/* * ATAPI CD-ROM driver. * * Copyright (C) 1994-1996 Scott Snyder * Copyright (C) 1996-1998 Erik Andersen * Copyright (C) 1998-2000 Jens Axboe * Copyright (C) 2005, 2007 Bartlomiej Zolnierkiewicz * * May be copied or modified under the terms of the GNU General Public * License. See linux/COPYING for more information. * * See Documentation/cdrom/ide-cd for usage information. * * Suggestions are welcome. Patches that work are more welcome though. ;-) * For those wishing to work on this driver, please be sure you download * and comply with the latest Mt. Fuji (SFF8090 version 4) and ATAPI * (SFF-8020i rev 2.6) standards. These documents can be obtained by * anonymous ftp from: * ftp://fission.dt.wdc.com/pub/standards/SFF_atapi/spec/SFF8020-r2.6/PS/8020r26.ps * ftp://ftp.avc-pioneer.com/Mtfuji4/Spec/Fuji4r10.pdf * * For historical changelog please see: * Documentation/ide/ChangeLog.ide-cd.1994-2004 */ #define IDECD_VERSION "5.00" #include #include #include #include #include #include #include #include #include #include #include #include #include /* For SCSI -> ATAPI command conversion */ #include #include #include #include #include #include #include "ide-cd.h" static DEFINE_MUTEX(idecd_ref_mutex); #define to_ide_cd(obj) container_of(obj, struct cdrom_info, kref) #define ide_cd_g(disk) \ container_of((disk)->private_data, struct cdrom_info, driver) static struct cdrom_info *ide_cd_get(struct gendisk *disk) { struct cdrom_info *cd = NULL; mutex_lock(&idecd_ref_mutex); cd = ide_cd_g(disk); if (cd) kref_get(&cd->kref); mutex_unlock(&idecd_ref_mutex); return cd; } static void ide_cd_release(struct kref *); static void ide_cd_put(struct cdrom_info *cd) { mutex_lock(&idecd_ref_mutex); kref_put(&cd->kref, ide_cd_release); mutex_unlock(&idecd_ref_mutex); } /* * Generic packet command support and error handling routines. */ /* Mark that we've seen a media change and invalidate our internal buffers. */ static void cdrom_saw_media_change(ide_drive_t *drive) { struct cdrom_info *cd = drive->driver_data; cd->cd_flags |= IDE_CD_FLAG_MEDIA_CHANGED; cd->cd_flags &= ~IDE_CD_FLAG_TOC_VALID; } static int cdrom_log_sense(ide_drive_t *drive, struct request *rq, struct request_sense *sense) { int log = 0; if (!sense || !rq || (rq->cmd_flags & REQ_QUIET)) return 0; switch (sense->sense_key) { case NO_SENSE: case RECOVERED_ERROR: break; case NOT_READY: /* * don't care about tray state messages for e.g. capacity * commands or in-progress or becoming ready */ if (sense->asc == 0x3a || sense->asc == 0x04) break; log = 1; break; case ILLEGAL_REQUEST: /* * don't log START_STOP unit with LoEj set, since we cannot * reliably check if drive can auto-close */ if (rq->cmd[0] == GPCMD_START_STOP_UNIT && sense->asc == 0x24) break; log = 1; break; case UNIT_ATTENTION: /* * Make good and sure we've seen this potential media change. * Some drives (i.e. Creative) fail to present the correct sense * key in the error register. */ cdrom_saw_media_change(drive); break; default: log = 1; break; } return log; } static void cdrom_analyze_sense_data(ide_drive_t *drive, struct request *failed_command, struct request_sense *sense) { unsigned long sector; unsigned long bio_sectors; struct cdrom_info *info = drive->driver_data; if (!cdrom_log_sense(drive, failed_command, sense)) return; /* * If a read toc is executed for a CD-R or CD-RW medium where the first * toc has not been recorded yet, it will fail with 05/24/00 (which is a * confusing error) */ if (failed_command && failed_command->cmd[0] == GPCMD_READ_TOC_PMA_ATIP) if (sense->sense_key == 0x05 && sense->asc == 0x24) return; /* current error */ if (sense->error_code == 0x70) { switch (sense->sense_key) { case MEDIUM_ERROR: case VOLUME_OVERFLOW: case ILLEGAL_REQUEST: if (!sense->valid) break; if (failed_command == NULL || !blk_fs_request(failed_command)) break; sector = (sense->information[0] << 24) | (sense->information[1] << 16) | (sense->information[2] << 8) | (sense->information[3]); if (drive->queue->hardsect_size == 2048) /* device sector size is 2K */ sector <<= 2; bio_sectors = max(bio_sectors(failed_command->bio), 4U); sector &= ~(bio_sectors - 1); if (sector < get_capacity(info->disk) && drive->probed_capacity - sector < 4 * 75) set_capacity(info->disk, sector); } } ide_cd_log_error(drive->name, failed_command, sense); } static void cdrom_queue_request_sense(ide_drive_t *drive, void *sense, struct request *failed_command) { struct cdrom_info *info = drive->driver_data; struct request *rq = &info->request_sense_request; if (sense == NULL) sense = &info->sense_data; /* stuff the sense request in front of our current request */ blk_rq_init(NULL, rq); rq->cmd_type = REQ_TYPE_ATA_PC; rq->rq_disk = info->disk; rq->data = sense; rq->cmd[0] = GPCMD_REQUEST_SENSE; rq->cmd[4] = 18; rq->data_len = 18; rq->cmd_type = REQ_TYPE_SENSE; rq->cmd_flags |= REQ_PREEMPT; /* NOTE! Save the failed command in "rq->buffer" */ rq->buffer = (void *) failed_command; (void) ide_do_drive_cmd(drive, rq, ide_preempt); } static void cdrom_end_request(ide_drive_t *drive, int uptodate) { struct request *rq = HWGROUP(drive)->rq; int nsectors = rq->hard_cur_sectors; if (blk_sense_request(rq) && uptodate) { /* * For REQ_TYPE_SENSE, "rq->buffer" points to the original * failed request */ struct request *failed = (struct request *) rq->buffer; struct cdrom_info *info = drive->driver_data; void *sense = &info->sense_data; unsigned long flags; if (failed) { if (failed->sense) { sense = failed->sense; failed->sense_len = rq->sense_len; } cdrom_analyze_sense_data(drive, failed, sense); /* * now end the failed request */ if (blk_fs_request(failed)) { if (ide_end_dequeued_request(drive, failed, 0, failed->hard_nr_sectors)) BUG(); } else { spin_lock_irqsave(&ide_lock, flags); if (__blk_end_request(failed, -EIO, failed->data_len)) BUG(); spin_unlock_irqrestore(&ide_lock, flags); } } else cdrom_analyze_sense_data(drive, NULL, sense); } if (!rq->current_nr_sectors && blk_fs_request(rq)) uptodate = 1; /* make sure it's fully ended */ if (blk_pc_request(rq)) nsectors = (rq->data_len + 511) >> 9; if (!nsectors) nsectors = 1; ide_end_request(drive, uptodate, nsectors); } static void ide_dump_status_no_sense(ide_drive_t *drive, const char *msg, u8 st) { if (st & 0x80) return; ide_dump_status(drive, msg, st); } /* * Returns: * 0: if the request should be continued. * 1: if the request was ended. */ static int cdrom_decode_status(ide_drive_t *drive, int good_stat, int *stat_ret) { struct request *rq = HWGROUP(drive)->rq; int stat, err, sense_key; /* check for errors */ stat = ide_read_status(drive); if (stat_ret) *stat_ret = stat; if (OK_STAT(stat, good_stat, BAD_R_STAT)) return 