { int i = 0; while (debugfs_file_list[i].file != NULL) { debugfs_remove(debugfs_file_list[i].file); i++; } debugfs_remove(debugfs_dir); } i7300_idle_thrt_restore(); i7300_idle_ioat_exit(); } module_init(i7300_idle_init); module_exit(i7300_idle_exit); MODULE_AUTHOR("Andy Henroid <andrew.d.henroid@intel.com>"); MODULE_DESCRIPTION("Intel Chipset DIMM Idle Power Saving Driver v" I7300_IDLE_DRIVER_VERSION); MODULE_LICENSE("GPL");