#include <linux/config.h> #include <linux/module.h> #include <linux/types.h> #include <linux/string.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/major.h> #include <linux/errno.h> #include <linux/genhd.h> #include <linux/blkpg.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/hdreg.h> #include <linux/ide.h> #include <linux/bitops.h> #include <asm/byteorder.h> #include <asm/irq.h> #include <asm/uaccess.h> #include <asm/io.h> /* * IDE library routines. These are plug in code that most * drivers can use but occasionally may be weird enough * to want to do their own thing with * * Add common non I/O op stuff here. Make sure it has proper * kernel-doc function headers or your patch will be rejected */ /** * ide_xfer_verbose - return IDE mode names * @xfer_rate: rate to name * * Returns a constant string giving the name of the mode * requested. */ char *ide_xfer_verbose (u8 xfer_rate) { switch(xfer_rate) { case XFER_UDMA_7: return("UDMA 7"); case XFER_UDMA_6: return("UDMA 6"); case XFER_UDMA_5: return("UDMA 5"); case XFER_UDMA_4: return("UDMA 4"); case XFER_UDMA_3: return("UDMA 3"); case XFER_UDMA_2: return("UDMA 2"); case XFER_UDMA_1: return("UDMA 1"); case XFER_UDMA_0: return("UDMA 0"); case XFER_MW_DMA_2: return("MW DMA 2"); case XFER_MW_DMA_1: return("MW DMA 1"); case XFER_MW_DMA_0: return("MW DMA 0"); case XFER_SW_DMA_2: return("SW DMA 2"); case XFER_SW_DMA_1: return("SW DMA 1"); case XFER_SW_DMA_0: return("SW DMA 0"); case XFER_PIO_4: return("PIO 4"); case XFER_PIO_3: return("PIO 3"); case XFER_PIO_2: return("PIO 2"); case XFER_PIO_1: return("PIO 1"); case XFER_PIO_0: return("PIO 0"); case XFER_PIO_SLOW: return("PIO SLOW"); default: return("XFER ERROR"); } } EXPORT_SYMBOL(ide_xfer_verbose); /** * ide_dma_speed - compute DMA speed * @drive: drive * @mode; intended mode * * Checks the drive capabilities and returns the speed to use * for the transfer. Returns -1 if the requested mode is unknown * (eg PIO) */ u8 ide_dma_speed(ide_drive_t *drive, u8 mode) { struct hd_driveid *id = drive->id; ide_hwif_t *hwif = HWIF(drive); u8 speed = 0; if (drive->media != ide_disk && hwif->atapi_dma == 0) return 0; switch(mode) { case 0x04: if ((id->dma_ultra & 0x0040) && (id->dma_ultra & hwif->ultra_mask)) { speed = XFER_UDMA_6; break; } case 0x03: if ((id->dma_ultra & 0x0020) && (id->dma_ultra & hwif->ultra_mask)) { speed = XFER_UDMA_5; break; } case 0x02: if ((id->dma_ultra & 0x0010) && (id->dma_ultra & hwif->ultra_mask)) { speed = XFER_UDMA_4; break; } if ((id->dma_ultra & 0x0008) && (id->dma_ultra & hwif->ultra_mask)) { speed = XFER_UDMA_3; break; } case 0x01: if ((id->dma_ultra & 0x0004) && (id->dma_ultra & hwif->ultra_mask)) { speed = XFER_UDMA_2; break; } if ((id->dma_ultra & 0x0002) && (id->dma_ultra & hwif->ultra_mask)) { speed = XFER_UDMA_1; break; } if ((id->dma_ultra & 0x0001) && (id->dma_ultra & hwif->ultra_mask)) { speed = XFER_UDMA_0; break; } case 0x00: if ((id->dma_mword & 0x0004) && (id->dma_mword & hwif->mwdma_mask)) { speed = XFER_MW_DMA_2; break; } if ((id->dma_mword & 0x0002) && (id->dma_mword & hwif->mwdma_mask)) { speed = XFER_MW_DMA_1; break; } if ((id->dma_mword & 0x0001) && (id->dma_mword & hwif->mwdma_mask)) { speed = XFER_MW_DMA_0; break; } if ((id->dma_1word & 0x0004) && (id->dma_1word & hwif->swdma_mask)) { speed = XFER_SW_DMA_2; break; } if ((id->dma_1word & 0x0002) && (id->dma_1word & hwif->swdma_mask)) { speed = XFER_SW_DMA_1; break; } if ((id->dma_1word & 0x0001) && (id->dma_1word & hwif->swdma_mask)) { speed = XFER_SW_DMA_0; break; } } // printk("%s: %s: mode 0x%02x, speed 0x%02x\n", // __FUNCTION__, drive->name, mode, speed); return speed; } EXPORT_SYMBOL(ide_dma_speed); /** * ide_rate_filter - return best speed for mode * @mode: modes available * @speed: desired speed * * Given the available DMA/UDMA mode this function returns * the best available speed at or below the speed requested. */ u8 ide_rate_filter (u8 mode, u8 speed) { #ifdef CONFIG_BLK_DEV_IDEDMA static u8 speed_max[] = { XFER_MW_DMA_2, XFER_UDMA_2, XFER_UDMA_4, XFER_UDMA_5, XFER_UDMA_6 }; // printk("%s: mode 0x%02x, speed 0x%02x\n", __FUNCTION__, mode, speed); /* So that we remember to update this if new modes appear */ if (mode > 4) BUG(); return min(speed, speed_max[mode]); #else /* !CONFIG_BLK_DEV_IDEDMA */ return min(speed, (u8)XFER_PIO_4); #endif /* CONFIG_BLK_DEV_IDEDMA */ } EXPORT_SYMBOL(ide_rate_filter); int ide_dma_enable (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); struct hd_driveid *id = drive->id; return ((int) ((((id->dma_ultra >> 8) & hwif->ultra_mask) || ((id->dma_mword >> 8) & hwif->mwdma_mask) || ((id->dma_1word >> 8) & hwif->swdma_mask)) ? 1 : 0)); } EXPORT_SYMBOL(ide_dma_enable); /* * Standard (generic) timings for PIO modes, from ATA2 specification. * These timings are for access to the IDE data port register *only*. * Some drives may specify a mode, while also specifying a different * value for cycle_time (from drive identification data). */ const ide_pio_timings_t ide_pio_timings[6] = { { 70, 165, 600 }, /* PIO Mode 0 */ { 50, 125, 383 }, /* PIO Mode 1 */ { 30, 100, 240 }, /* PIO Mode 2 */ { 30, 80, 180 }, /* PIO Mode 3 with IORDY */ { 25, 70, 120 }, /* PIO Mode 4 with IORDY */ { 20, 50, 100 } /* PIO Mode 5 with IORDY (nonstandard) */ }; EXPORT_SYMBOL_GPL(ide_pio_timings); /* * Shared data/functions for determining best PIO mode for an IDE drive. * Most of this stuff originally lived in cmd640.c, and changes to the * ide_pio_blacklist[] table should be made with EXTREME CAUTION to avoid * breaking the fragile cmd640.c support. */ /* * Black list. Some drives incorrectly report their maximal PIO mode, * at least in respect to CMD640. Here we keep info on some known drives. */ static struct ide_pio_info { const char *name; int pio; } ide_pio_blacklist [] = { /* { "Conner Peripherals 1275MB - CFS1275A", 4 }, */ { "Conner Peripherals 540MB - CFS540A", 3 }, { "WDC AC2700", 3 }, { "WDC AC2540", 3 }, { "WDC AC2420", 3 }, { "WDC AC2340", 3 }, { "WDC AC2250", 0 }, { "WDC AC2200", 0 }, { "WDC AC21200", 4 }, { "WDC AC2120", 0 }, { "WDC AC2850", 3 }, { "WDC AC1270", 3 }, { "WDC AC1170", 1 }, { "WDC AC1210", 1 }, { "WDC AC280", 0 }, /* { "WDC AC21000", 4 }, */ { "WDC AC31000", 3 }, { "WDC