0; /* get the IDE error register */ err = ide_read_error(drive); sense_key = err >> 4; if (rq == NULL) { printk(KERN_ERR "%s: missing rq in %s\n", drive->name, __func__); return 1; } if (blk_sense_request(rq)) { /* * We got an error trying to get sense info from the drive * (probably while trying to recover from a former error). * Just give up. */ rq->cmd_flags |= REQ_FAILED; cdrom_end_request(drive, 0); ide_error(drive, "request sense failure", stat); return 1; } else if (blk_pc_request(rq) || rq->cmd_type == REQ_TYPE_ATA_PC) { /* All other functions, except for READ. */ /* * if we have an error, pass back CHECK_CONDITION as the * scsi status byte */ if (blk_pc_request(rq) && !rq->errors) rq->errors = SAM_STAT_CHECK_CONDITION; /* check for tray open */ if (sense_key == NOT_READY) { cdrom_saw_media_change(drive); } else if (sense_key == UNIT_ATTENTION) { /* check for media change */ cdrom_saw_media_change(drive); return 0; } else if (sense_key == ILLEGAL_REQUEST && rq->cmd[0] == GPCMD_START_STOP_UNIT) { /* * Don't print error message for this condition-- * SFF8090i indicates that 5/24/00 is the correct * response to a request to close the tray if the * drive doesn't have that capability. * cdrom_log_sense() knows this! */ } else if (!(rq->cmd_flags & REQ_QUIET)) { /* otherwise, print an error */ ide_dump_status(drive, "packet command error", stat); } rq->cmd_flags |= REQ_FAILED; /* * instead of playing games with moving completions around, * remove failed request completely and end it when the * request sense has completed */ goto end_request; } else if (blk_fs_request(rq)) { int do_end_request = 0; /* handle errors from READ and WRITE requests */ if (blk_noretry_request(rq)) do_end_request = 1; if (sense_key == NOT_READY) { /* tray open */ if (rq_data_dir(rq) == READ) { cdrom_saw_media_change(drive); /* fail the request */ printk(KERN_ERR "%s: tray open\n", drive->name); do_end_request = 1; } else { struct cdrom_info *info = drive->driver_data; /* * Allow the drive 5 seconds to recover, some * devices will return this error while flushing * data from cache. */ if (!rq->errors) info->write_timeout = jiffies + ATAPI_WAIT_WRITE_BUSY; rq->errors = 1; if (time_after(jiffies, info->write_timeout)) do_end_request = 1; else { unsigned long flags; /* * take a breather relying on the unplug * timer to kick us again */ spin_lock_irqsave(&ide_lock, flags); blk_plug_device(drive->queue); spin_unlock_irqrestore(&ide_lock, flags); return 1; } } } else if (sense_key == UNIT_ATTENTION) { /* media change */ cdrom_saw_media_change(drive); /* * Arrange to retry the request but be sure to give up * if we've retried too many times. */ if (++rq->errors > ERROR_MAX) do_end_request = 1; } else if (sense_key == ILLEGAL_REQUEST || sense_key == DATA_PROTECT) { /* * No point in retrying after an illegal request or data * protect error. */ ide_dump_status_no_sense(drive, "command error", stat); do_end_request = 1; } else if (sense_key == MEDIUM_ERROR) { /* * No point in re-trying a zillion times on a bad * sector. If we got here the error is not correctable. */ ide_dump_status_no_sense(drive, "media error (bad sector)", stat); do_end_request = 1; } else if (sense_key == BLANK_CHECK) { /* disk appears blank ?? */ ide_dump_status_no_sense(drive, "media error (blank)", stat); do_end_request = 1; } else if ((err & ~ABRT_ERR) != 0) { /* go to the default handler for other errors */ ide_error(drive, "cdrom_decode_status", stat); return 1; } else if ((++rq->errors > ERROR_MAX)) { /* we've racked up too many retries, abort */ do_end_request = 1; } /* * End a request through request sense analysis when we have * sense data. We need this in order to perform end of media * processing. */ if (do_end_request) goto end_request; /* * If we got a CHECK_CONDITION status, queue * a request sense command. */ if (stat & ERR_STAT) cdrom_queue_request_sense(drive, NULL, NULL); } else { blk_dump_rq_flags(rq, "ide-cd: bad rq"); cdrom_end_request(drive, 0); } /* retry, or handle the next request */ return 1; end_request: if (stat & ERR_STAT) { unsigned long flags; spin_lock_irqsave(&ide_lock, flags); blkdev_dequeue_request(rq); HWGROUP(drive)->rq = NULL; spin_unlock_irqrestore(&ide_lock, flags); cdrom_queue_request_sense(drive, rq->sense, rq); } else cdrom_end_request(drive, 0); return 1; } static int cdrom_timer_expiry(ide_drive_t *drive) { struct request *rq = HWGROUP(drive)->rq; unsigned long wait = 0; /* * Some commands are *slow* and normally take a long time to complete. * Usually we can use the ATAPI "disconnect" to bypass this, but not all * commands/drives support that. Let ide_timer_expiry keep polling us * for these. */ switch (rq->cmd[0]) { case GPCMD_BLANK: case GPCMD_FORMAT_UNIT: case GPCMD_RESERVE_RZONE_TRACK: case GPCMD_CLOSE_TRACK: case GPCMD_FLUSH_CACHE: wait = ATAPI_WAIT_PC; break; default: if (!(rq->cmd_flags & REQ_QUIET)) printk(KERN_INFO "ide-cd: cmd 0x%x timed out\n", rq->cmd[0]); wait = 0; break; } return wait; } /* * Set up the device registers for transferring a packet command on DEV, * expecting to later transfer XFERLEN bytes. HANDLER is the routine * which actually transfers the command to the drive. If this is a * drq_interrupt device, this routine will arrange for HANDLER to be * called when the interrupt from the drive arrives. Otherwise, HANDLER * will be called immediately after the drive is prepared for the transfer. */ static ide_startstop_t cdrom_start_packet_command(ide_drive_t *drive, int xferlen, ide_handler_t *handler) { ide_startstop_t startstop; struct cdrom_info *info = drive->driver_data; ide_hwif_t *hwif = drive->hwif; /* wait for the controller to be idle */ if (ide_wait_stat(&startstop, drive, 0, BUSY_STAT, WAIT_READY)) return startstop; /* FIXME: for Virtual DMA we must check harder */ if (info->dma) info->dma = !hwif->dma_ops->dma_setup(drive); /* set up the controller registers */ ide_pktcmd_tf_load(drive, IDE_TFLAG_OUT_NSECT | IDE_TFLAG_OUT_LBAL, xferlen, info->dma); if (info->cd_flags & IDE_CD_FLAG_DRQ_INTERRUPT) { /* waiting for CDB interrupt, not DMA yet. */ if (info->dma) drive->waiting_for_dma = 0; /* packet command */ ide_execute_command(drive, WIN_PACKETCMD, handler, ATAPI_WAIT_PC, cdrom_timer_expiry); return ide_started; } else { ide_execute_pkt_cmd(drive); return (*handler) (drive); } } /* * Send a packet command to DRIVE described by CMD_BUF and CMD_LEN. The device * registers must have already been prepared by cdrom_start_packet_command. * HANDLER is the interrupt handler to call when the command completes or * there's data ready. */ #define ATAPI_MIN_CDB_BYTES 12 static ide_startstop_t cdrom_transfer_packet_command(ide_drive_t *drive, struct request *rq, ide_handler_t *handler) { ide_hwif_t *hwif = drive->hwif; int cmd_len; struct cdrom_info *info = drive->driver_data; ide_startstop_t startstop; if (info->cd_flags & IDE_CD_FLAG_DRQ_INTERRUPT) { /* * Here we should have been called after receiving an interrupt * from the device. DRQ should how be set. */ /* check for errors */ if (cdrom_decode_status(drive, DRQ_STAT, NULL)) return ide_stopped; /* ok, next interrupt will be DMA interrupt */ if (info->dma) drive->waiting_for_dma = 1; } else { /* otherwise, we must wait for DRQ to get set */ if (ide_wait_stat(&startstop, drive, DRQ_STAT, BUSY_STAT, WAIT_READY)) return startstop; } /* arm the interrupt handler */ ide_set_handler(drive, handler, rq->timeout, cdrom_timer_expiry); /* ATAPI commands get padded out to 12 bytes minimum */ cmd_len = COMMAND_SIZE(rq->cmd[0]); if (cmd_len < ATAPI_MIN_CDB_BYTES) cmd_len = ATAPI_MIN_CDB_BYTES; /* send the command to the device */ hwif->output_data(drive, NULL, rq->cmd, cmd_len); /* start the DMA if need be */ if (info->dma) hwif->dma_ops->dma_start(drive); return ide_started; } /* * Block read functions. */ static void ide_cd_pad_transfer(ide_drive_t *drive, xfer_func_t *xf, int len) { while (len > 0) { int dum = 0; xf(drive, NULL, &dum, sizeof(dum)); len -= sizeof(dum); } } static void ide_cd_drain_data(ide_drive_t *drive, int nsects) { while (nsects > 0) { static char dum[SECTOR_SIZE]; drive->hwif->input_data(drive, NULL, dum, sizeof(dum)); nsects--; } } /* * Check the contents of the interrupt reason register from the cdrom * and attempt to recover if there are problems. Returns 0 if everything's * ok; nonzero if the request has been terminated. */ static int ide_cd_check_ireason(ide_drive_t *drive, struct request *rq, int len, int ireason, int rw) { /* * ireason == 0: the drive wants to receive data from us * ireason == 2: the drive is expecting to transfer data to us */ if (ireason == (!rw << 1)) return 0; else if (ireason == (rw << 1)) { ide_hwif_t *hwif = drive->hwif; xfer_func_t *xf; /* whoops... */ printk(KERN_ERR "%s: %s: wrong transfer direction!\n", drive->name, __func__); xf = rw ? hwif->output_data : hwif->input_data; ide_cd_pad_transfer(drive, xf, len); } else if (rw == 0 && ireason == 1) { /* * Some drives (ASUS) seem to tell us that status info is * available. Just get it and ignore. */ (void)ide_read_status(drive); return 0; } else { /* drive wants a command packet, or invalid ireason... */ printk(KERN_ERR "%s: %s: bad interrupt reason 0x%02x\n", drive->name, __func__, ireason); } if (rq->cmd_type == REQ_TYPE_ATA_PC) rq->cmd_flags |= REQ_FAILED; cdrom_end_request(drive, 0); return -1; } /* * Assume that the drive will always provide data in multiples of at least * SECTOR_SIZE, as it gets hairy to keep track of the transfers otherwise. */ static int ide_cd_check_transfer_size(ide_drive_t *drive, int len) { struct cdrom_info *cd = drive->driver_data; if ((len % SECTOR_SIZE) == 0) return 0; printk(KERN_ERR "%s: %s: Bad transfer size %d\n", drive->name, __func__, len); if (cd->cd_flags & IDE_CD_FLAG_LIMIT_NFRAMES) printk(KERN_ERR " This drive is not supported by " "this version of the driver\n"); else { printk(KERN_ERR " Trying to limit transfer sizes\n"); cd->cd_flags |= IDE_CD_FLAG_LIMIT_NFRAMES; } return 1; } static ide_startstop_t cdrom_newpc_intr(ide_drive_t *); /* * Routine to send a read/write packet command to the drive. This is usually * called directly from cdrom_start_{read,write}(). However, for drq_interrupt * devices, it is called from an interrupt when the drive is ready to accept * the command. */ static ide_startstop_t cdrom_start_rw_cont(ide_drive_t *drive) { struct request *rq = HWGROUP(drive)->rq; if (rq_data_dir(rq) == READ) { unsigned short sectors_per_frame = queue_hardsect_size(drive->queue) >> SECTOR_BITS; int nskip = rq->sector & (sectors_per_frame - 1); /* * If the requested sector doesn't start on a frame boundary, * we must adjust the start of the transfer so that it does, * and remember to skip the first few sectors. * * If the rq->current_nr_sectors field is larger than the size * of the buffer, it will mean that we're to skip a number of * sectors equal to the amount by which rq->current_nr_sectors * is larger than the buffer size. */ if (nskip > 0) { /* sanity check... */ if (rq->current_nr_sectors != bio_cur_sectors(rq->bio)) { printk(KERN_ERR "%s: %s: buffer botch (%u)\n", drive->name, __func__, rq->current_nr_sectors); cdrom_end_request(drive, 0); return ide_stopped; } rq->current_nr_sectors += nskip; } } #if 0 else /* the immediate bit */ rq->cmd[1] = 1 << 3; #endif /* set up the command */ rq->timeout = ATAPI_WAIT_PC; /* send the command to the drive and return */ return cdrom_transfer_packet_command(drive, rq, cdrom_newpc_intr); } #define IDECD_SEEK_THRESHOLD (1000) /* 1000 blocks */ #define IDECD_SEEK_TIMER (5 * WAIT_MIN_SLEEP) /* 100 ms */ #define IDECD_SEEK_TIMEOUT (2 * WAIT_CMD) /* 20 sec */ static ide_startstop_t cdrom_seek_intr(ide_drive_t *drive) { struct cdrom_info *info = drive->driver_data; int stat; static int retry = 10; if (cdrom_decode_status(drive, 0, &stat)) return ide_stopped; info->cd_flags |= IDE_CD_FLAG_SEEKING; if (retry && time_after(jiffies, info->start_seek + IDECD_SEEK_TIMER)) { if (--retry == 0) drive->dsc_overlap = 0; } return ide_stopped; } static ide_startstop_t cdrom_start_seek_continuation(ide_drive_t *drive) { struct request *rq = HWGROUP(drive)->rq; sector_t frame = rq->sector; sector_div(frame, queue_hardsect_size(drive->queue) >> SECTOR_BITS); memset(rq->cmd, 0, BLK_MAX_CDB); rq->cmd[0] = GPCMD_SEEK; put_unaligned(cpu_to_be32(frame), (unsigned int *) &rq->cmd[2]); rq->timeout = ATAPI_WAIT_PC; return cdrom_transfer_packet_command(drive, rq, &cdrom_seek_intr); } static ide_startstop_t cdrom_start_seek(ide_drive_t *drive, unsigned int block) { struct cdrom_info *info = drive->driver_data; info->dma = 0; info->start_seek = jiffies; return cdrom_start_packet_command(drive, 0, cdrom_start_seek_continuation); } /* * Fix up a possibly partially-processed request so that we can start it over * entirely, or even put it back on the request queue. */ static void restore_request(struct request *rq) { if (rq->buffer != bio_data(rq->bio)) { sector_t n = (rq->buffer - (char *)bio_data(rq->bio)) / SECTOR_SIZE; rq->buffer = bio_data(rq->bio); rq->nr_sectors += n; rq->sector -= n; } rq->current_nr_sectors = bio_cur_sectors(rq->bio); rq->hard_cur_sectors = rq->current_nr_sectors; rq->hard_nr_sectors = rq->nr_sectors; rq->hard_sector = rq->sector; rq->q->prep_rq_fn(rq->q, rq); } /* * All other packet