AC31200", 3 }, /* { "WDC AC31600", 4 }, */ { "Maxtor 7131 AT", 1 }, { "Maxtor 7171 AT", 1 }, { "Maxtor 7213 AT", 1 }, { "Maxtor 7245 AT", 1 }, { "Maxtor 7345 AT", 1 }, { "Maxtor 7546 AT", 3 }, { "Maxtor 7540 AV", 3 }, { "SAMSUNG SHD-3121A", 1 }, { "SAMSUNG SHD-3122A", 1 }, { "SAMSUNG SHD-3172A", 1 }, /* { "ST51080A", 4 }, * { "ST51270A", 4 }, * { "ST31220A", 4 }, * { "ST31640A", 4 }, * { "ST32140A", 4 }, * { "ST3780A", 4 }, */ { "ST5660A", 3 }, { "ST3660A", 3 }, { "ST3630A", 3 }, { "ST3655A", 3 }, { "ST3391A", 3 }, { "ST3390A", 1 }, { "ST3600A", 1 }, { "ST3290A", 0 }, { "ST3144A", 0 }, { "ST3491A", 1 }, /* reports 3, should be 1 or 2 (depending on */ /* drive) according to Seagates FIND-ATA program */ { "QUANTUM ELS127A", 0 }, { "QUANTUM ELS170A", 0 }, { "QUANTUM LPS240A", 0 }, { "QUANTUM LPS210A", 3 }, { "QUANTUM LPS270A", 3 }, { "QUANTUM LPS365A", 3 }, { "QUANTUM LPS540A", 3 }, { "QUANTUM LIGHTNING 540A", 3 }, { "QUANTUM LIGHTNING 730A", 3 }, { "QUANTUM FIREBALL_540", 3 }, /* Older Quantum Fireballs don't work */ { "QUANTUM FIREBALL_640", 3 }, { "QUANTUM FIREBALL_1080", 3 }, { "QUANTUM FIREBALL_1280", 3 }, { NULL, 0 } }; /** * ide_scan_pio_blacklist - check for a blacklisted drive * @model: Drive model string * * This routine searches the ide_pio_blacklist for an entry * matching the start/whole of the supplied model name. * * Returns -1 if no match found. * Otherwise returns the recommended PIO mode from ide_pio_blacklist[]. */ static int ide_scan_pio_blacklist (char *model) { struct ide_pio_info *p; for (p = ide_pio_blacklist; p->name != NULL; p++) { if (strncmp(p->name, model, strlen(p->name)) == 0) return p->pio; } return -1; } /** * ide_get_best_pio_mode - get PIO mode from drive * @driver: drive to consider * @mode_wanted: preferred mode * @max_mode: highest allowed * @d: pio data * * This routine returns the recommended PIO settings for a given drive, * based on the drive->id information and the ide_pio_blacklist[]. * This is used by most chipset support modules when "auto-tuning". * * Drive PIO mode auto selection */ u8 ide_get_best_pio_mode (ide_drive_t *drive, u8 mode_wanted, u8 max_mode, ide_pio_data_t *d) { int pio_mode; int cycle_time = 0; int use_iordy = 0; struct hd_driveid* id = drive->id; int overridden = 0; int blacklisted = 0; if (mode_wanted != 255) { pio_mode = mode_wanted; } else if (!drive->id) { pio_mode = 0; } else if ((pio_mode = ide_scan_pio_blacklist(id->model)) != -1) { overridden = 1; blacklisted = 1; use_iordy = (pio_mode > 2); } else { pio_mode = id->tPIO; if (pio_mode > 2) { /* 2 is maximum allowed tPIO value */ pio_mode = 2; overridden = 1; } if (id->field_valid & 2) { /* drive implements ATA2? */ if (id->capability & 8) { /* drive supports use_iordy? */ use_iordy = 1; cycle_time = id->eide_pio_iordy; if (id->eide_pio_modes & 7) { overridden = 0; if (id->eide_pio_modes & 4) pio_mode = 5; else if (id->eide_pio_modes & 2) pio_mode = 4; else pio_mode = 3; } } else { cycle_time = id->eide_pio; } } #if 0 if (drive->id->major_rev_num & 0x0004) printk("ATA-2 "); #endif /* * Conservative "downgrade" for all pre-ATA2 drives */ if (pio_mode && pio_mode < 4) { pio_mode--; overridden = 1; #if 0 use_iordy = (pio_mode > 2); #endif if (cycle_time && cycle_time < ide_pio_timings[pio_mode].cycle_time) cycle_time = 0; /* use standard timing */ } } if (pio_mode > max_mode) { pio_mode = max_mode; cycle_time = 0; } if (d) { d->pio_mode = pio_mode; d->cycle_time = cycle_time ? cycle_time : ide_pio_timings[pio_mode].cycle_time; d->use_iordy = use_iordy; d->overridden = overridden; d->blacklisted = blacklisted; } return pio_mode; } EXPORT_SYMBOL_GPL(ide_get_best_pio_mode); /** * ide_toggle_bounce - handle bounce buffering * @drive: drive to update * @on: on/off boolean * * Enable or disable bounce buffering for the device. Drives move * between PIO and DMA and that changes the rules we need. */ void ide_toggle_bounce(ide_drive_t *drive, int on) { u64 addr = BLK_BOUNCE_HIGH; /* dma64_addr_t */ if (!PCI_DMA_BUS_IS_PHYS) { addr = BLK_BOUNCE_ANY; } else if (on && drive->media == ide_disk) { if (HWIF(drive)->pci_dev) addr = HWIF(drive)->pci_dev->dma_mask; } if (drive->queue) blk_queue_bounce_limit(drive->queue, addr); } /** * ide_set_xfer_rate - set transfer rate * @drive: drive to set * @speed: speed to attempt to set * * General helper for setting the speed of an IDE device. This * function knows about user enforced limits from the configuration * which speedproc() does not. High level drivers should never * invoke speedproc() directly. */ int ide_set_xfer_rate(ide_drive_t *drive, u8 rate) { #ifndef CONFIG_BLK_DEV_IDEDMA rate = min(rate, (u8) XFER_PIO_4); #endif if(HWIF(drive)->speedproc) return HWIF(drive)->speedproc(drive, rate); else return -1; } EXPORT_SYMBOL_GPL(ide_set_xfer_rate); static void ide_dump_opcode(ide_drive_t *drive) { struct request *rq; u8 opcode = 0; int found = 0; spin_lock(&ide_lock); rq = NULL; if (HWGROUP(drive)) rq = HWGROUP(drive)->rq; spin_unlock(&ide_lock); if (!rq) return; if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK)) { char *args = rq->buffer; if (args) { opcode = args[0]; found = 1; } } else if (rq->flags & REQ_DRIVE_TASKFILE) { ide_task_t *args = rq->special; if (args) { task_struct_t *tf = (task_struct_t *) args->tfRegister; opcode = tf->command; found = 1; } } printk("ide: failed opcode was: "); if (!found) printk("unknown\n"); else printk("0x%02x\n", opcode); } static u8 ide_dump_ata_status(ide_drive_t *drive, const char *msg, u8 stat) { ide_hwif_t *hwif = HWIF(drive); unsigned long flags; u8 err = 0; local_irq_set(flags); printk("%s: %s: status=0x%02x { ", drive->name, msg, stat); if (stat & BUSY_STAT) printk("Busy "); else { if (stat & READY_STAT) printk("DriveReady "); if (stat & WRERR_STAT) printk("DeviceFault "); if (stat & SEEK_STAT) printk("SeekComplete "); if (stat & DRQ_STAT) printk("DataRequest "); if (stat & ECC_STAT) printk("CorrectedError "); if (stat & INDEX_STAT) printk("Index "); if (stat & ERR_STAT) printk("Error "); } printk("}\n"); if ((stat & (BUSY_STAT|ERR_STAT)) == ERR_STAT) { err = hwif->INB(IDE_ERROR_REG); printk("%s: %s: error=0x%02x { ", drive->name, msg, err); if (err & ABRT_ERR) printk("DriveStatusError "); if (err & ICRC_ERR) printk((err & ABRT_ERR) ? "BadCRC " : "BadSector "); if (err & ECC_ERR) printk("UncorrectableError "); if (err & ID_ERR) printk("SectorIdNotFound "); if (err & TRK0_ERR) printk("TrackZeroNotFound "); if (err & MARK_ERR) printk("AddrMarkNotFound "); printk("}"); if ((err & (BBD_ERR | ABRT_ERR)) == BBD_ERR || (err & (ECC_ERR|ID_ERR|MARK_ERR))) { if (drive->addressing == 1) { __u64 sectors = 0; u32 low = 0, high = 0; low = ide_read_24(drive); hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); high = ide_read_24(drive); sectors = ((__u64)high << 24) | low; printk(", LBAsect=%llu, high=%d, low=%d", (unsigned long long) sectors, high, low); } else { u8 cur = hwif->INB(IDE_SELECT_REG); if (cur & 0x40) { /* using LBA? */ printk(", LBAsect=%ld", (unsigned long) ((cur&0xf)<<24) |(hwif->INB(IDE_HCYL_REG)<<16) |(hwif->INB(IDE_LCYL_REG)<<8) | hwif->INB(IDE_SECTOR_REG)); } else { printk(", CHS=%d/%d/%d", (hwif->INB(IDE_HCYL_REG)<<8) + hwif->INB(IDE_LCYL_REG), cur & 0xf, hwif->INB(IDE_SECTOR_REG)); } } if (HWGROUP(drive) && HWGROUP(drive)->rq) printk(", sector=%llu", (unsigned long long)HWGROUP(drive)->rq->sector); } printk("\n"); } ide_dump_opcode(drive); local_irq_restore(flags); return err; } /** * ide_dump_atapi_status - print human readable atapi status * @drive: drive that status applies to * @msg: text message to print * @stat: status byte to decode * * Error reporting, in human readable form (luxurious, but a memory hog). */ static u8 ide_dump_atapi_status(ide_drive_t *drive, const char *msg, u8 stat) { unsigned long flags; atapi_status_t status; atapi_error_t error; status.all = stat; error.all = 0; local_irq_set(flags); printk("%s: %s: status=0x%02x { ", drive->name, msg, stat); if (status.b.bsy) printk("Busy "); else { if (status.b.drdy) printk("DriveReady "); if (status.b.df) printk("DeviceFault "); if (status.b.dsc) printk("SeekComplete "); if (status.b.drq) printk("DataRequest "); if (status.b.corr) printk("CorrectedError "); if (status.b.idx) printk("Index "); if (status.b.check) printk("Error "); } printk("}\n"); if (status.b.check && !status.b.bsy) { error.all = HWIF(drive)->INB(IDE_ERROR_REG); printk("%s: %s: error=0x%02x { ", drive->name, msg, error.all); if (error.b.ili) printk("IllegalLengthIndication "); if (error.b.eom) printk("EndOfMedia "); if (error.b.abrt) printk("AbortedCommand "); if (error.b.mcr) printk("MediaChangeRequested "); if (error.b.sense_key) printk("LastFailedSense=0x%02x ", error.b.sense_key); printk("}\n"); } ide_dump_opcode(drive); local_irq_restore(flags); return error.all; } /** * ide_dump_status - translate ATA/ATAPI error * @drive: drive the error occured on * @msg: information string * @stat: status byte * * Error reporting, in human readable form (luxurious, but a memory hog). * Combines the drive name, message and status byte to provide a * user understandable explanation of the device error. */ u8 ide_dump_status(ide_drive_t *drive, const char *msg, u8 stat) { if (drive->media == ide_disk) return ide_dump_ata_status(drive, msg, stat); return ide_dump_atapi_status(drive, msg, stat); } EXPORT_SYMBOL(ide_dump_status);