commands. */ static void ide_cd_request_sense_fixup(struct request *rq) { /* * Some of the trailing request sense fields are optional, * and some drives don't send them. Sigh. */ if (rq->cmd[0] == GPCMD_REQUEST_SENSE && rq->data_len > 0 && rq->data_len <= 5) while (rq->data_len > 0) { *(u8 *)rq->data++ = 0; --rq->data_len; } } int ide_cd_queue_pc(ide_drive_t *drive, const unsigned char *cmd, int write, void *buffer, unsigned *bufflen, struct request_sense *sense, int timeout, unsigned int cmd_flags) { struct cdrom_info *info = drive->driver_data; struct request_sense local_sense; int retries = 10; unsigned int flags = 0; if (!sense) sense = &local_sense; /* start of retry loop */ do { struct request *rq; int error; rq = blk_get_request(drive->queue, write, __GFP_WAIT); memcpy(rq->cmd, cmd, BLK_MAX_CDB); rq->cmd_type = REQ_TYPE_ATA_PC; rq->sense = sense; rq->cmd_flags |= cmd_flags; rq->timeout = timeout; if (buffer) { rq->data = buffer; rq->data_len = *bufflen; } error = blk_execute_rq(drive->queue, info->disk, rq, 0); if (buffer) *bufflen = rq->data_len; flags = rq->cmd_flags; blk_put_request(rq); /* * FIXME: we should probably abort/retry or something in case of * failure. */ if (flags & REQ_FAILED) { /* * The request failed. Retry if it was due to a unit * attention status (usually means media was changed). */ struct request_sense *reqbuf = sense; if (reqbuf->sense_key == UNIT_ATTENTION) cdrom_saw_media_change(drive); else if (reqbuf->sense_key == NOT_READY && reqbuf->asc == 4 && reqbuf->ascq != 4) { /* * The drive is in the process of loading * a disk. Retry, but wait a little to give * the drive time to complete the load. */ ssleep(2); } else { /* otherwise, don't retry */ retries = 0; } --retries; } /* end of retry loop */ } while ((flags & REQ_FAILED) && retries >= 0); /* return an error if the command failed */ return (flags & REQ_FAILED) ? -EIO : 0; } /* * Called from blk_end_request_callback() after the data of the request is * completed and before the request itself is completed. By returning value '1', * blk_end_request_callback() returns immediately without completing it. */ static int cdrom_newpc_intr_dummy_cb(struct request *rq) { return 1; } static ide_startstop_t cdrom_newpc_intr(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; struct cdrom_info *info = drive->driver_data; struct request *rq = HWGROUP(drive)->rq; xfer_func_t *xferfunc; ide_expiry_t *expiry = NULL; int dma_error = 0, dma, stat, ireason, len, thislen, uptodate = 0; int write = (rq_data_dir(rq) == WRITE) ? 1 : 0; unsigned int timeout; u8 lowcyl, highcyl; /* check for errors */ dma = info->dma; if (dma) { info->dma = 0; dma_error = hwif->dma_ops->dma_end(drive); if (dma_error) { printk(KERN_ERR "%s: DMA %s error\n", drive->name, write ? "write" : "read"); ide_dma_off(drive); } } if (cdrom_decode_status(drive, 0, &stat)) return ide_stopped; /* using dma, transfer is complete now */ if (dma) { if (dma_error) return ide_error(drive, "dma error", stat); if (blk_fs_request(rq)) { ide_end_request(drive, 1, rq->nr_sectors); return ide_stopped; } goto end_request; } /* ok we fall to pio :/ */ ireason = hwif->INB(hwif->io_ports.nsect_addr) & 0x3; lowcyl = hwif->INB(hwif->io_ports.lbam_addr); highcyl = hwif->INB(hwif->io_ports.lbah_addr); len = lowcyl + (256 * highcyl); thislen = blk_fs_request(rq) ? len : rq->data_len; if (thislen > len) thislen = len; /* If DRQ is clear, the command has completed. */ if ((stat & DRQ_STAT) == 0) { if (blk_fs_request(rq)) { /* * If we're not done reading/writing, complain. * Otherwise, complete the command normally. */ uptodate = 1; if (rq->current_nr_sectors > 0) { printk(KERN_ERR "%s: %s: data underrun " "(%d blocks)\n", drive->name, __func__, rq->current_nr_sectors); if (!write) rq->cmd_flags |= REQ_FAILED; uptodate = 0; } cdrom_end_request(drive, uptodate); return ide_stopped; } else if (!blk_pc_request(rq)) { ide_cd_request_sense_fixup(rq); /* complain if we still have data left to transfer */ uptodate = rq->data_len ? 0 : 1; } goto end_request; } /* check which way to transfer data */ if (ide_cd_check_ireason(drive, rq, len, ireason, write)) return ide_stopped; if (blk_fs_request(rq)) { if (write == 0) { int nskip; if (ide_cd_check_transfer_size(drive, len)) { cdrom_end_request(drive, 0); return ide_stopped; } /* * First, figure out if we need to bit-bucket * any of the leading sectors. */ nskip = min_t(int, rq->current_nr_sectors - bio_cur_sectors(rq->bio), thislen >> 9); if (nskip > 0) { ide_cd_drain_data(drive, nskip); rq->current_nr_sectors -= nskip; thislen -= (nskip << 9); } } } if (ireason == 0) { write = 1; xferfunc = hwif->output_data; } else { write = 0; xferfunc = hwif->input_data; } /* transfer data */ while (thislen > 0) { u8 *ptr = blk_fs_request(rq) ? NULL : rq->data; int blen = rq->data_len; /* bio backed? */ if (rq->bio) { if (blk_fs_request(rq)) { ptr = rq->buffer; blen = rq->current_nr_sectors << 9; } else { ptr = bio_data(rq->bio); blen = bio_iovec(rq->bio)->bv_len; } } if (!ptr) { if (blk_fs_request(rq) && !write) /* * If the buffers are full, pipe the rest into * oblivion. */ ide_cd_drain_data(drive, thislen >> 9); else { printk(KERN_ERR "%s: confused, missing data\n", drive->name); blk_dump_rq_flags(rq, rq_data_dir(rq) ? "cdrom_newpc_intr, write" : "cdrom_newpc_intr, read"); } break; } if (blen > thislen) blen = thislen; xferfunc(drive, NULL, ptr, blen); thislen -= blen; len -= blen; if (blk_fs_request(rq)) { rq->buffer += blen; rq->nr_sectors -= (blen >> 9); rq->current_nr_sectors -= (blen >> 9); rq->sector += (blen >> 9); if (rq->current_nr_sectors == 0 && rq->nr_sectors) cdrom_end_request(drive, 1); } else { rq->data_len -= blen; /* * The request can't be completed until DRQ is cleared. * So complete the data, but don't complete the request * using the dummy function for the callback feature * of blk_end_request_callback(). */ if (rq->bio) blk_end_request_callback(rq, 0, blen, cdrom_newpc_intr_dummy_cb); else rq->data += blen; } if (!write && blk_sense_request(rq)) rq->sense_len += blen; } /* pad, if necessary */ if (!blk_fs_request(rq) && len > 0) ide_cd_pad_transfer(drive, xferfunc, len); if (blk_pc_request(rq)) { timeout = rq->timeout; } else { timeout = ATAPI_WAIT_PC; if (!blk_fs_request(rq)) expiry = cdrom_timer_expiry; } ide_set_handler(drive, cdrom_newpc_intr, timeout, expiry); return ide_started; end_request: if (blk_pc_request(rq)) { unsigned long flags; unsigned int dlen = rq->data_len; if (dma) rq->data_len = 0; spin_lock_irqsave(&ide_lock, flags); if (__blk_end_request(rq, 0, dlen)) BUG(); HWGROUP(drive)->rq = NULL; spin_unlock_irqrestore(&ide_lock, flags); } else { if (!uptodate) rq->cmd_flags |= REQ_FAILED; cdrom_end_request(drive, uptodate); } return ide_stopped; } static ide_startstop_t cdrom_start_rw(ide_drive_t *drive, struct request *rq) { struct cdrom_info *cd = drive->driver_data; int write = rq_data_dir(rq) == WRITE; unsigned short sectors_per_frame = queue_hardsect_size(drive->queue) >> SECTOR_BITS; if (write) { /* disk has become write protected */ if (cd->disk->policy) { cdrom_end_request(drive, 0); return ide_stopped; } } else { /* * We may be retrying this request after an error. Fix up any * weirdness which might be present in the request packet. */ restore_request(rq); } /* use DMA, if possible / writes *must* be hardware frame aligned */ if ((rq->nr_sectors & (sectors_per_frame - 1)) || (rq->sector & (sectors_per_frame - 1))) { if (write) { cdrom_end_request(drive, 0); return ide_stopped; } cd->dma = 0; } else cd->dma = drive->using_dma; if (write) cd->devinfo.media_written = 1; /* start sending the read/write request to the drive */ return cdrom_start_packet_command(drive, 32768, cdrom_start_rw_cont); } static ide_startstop_t cdrom_do_newpc_cont(ide_drive_t *drive) { struct request *rq = HWGROUP(drive)->rq; if (!rq->timeout) rq->timeout = ATAPI_WAIT_PC; return cdrom_transfer_packet_command(drive, rq, cdrom_newpc_intr); } static ide_startstop_t cdrom_do_block_pc(ide_drive_t *drive, struct request *rq) { struct cdrom_info *info = drive->driver_data; if (blk_pc_request(rq)) rq->cmd_flags |= REQ_QUIET; else rq->cmd_flags &= ~REQ_FAILED; info->dma = 0; /* sg request */ if (rq->bio) { int mask = drive->queue->dma_alignment; unsigned long addr = (unsigned long)page_address(bio_page(rq->bio)); info->dma = drive->using_dma; /* * check if dma is safe * * NOTE! The "len" and "addr" checks should possibly have * separate masks. */ if ((rq->data_len & 15) || (addr & mask)) info->dma = 0; } /* start sending the command to the drive */ return cdrom_start_packet_command(drive, rq->data_len, cdrom_do_newpc_cont); } /* * cdrom driver request routine. */ static ide_startstop_t ide_do_rw_cdrom(ide_drive_t *drive, struct request *rq, sector_t block) { ide_startstop_t action; struct cdrom_info *info = drive->driver_data; if (blk_fs_request(rq)) { if (info->cd_flags & IDE_CD_FLAG_SEEKING) { unsigned long elapsed = jiffies - info->start_seek; int stat = ide_read_status(drive); if ((stat & SEEK_STAT) != SEEK_STAT) { if (elapsed < IDECD_SEEK_TIMEOUT) { ide_stall_queue(drive, IDECD_SEEK_TIMER); return ide_stopped; } printk(KERN_ERR "%s: DSC timeout\n", drive->name); } info->cd_flags &= ~IDE_CD_FLAG_SEEKING; } if (rq_data_dir(rq) == READ && IDE_LARGE_SEEK(info->last_block, block, IDECD_SEEK_THRESHOLD) && drive->dsc_overlap) action = cdrom_start_seek(drive, block); else action = cdrom_start_rw(drive, rq); info->last_block = block; return action; } else if (blk_sense_request(rq) || blk_pc_request(rq) || rq->cmd_type == REQ_TYPE_ATA_PC) { return cdrom_do_block_pc(drive, rq); } else if (blk_special_request(rq)) { /* right now this can only be a reset... */ cdrom_end_request(drive, 1); return ide_stopped; } blk_dump_rq_flags(rq, "ide-cd bad flags"); cdrom_end_request(drive, 0); return ide_stopped; } /* * Ioctl handling. * * Routines which queue packet commands take as a final argument a pointer to a * request_sense struct. If execution of the command results in an error with a * CHECK CONDITION status, this structure will be filled with the results of the * subsequent request sense command. The pointer can also be NULL, in which case * no sense information is returned. */ static void msf_from_bcd(struct atapi_msf *msf) { msf->minute = BCD2BIN(msf->minute); msf->second = BCD2BIN(msf->second); msf->frame = BCD2BIN(msf->frame); } int cdrom_check_status(ide_drive_t *drive, struct request_sense *sense) { struct cdrom_info *info = drive->driver_data; struct cdrom_device_info *cdi = &info->devinfo; unsigned char cmd[BLK_MAX_CDB]; memset(cmd, 0, BLK_MAX_CDB); cmd[0] = GPCMD_TEST_UNIT_READY; /* * Sanyo 3 CD changer uses byte 7 of TEST_UNIT_READY to switch CDs * instead of supporting the LOAD_UNLOAD opcode. */ cmd[7] = cdi->sanyo_slot % 3; return ide_cd_queue_pc(drive, cmd, 0, NULL, 0, sense, 0, REQ_QUIET); } static int cdrom_read_capacity(ide_drive_t *drive, unsigned long *capacity, unsigned long *sectors_per_frame, struct request_sense *sense) { struct { __u32 lba; __u32 blocklen; } capbuf; int stat; unsigned char cmd[BLK_MAX_CDB]; unsigned len = sizeof(capbuf); memset(cmd, 0, BLK_MAX_CDB); cmd[0] = GPCMD_READ_CDVD_CAPACITY; stat = ide_cd_queue_pc(drive, cmd, 0, &capbuf, &len, sense, 0, REQ_QUIET); if (stat == 0) { *capacity = 1 + be32_to_cpu(capbuf.lba); *sectors_per_frame = be32_to_cpu(capbuf.blocklen) >> SECTOR_BITS; } return stat; } static int cdrom_read_tocentry(ide_drive_t *drive, int trackno, int msf_flag, int format, char *buf, int buflen, struct request_sense *sense) { unsigned char cmd[BLK_MAX_CDB]; memset(cmd, 0, BLK_MAX_CDB); cmd[0] = GPCMD_READ_TOC_PMA_ATIP; cmd[6] = trackno; cmd[7] = (buflen >> 8); cmd[8] = (buflen & 0xff); cmd[9] = (format << 6); if (msf_flag) cmd[1] = 2; return ide_cd_queue_pc(drive, cmd, 0, buf, &buflen, sense, 0, REQ_QUIET); } /* Try to read the entire TOC for the disk into our internal buffer. */ int ide_cd_read_toc(ide_drive_t *drive, struct request_sense *sense) { int stat, ntracks, i; struct cdrom_info *info = drive->driver_data; struct cdrom_device_info *cdi = &info->devinfo; struct atapi_toc *toc = info->toc; struct { struct atapi_toc_header hdr; struct atapi_toc_entry ent; } ms_tmp; long last_written; unsigned long sectors_per_frame = SECTORS_PER_FRAME; if (toc == NULL) { /* try to allocate space */ toc = kmalloc(sizeof(struct atapi_toc), GFP_KERNEL); if (toc == NULL) { printk(KERN_ERR "%s: No cdrom TOC buffer!\n", drive->name); return -ENOMEM; } info->toc = toc; } /* * Check to see if the existing data is still valid. If it is, * just return. */ (void) cdrom_check_status(drive, sense); if (info->cd_flags & IDE_CD_FLAG_TOC_VALID) return 0; /* try to get the total cdrom capacity and sector size */ stat = cdrom_read_capacity(drive, &toc->capacity, §ors_per_frame, sense); if (stat) toc->capacity = 0x1fffff; set_capacity(info->disk, toc->capacity * sectors_per_frame); /* save a private copy of the TOC capacity for error handling */ drive->probed_capacity = toc->capacity * sectors_per_frame; blk_queue_hardsect_size(drive->queue, sectors_per_frame << SECTOR_BITS); /* first read just the header, so we know how long the TOC is */ stat = cdrom_read_tocentry(drive, 0, 1, 0, (char *) &toc->hdr, sizeof(struct atapi_toc_header), sense); if (stat) return stat; if (info->cd_flags & IDE_CD_FLAG_TOCTRACKS_AS_BCD) { toc->hdr.first_track = BCD2BIN(toc->hdr.first_track); toc->hdr.last_track = BCD2BIN(toc->hdr.last_track); } ntracks = toc->hdr.last_track - toc->hdr.first_track + 1; if (ntracks <= 0) return -EIO; if (ntracks > MAX_TRACKS) ntracks = MAX_TRACKS; /* now read the whole schmeer */ stat = cdrom_read_tocentry(drive, toc->hdr.first_track, 1, 0, (char *)&toc->hdr, sizeof(struct atapi_toc_header) + (ntracks + 1) * sizeof(struct atapi_toc_entry), sense); if (stat && toc->hdr.first_track > 1) { /* * Cds with CDI tracks only don't have any TOC entries, despite * of this the returned values are * first_track == last_track = number of CDI tracks + 1, * so that this case is indistinguishable from the same layout * plus an additional audio track. If we get an error for the * regular case, we assume a CDI without additional audio * tracks. In this case the readable TOC is empty (CDI tracks * are not included) and only holds the Leadout entry. * * Heiko Eißfeldt. */ ntracks = 0; stat = cdrom_read_tocentry(drive, CDROM_LEADOUT, 1, 0, (char *)&toc->hdr, sizeof(struct atapi_toc_header) + (ntracks + 1) * sizeof(struct atapi_toc_entry), sense); if (stat) return stat; if (info->cd_flags & IDE_CD_FLAG_TOCTRACKS_AS_BCD) { toc->hdr.first_track = (u8)BIN2BCD(CDROM_LEADOUT); toc->hdr.last_track = (u8)BIN2BCD(CDROM_LEADOUT); } else { toc->hdr.first_track = CDROM_LEADOUT; toc->hdr.last_track = CDROM_LEADOUT; } } if (stat) return stat; toc->hdr.toc_length = be16_to_cpu(toc->hdr.toc_length); if (info->cd_flags & IDE_CD_FLAG_TOCTRACKS_AS_BCD) { toc->hdr.first_track = BCD2BIN(toc->hdr.first_track); toc->hdr.last_track = BCD2BIN(toc->hdr.last_track); } for (i = 0; i <= ntracks; i++) { if (info->cd_flags & IDE_CD_FLAG_TOCADDR_AS_BCD) { if (info->cd_flags & IDE_CD_FLAG_TOCTRACKS_AS_BCD) toc->ent[i].track = BCD2BIN(toc->ent[i].track); msf_from_bcd(&toc->ent[i].addr.msf); } toc->ent[i].addr.lba = msf_to_lba(toc->ent[i].addr.msf.minute, toc->ent[i].addr.msf.second, toc->ent[i].addr.msf.frame); } if (toc->hdr.first_track != CDROM_LEADOUT) { /* read the multisession information */ stat = cdrom_read_tocentry(drive, 0, 0, 1, (char *)&ms_tmp, sizeof(ms_tmp), sense); if (stat) return stat; toc->last_session_lba = be32_to_cpu(ms_tmp.ent.addr.lba); } else { ms_tmp.hdr.last_track = CDROM_LEADOUT; ms_tmp.hdr.first_track = ms_tmp.hdr.last_track; toc->last_session_lba = msf_to_lba(0, 2, 0); /* 0m 2s 0f */ } if (info->cd_flags & IDE_CD_FLAG_TOCADDR_AS_BCD) { /* re-read multisession information using MSF format */ stat = cdrom_read_tocentry(drive, 0, 1, 1, (char *)&ms_tmp, sizeof(ms_tmp), sense); if (stat) return stat; msf_from_bcd(&ms_tmp.ent.addr.msf); toc->last_session_lba = msf_to_lba(ms_tmp.ent.addr.msf.minute, ms_tmp.ent.addr.msf.second, ms_tmp.ent.addr.msf.frame); } toc->xa_flag = (ms_tmp.hdr.first_track != ms_tmp.hdr.last_track); /* now try to get the total cdrom capacity */ stat = cdrom_get_last_written(cdi, &last_written); if (!stat && (last_written > toc->capacity)) { toc->capacity = last_written; set_capacity(info->disk, toc->capacity * sectors_per_frame); drive->probed_capacity = toc->capacity * sectors_per_frame; } /* Remember that we've read this stuff. */ info->cd_flags |= IDE_CD_FLAG_TOC_VALID; return 0; } int ide_cdrom_get_capabilities(ide_drive_t *drive, u8 *buf) { struct cdrom_info *info = drive->driver_data; struct cdrom_device_info *cdi = &info->devinfo; struct packet_command cgc; int stat, attempts = 3, size = ATAPI_CAPABILITIES_PAGE_SIZE; if ((info->cd_flags & IDE_CD_FLAG_FULL_CAPS_PAGE) == 0) size -= ATAPI_CAPABILITIES_PAGE_PAD_SIZE; init_cdrom_command(&cgc, buf, size, CGC_DATA_UNKNOWN); do { /* we seem to get stat=0x01,err=0x00 the first time (??) */ stat = cdrom_mode_sense(cdi, &cgc, GPMODE_CAPABILITIES_PAGE, 0); if (!stat) break; } while (--attempts); return stat; } void ide_cdrom_update_speed(ide_drive_t *drive, u8 *buf) { struct cdrom_info *cd = drive->driver_data; u16 curspeed, maxspeed; curspeed = *(u16 *)&buf[8 + 14]; maxspeed = *(u16 *)&buf[8 + 8]; if (cd->cd_flags & IDE_CD_FLAG_LE_SPEED_FIELDS) { curspeed = le16_to_cpu(curspeed); maxspeed = le16_to_cpu(maxspeed); } else { curspeed = be16_to_cpu(curspeed); maxspeed = be16_to_cpu(maxspeed); } cd->current_speed = (curspeed + (176/2)) / 176; cd->max_speed = (maxspeed + (176/2)) / 176; } #define IDE_CD_CAPABILITIES \ (CDC_CLOSE_TRAY | CDC_OPEN_TRAY | CDC_LOCK | CDC_SELECT_SPEED | \ CDC_SELECT_DISC | CDC_MULTI_SESSION | CDC_MCN | CDC_MEDIA_CHANGED | \ CDC_PLAY_AUDIO | CDC_RESET | CDC_DRIVE_STATUS | CDC_CD_R | \ CDC_CD_RW | CDC_DVD | CDC_DVD_R | CDC_DVD_RAM | CDC_GENERIC_PACKET | \ CDC_MO_DRIVE | CDC_MRW | CDC_MRW_W | CDC_RAM) static struct cdrom_device_ops ide_cdrom_dops = { .open = ide_cdrom_open_real, .release = ide_cdrom_release_real, .drive_status = ide_cdrom_drive_status, .media_changed = ide_cdrom_check_media_change_real, .tray_move = ide_cdrom_tray_move, .lock_door = ide_cdrom_lock_door, .select_speed = ide_cdrom_select_speed, .get_last_session = ide_cdrom_get_last_session, .get_mcn = ide_cdrom_get_mcn, .reset = ide_cdrom_reset, .audio_ioctl = ide_cdrom_audio_ioctl, .capability = IDE_CD_CAPABILITIES, .generic_packet = ide_cdrom_packet, }; static int ide_cdrom_register(ide_drive_t *drive, int nslots) { struct cdrom_info *info = drive->driver_data; struct cdrom_device_info *devinfo = &info->devinfo; devinfo->ops = &ide_cdrom_dops; devinfo->speed = info->current_speed; devinfo->capacity = nslots; devinfo->handle = drive; strcpy(devinfo->name, drive->name); if (info->cd_flags & IDE_CD_FLAG_NO_SPEED_SELECT) devinfo->mask |= CDC_SELECT_SPEED; devinfo->disk = info->disk; return register_cdrom(devinfo); } static int ide_cdrom_probe_capabilities(ide_drive_t *drive) { struct cdrom_info *cd = drive->driver_data; struct cdrom_device_info *cdi = &cd->devinfo; u8 buf[ATAPI_CAPABILITIES_PAGE_SIZE]; mechtype_t mechtype; int nslots = 1; cdi->mask = (CDC_CD_R | CDC_CD_RW | CDC_DVD | CDC_DVD_R | CDC_DVD_RAM | CDC_SELECT_DISC | CDC_PLAY_AUDIO | CDC_MO_DRIVE | CDC_RAM); if (drive->media == ide_optical) { cdi->mask &= ~(CDC_MO_DRIVE | CDC_RAM); printk(KERN_ERR "%s: ATAPI magneto-optical drive\n", drive->name); return nslots; } if (cd->cd_flags & IDE_CD_FLAG_PRE_ATAPI12) { cd->cd_flags &= ~IDE_CD_FLAG_NO_EJECT; cdi->mask &= ~CDC_PLAY_AUDIO; return nslots; } /* * We have to cheat a little here. the packet will eventually be queued * with ide_cdrom_packet(), which extracts the drive from cdi->handle. * Since this device hasn't been registered with the Uniform layer yet, * it can't do this. Same goes for cdi->ops. */ cdi->handle = drive; cdi->ops = &ide_cdrom_dops; if (ide_cdrom_get_capabilities(drive, buf)) return 0; if ((buf[8 + 6] & 0x01) == 0) cd->cd_flags |= IDE_CD_FLAG_NO_DOORLOCK; if (buf[8 + 6] & 0x08) cd->cd_flags &= ~IDE_CD_FLAG_NO_EJECT; if (buf[8 + 3] & 0x01) cdi->mask &= ~CDC_CD_R; if (buf[8 + 3] & 0x02) cdi->mask &= ~(CDC_CD_RW | CDC_RAM); if (buf[8 + 2] & 0x38) cdi->mask &= ~CDC_DVD; if (buf[8 + 3] & 0x20) cdi->mask &= ~(CDC_DVD_RAM | CDC_RAM); if (buf[8 + 3] & 0x10) cdi->mask &= ~CDC_DVD_R; if ((buf[8 + 4] & 0x01) || (cd->cd_flags & IDE_CD_FLAG_PLAY_AUDIO_OK)) cdi->mask &= ~CDC_PLAY_AUDIO; mechtype = buf[8 + 6] >> 5; if (mechtype == mechtype_caddy || mechtype == mechtype_popup) cdi->mask |= CDC_CLOSE_TRAY; if (cdi->sanyo_slot > 0) { cdi->mask &= ~CDC_SELECT_DISC; nslots = 3; } else if (mechtype == mechtype_individual_changer || mechtype == mechtype_cartridge_changer) { nslots = cdrom_number_of_slots(cdi); if (nslots > 1) cdi->mask &= ~CDC_SELECT_DISC; } ide_cdrom_update_speed(drive, buf); printk(KERN_INFO "%s: ATAPI", drive->name); /* don't print speed if the drive reported 0 */ if (cd->max_speed) printk(KERN_CONT " %dX", cd->max_speed); printk(KERN_CONT " %s", (cdi->mask & CDC_DVD) ? "CD-ROM" : "DVD-ROM"); if ((cdi->mask & CDC_DVD_R) == 0 || (cdi->mask & CDC_DVD_RAM) == 0) printk(KERN_CONT " DVD%s%s", (cdi->mask & CDC_DVD_R) ? "" : "-R", (cdi->mask & CDC_DVD_RAM) ? "" : "-RAM"); if ((cdi->mask & CDC_CD_R) == 0 || (cdi->mask & CDC_CD_RW) == 0) printk(KERN_CONT " CD%s%s", (cdi->mask & CDC_CD_R) ? "" : "-R", (cdi->mask & CDC_CD_RW) ? "" : "/RW"); if ((cdi->mask & CDC_SELECT_DISC) == 0) printk(KERN_CONT " changer w/%d slots", nslots); else printk(KERN_CONT " drive"); printk(KERN_CONT ", %dkB Cache\n", be16_to_cpu(*(u16 *)&buf[8 + 12])); return nslots; } /* standard prep_rq_fn that builds 10 byte cmds */ static int ide_cdrom_prep_fs(struct request_queue *q, struct request *rq) { int hard_sect = queue_hardsect_size(q); long block = (long)rq->hard_sector / (hard_sect >> 9); unsigned long blocks = rq->hard_nr_sectors / (hard_sect >> 9); memset(rq->cmd, 0, BLK_MAX_CDB); if (rq_data_dir(rq) == READ) rq->cmd[0] = GPCMD_READ_10; else rq->cmd[0] = GPCMD_WRITE_10; /* * fill in lba */ rq->cmd[2] = (block >> 24) & 0xff; rq->cmd[3] = (block >> 16) & 0xff; rq->cmd[4] = (block >> 8) & 0xff; rq->cmd[5] = block & 0xff; /* * and transfer length */ rq->cmd[7] = (blocks >> 8) & 0xff; rq->cmd[8] = blocks & 0xff; rq->cmd_len = 10; return BLKPREP_OK; } /* * Most of the SCSI commands are supported directly by ATAPI devices. * This transform handles the few exceptions. */ static int ide_cdrom_prep_pc(struct request *rq) { u8 *c = rq->cmd; /* transform 6-byte read/write commands to the 10-byte version */ if (c[0] == READ_6 || c[0] == WRITE_6) { c[8] = c[4]; c[5] = c[3]; c[4] = c[2]; c[3] = c[1] & 0x1f; c[2] = 0; c[1] &= 0xe0; c[0] += (READ_10 - READ_6); rq->cmd_len = 10; return BLKPREP_OK; } /* * it's silly to pretend we understand 6-byte sense commands, just * reject with ILLEGAL_REQUEST and the caller should take the * appropriate action */ if (c[0] == MODE_SENSE || c[0] == MODE_SELECT) { rq->errors = ILLEGAL_REQUEST; return BLKPREP_KILL; } return BLKPREP_OK; } static int ide_cdrom_prep_fn(struct request_queue *q, struct request *rq) { if (blk_fs_request(rq)) return ide_cdrom_prep_fs(q, rq); else if (blk_pc_request(rq)) return ide_cdrom_prep_pc(rq); return 0; } struct cd_list_entry { const char *id_model; const char *id_firmware; unsigned int cd_flags; }; #ifdef CONFIG_IDE_PROC_FS static sector_t ide_cdrom_capacity(ide_drive_t *drive) { unsigned long capacity, sectors_per_frame; if (cdrom_read_capacity(drive, &capacity, §ors_per_frame, NULL)) return 0; return capacity * sectors_per_frame; } static int proc_idecd_read_capacity(char *page, char **start, off_t off, int count, int *eof, void *data) { ide_drive_t *drive = data; int len; len = sprintf(page, "%llu\n", (long long)ide_cdrom_capacity(drive)); PROC_IDE_READ_RETURN(page, start, off, count, eof, len); } static ide_proc_entry_t idecd_proc[] = { { "capacity", S_IFREG|S_IRUGO, proc_idecd_read_capacity, NULL }, { NULL, 0, NULL, NULL } }; static void ide_cdrom_add_settings(ide_drive_t *drive) { ide_add_setting(drive, "dsc_overlap", SETTING_RW, TYPE_BYTE, 0, 1, 1, 1, &drive->dsc_overlap, NULL); } #else static inline void ide_cdrom_add_settings(ide_drive_t *drive) { ; } #endif static const struct cd_list_entry ide_cd_quirks_list[] = { /* Limit transfer size per interrupt. */ { "SAMSUNG CD-ROM SCR-2430", NULL, IDE_CD_FLAG_LIMIT_NFRAMES }, { "SAMSUNG CD-ROM SCR-2432", NULL, IDE_CD_FLAG_LIMIT_NFRAMES }, /* SCR-3231 doesn't support the SET_CD_SPEED command. */ { "SAMSUNG CD-ROM SCR-3231", NULL, IDE_CD_FLAG_NO_SPEED_SELECT }, /* Old NEC260 (not R) was released before ATAPI 1.2 spec. */ { "NEC CD-ROM DRIVE:260", "1.01", IDE_CD_FLAG_TOCADDR_AS_BCD | IDE_CD_FLAG_PRE_ATAPI12, }, /* Vertos 300, some versions of this drive like to talk BCD. */ { "V003S0DS", NULL, IDE_CD_FLAG_VERTOS_300_SSD, }, /* Vertos 600 ESD. */ { "V006E0DS", NULL, IDE_CD_FLAG_VERTOS_600_ESD, }, /* * Sanyo 3 CD changer uses a non-standard command for CD changing * (by default standard ATAPI support for CD changers is used). */ { "CD-ROM CDR-C3 G", NULL, IDE_CD_FLAG_SANYO_3CD }, { "CD-ROM CDR-C3G", NULL, IDE_CD_FLAG_SANYO_3CD }, { "CD-ROM CDR_C36", NULL, IDE_CD_FLAG_SANYO_3CD }, /* Stingray 8X CD-ROM. */ { "STINGRAY 8422 IDE 8X CD-ROM 7-27-95", NULL, IDE_CD_FLAG_PRE_ATAPI12}, /* * ACER 50X CD-ROM and WPI 32X CD-ROM require the full spec length * mode sense page capabilities size, but older drives break. */ { "ATAPI CD ROM DRIVE 50X MAX", NULL, IDE_CD_FLAG_FULL_CAPS_PAGE }, { "WPI CDS-32X", NULL, IDE_CD_FLAG_FULL_CAPS_PAGE }, /* ACER/AOpen 24X CD-ROM has the speed fields byte-swapped. */ { "", "241N", IDE_CD_FLAG_LE_SPEED_FIELDS }, /* * Some drives used by Apple don't advertise audio play * but they do support reading TOC & audio datas. */ { "MATSHITADVD-ROM SR-8187", NULL, IDE_CD_FLAG_PLAY_AUDIO_OK }, { "MATSHITADVD-ROM SR-8186", NULL, IDE_CD_FLAG_PLAY_AUDIO_OK }, { "MATSHITADVD-ROM SR-8176", NULL, IDE_CD_FLAG_PLAY_AUDIO_OK }, { "MATSHITADVD-ROM SR-8174", NULL, IDE_CD_FLAG_PLAY_AUDIO_OK }, { "Optiarc DVD RW AD-5200A", NULL, IDE_CD_FLAG_PLAY_AUDIO_OK }, { NULL, NULL, 0 } }; static unsigned int ide_cd_flags(struct hd_driveid *id) { const struct cd_list_entry *cle = ide_cd_quirks_list; while (cle->id_model) { if (strcmp(cle->id_model, id->model) == 0 && (cle->id_firmware == NULL || strstr(id->fw_rev, cle->id_firmware))) return cle->cd_flags; cle++; } return 0; } static int ide_cdrom_setup(ide_drive_t *drive) { struct cdrom_info *cd = drive->driver_data; struct cdrom_device_info *cdi = &cd->devinfo; struct hd_driveid *id = drive->id; int nslots; blk_queue_prep_rq(drive->queue, ide_cdrom_prep_fn); blk_queue_dma_alignment(drive->queue, 31); drive->queue->unplug_delay = (1 * HZ) / 1000; if (!drive->queue->unplug_delay) drive->queue->unplug_delay = 1; drive->special.all = 0; cd->cd_flags = IDE_CD_FLAG_MEDIA_CHANGED | IDE_CD_FLAG_NO_EJECT | ide_cd_flags(id); if ((id->config & 0x0060) == 0x20) cd->cd_flags |= IDE_CD_FLAG_DRQ_INTERRUPT; if ((cd->cd_flags & IDE_CD_FLAG_VERTOS_300_SSD) && id->fw_rev[4] == '1' && id->fw_rev[6] <= '2') cd->cd_flags |= (IDE_CD_FLAG_TOCTRACKS_AS_BCD | IDE_CD_FLAG_TOCADDR_AS_BCD); else if ((cd->cd_flags & IDE_CD_FLAG_VERTOS_600_ESD) && id->fw_rev[4] == '1' && id->fw_rev[6] <= '2') cd->cd_flags |= IDE_CD_FLAG_TOCTRACKS_AS_BCD; else if (cd->cd_flags & IDE_CD_FLAG_SANYO_3CD) /* 3 => use CD in slot 0 */ cdi->sanyo_slot = 3; nslots = ide_cdrom_probe_capabilities(drive); /* set correct block size */ blk_queue_hardsect_size(drive->queue, CD_FRAMESIZE); drive->dsc_overlap = (drive->next != drive); if (ide_cdrom_register(drive, nslots)) { printk(KERN_ERR "%s: %s failed to register device with the" " cdrom driver.\n", drive->name, __func__); cd->devinfo.handle = NULL; return 1; } ide_cdrom_add_settings(drive); return 0; } static void ide_cd_remove(ide_drive_t *drive) { struct cdrom_info *info = drive->driver_data; ide_proc_unregister_driver(drive, info->driver); del_gendisk(info->disk); ide_cd_put(info); } static void ide_cd_release(struct kref *kref) { struct cdrom_info *info = to_ide_cd(kref); struct cdrom_device_info *devinfo = &info->devinfo; ide_drive_t *drive = info->drive; struct gendisk *g = info->disk; kfree(info->toc); if (devinfo->handle == drive) unregister_cdrom(devinfo); drive->dsc_overlap = 0; drive->driver_data = NULL; blk_queue_prep_rq(drive->queue, NULL); g->private_data = NULL; put_disk(g); kfree(info); } static int ide_cd_probe(ide_drive_t *); static ide_driver_t ide_cdrom_driver = { .gen_driver = { .owner = THIS_MODULE, .name = "ide-cdrom", .bus = &ide_bus_type, }, .probe = ide_cd_probe, .remove = ide_cd_remove, .version = IDECD_VERSION, .media = ide_cdrom, .supports_dsc_overlap = 1, .do_request = ide_do_rw_cdrom, .end_request = ide_end_request, .error = __ide_error, .abort = __ide_abort, #ifdef CONFIG_IDE_PROC_FS .proc = idecd_proc, #endif }; static int idecd_open(struct inode *inode, struct file *file) { struct gendisk *disk = inode->i_bdev->bd_disk; struct cdrom_info *info; int rc = -ENOMEM; info = ide_cd_get(disk); if (!info) return -ENXIO; rc = cdrom_open(&info->devinfo, inode, file); if (rc < 0) ide_cd_put(info); return rc; } static int idecd_release(struct inode *inode, struct file *file) { struct gendisk *disk = inode->i_bdev->bd_disk; struct cdrom_info *info = ide_cd_g(disk); cdrom_release(&info->devinfo, file); ide_cd_put(info); return 0; } static int idecd_set_spindown(struct cdrom_device_info *cdi, unsigned long arg) { struct packet_command cgc; char buffer[16]; int stat; char spindown; if (copy_from_user(&spindown, (void __user *)arg, sizeof(char))) return -EFAULT; init_cdrom_command(&cgc, buffer, sizeof(buffer), CGC_DATA_UNKNOWN); stat = cdrom_mode_sense(cdi, &cgc, GPMODE_CDROM_PAGE, 0); if (stat) return stat; buffer[11] = (buffer[11] & 0xf0) | (spindown & 0x0f); return cdrom_mode_select(cdi, &cgc); } static int idecd_get_spindown(struct cdrom_device_info *cdi, unsigned long arg) { struct packet_command cgc; char buffer[16]; int stat; char spindown; init_cdrom_command(&cgc, buffer, sizeof(buffer), CGC_DATA_UNKNOWN); stat = cdrom_mode_sense(cdi, &cgc, GPMODE_CDROM_PAGE, 0); if (stat) return stat; spindown = buffer[11] & 0x0f; if (copy_to_user((void __user *)arg, &spindown, sizeof(char))) return -EFAULT; return 0; } static int idecd_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct block_device *bdev = inode->i_bdev; struct cdrom_info *info = ide_cd_g(bdev->bd_disk); int err; switch (cmd) { case CDROMSETSPINDOWN: return idecd_set_spindown(&info->devinfo, arg); case CDROMGETSPINDOWN: return idecd_get_spindown(&info->devinfo, arg); default: break; } err = generic_ide_ioctl(info->drive, file, bdev, cmd, arg); if (err == -EINVAL) err = cdrom_ioctl(file, &info->devinfo, inode, cmd, arg); return err; } static int idecd_media_changed(struct gendisk *disk) { struct cdrom_info *info = ide_cd_g(disk); return cdrom_media_changed(&info->devinfo); } static int idecd_revalidate_disk(struct gendisk *disk) { struct cdrom_info *info = ide_cd_g(disk); struct request_sense sense; ide_cd_read_toc(info->drive, &sense); return 0; } static struct block_device_operations idecd_ops = { .owner = THIS_MODULE, .open = idecd_open, .release = idecd_release, .ioctl = idecd_ioctl, .media_changed = idecd_media_changed, .revalidate_disk = idecd_revalidate_disk }; /* module options */ static char *ignore; module_param(ignore, charp, 0400); MODULE_DESCRIPTION("ATAPI CD-ROM Driver"); static int ide_cd_probe(ide_drive_t *drive) { struct cdrom_info *info; struct gendisk *g; struct request_sense sense; if (!strstr("ide-cdrom", drive->driver_req)) goto failed; if (!drive->present) goto failed; if (drive->media != ide_cdrom && drive->media != ide_optical) goto failed; /* skip drives that we were told to ignore */ if (ignore != NULL) { if (strstr(ignore, drive->name)) { printk(KERN_INFO "ide-cd: ignoring drive %s\n", drive->name); goto failed; } } if (drive->scsi) { printk(KERN_INFO "ide-cd: passing drive %s to ide-scsi " "emulation.\n", drive->name); goto failed; } info = kzalloc(sizeof(struct cdrom_info), GFP_KERNEL); if (info == NULL) { printk(KERN_ERR "%s: Can't allocate a cdrom structure\n", drive->name); goto failed; } g = alloc_disk(1 << PARTN_BITS); if (!g) goto out_free_cd; ide_init_disk(g, drive); ide_proc_register_driver(drive, &ide_cdrom_driver); kref_init(&info->kref); info->drive = drive; info->driver = &ide_cdrom_driver; info->disk = g; g->private_data = &info->driver; drive->driver_data = info; g->minors = 1; g->driverfs_dev = &drive->gendev; g->flags = GENHD_FL_CD | GENHD_FL_REMOVABLE; if (ide_cdrom_setup(drive)) { ide_proc_unregister_driver(drive, &ide_cdrom_driver); ide_cd_release(&info->kref); goto failed; } ide_cd_read_toc(drive, &sense); g->fops = &idecd_ops; g->flags |= GENHD_FL_REMOVABLE; add_disk(g); return 0; out_free_cd: kfree(info); failed: return -ENODEV; } static void __exit ide_cdrom_exit(void) { driver_unregister(&ide_cdrom_driver.gen_driver); } static int __init ide_cdrom_init(void) { return driver_register(&ide_cdrom_driver.gen_driver); } MODULE_ALIAS("ide:*m-cdrom*"); MODULE_ALIAS("ide-cd"); module_init(ide_cdrom_init); module_exit(ide_cdrom_exit); MODULE_LICENSE("GPL");