/* via686a.c - Part of lm_sensors, Linux kernel modules for hardware monitoring Copyright (c) 1998 - 2002 Frodo Looijaard , Kyösti Mälkki , Mark Studebaker , and Bob Dougherty (Some conversion-factor data were contributed by Jonathan Teh Soon Yew and Alex van Kaam .) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Supports the Via VT82C686A, VT82C686B south bridges. Reports all as a 686A. Warning - only supports a single device. */ #include #include #include #include #include #include #include #include /* If force_addr is set to anything different from 0, we forcibly enable the device at the given address. */ static unsigned short force_addr = 0; module_param(force_addr, ushort, 0); MODULE_PARM_DESC(force_addr, "Initialize the base address of the sensors"); /* Addresses to scan. Note that we can't determine the ISA address until we have initialized our module */ static unsigned short normal_i2c[] = { I2C_CLIENT_END }; static unsigned int normal_isa[] = { 0x0000, I2C_CLIENT_ISA_END }; /* Insmod parameters */ SENSORS_INSMOD_1(via686a); /* The Via 686a southbridge has a LM78-like chip integrated on the same IC. This driver is a customized copy of lm78.c */ /* Many VIA686A constants specified below */ /* Length of ISA address segment */ #define VIA686A_EXTENT 0x80 #define VIA686A_BASE_REG 0x70 #define VIA686A_ENABLE_REG 0x74 /* The VIA686A registers */ /* ins numbered 0-4 */ #define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2)) #define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2)) #define VIA686A_REG_IN(nr) (0x22 + (nr)) /* fans numbered 1-2 */ #define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr)) #define VIA686A_REG_FAN(nr) (0x28 + (nr)) /* the following values are as speced by VIA: */ static const u8 regtemp[] = { 0x20, 0x21, 0x1f }; static const u8 regover[] = { 0x39, 0x3d, 0x1d }; static const u8 reghyst[] = { 0x3a, 0x3e, 0x1e }; /* temps numbered 1-3 */ #define VIA686A_REG_TEMP(nr) (regtemp[nr]) #define VIA686A_REG_TEMP_OVER(nr) (regover[nr]) #define VIA686A_REG_TEMP_HYST(nr) (reghyst[nr]) /* bits 7-6 */ #define VIA686A_REG_TEMP_LOW1 0x4b /* 2 = bits 5-4, 3 = bits 7-6 */ #define VIA686A_REG_TEMP_LOW23 0x49 #define VIA686A_REG_ALARM1 0x41 #define VIA686A_REG_ALARM2 0x42 #define VIA686A_REG_FANDIV 0x47 #define VIA686A_REG_CONFIG 0x40 /* The following register sets temp interrupt mode (bits 1-0 for temp1, 3-2 for temp2, 5-4 for temp3). Modes are: 00 interrupt stays as long as value is out-of-range 01 interrupt is cleared once register is read (default) 10 comparator mode- like 00, but ignores hysteresis 11 same as 00 */ #define VIA686A_REG_TEMP_MODE 0x4b /* We'll just assume that you want to set all 3 simultaneously: */ #define VIA686A_TEMP_MODE_MASK 0x3F #define VIA686A_TEMP_MODE_CONTINUOUS 0x00 /* Conversions. Limit checking is only done on the TO_REG variants. ********* VOLTAGE CONVERSIONS (Bob Dougherty) ******** From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew): voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V in[i]=(data[i+2]*25.0+133)*voltagefactor[i]; That is: volts = (25*regVal+133)*factor regVal = (volts/factor-133)/25 (These conversions were contributed by Jonathan Teh Soon Yew ) */ static inline u8 IN_TO_REG(long val, int inNum) { /* To avoid floating point, we multiply constants by 10 (100 for +12V). Rounding is done (120500 is actually 133000 - 12500). Remember that val is expressed in 0.001V/bit, which is why we divide by an additional 10000 (100000 for +12V): 1000 for val and 10 (100) for the constants. */ if (inNum <= 1) return (u8) SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255); else if (inNum == 2) return (u8) SENSORS_LIMIT((val * 15737 - 1205000) / 250000, 0, 255); else if (inNum == 3) return (u8) SENSORS_LIMIT((val * 10108 - 1205000) / 250000, 0, 255); else return (u8) SENSORS_LIMIT((val * 41714 - 12050000) / 2500000, 0, 255); } static inline long IN_FROM_REG(u8 val, int inNum) { /* To avoid floating point, we multiply constants by 10 (100 for +12V). We also multiply them by 1000 because we want 0.001V/bit for the output value. Rounding is done. */ if (inNum <= 1) return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024); else if (inNum == 2) return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737); else if (inNum == 3) return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108); else return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714); } /********* FAN RPM CONVERSIONS ********/ /* Higher register values = slower fans (the fan's strobe gates a counter). But this chip saturates back at 0, not at 255 like all the other chips. So, 0 means 0 RPM */ static inline u8 FAN_TO_REG(long rpm, int div) { if (rpm == 0) return 0; rpm = SENSORS_LIMIT(rpm, 1, 1000000); return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255); } #define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div))) /******** TEMP CONVERSIONS (Bob Dougherty) *********/ /* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew) if(temp<169) return double(temp)*0.427-32.08; else if(temp>=169 && temp<=202) return double(temp)*0.582-58.16; else return double(temp)*0.924-127.33; A fifth-order polynomial fits the unofficial data (provided by Alex van Kaam ) a bit better. It also give more reasonable numbers on my machine (ie. they agree with what my BIOS tells me). Here's the fifth-order fit to the 8-bit data: temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 - 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0. (2000-10-25- RFD: thanks to Uwe Andersen for finding my typos in this formula!) Alas, none of the elegant function-fit solutions will work because we aren't allowed to use floating point in the kernel and doing it with integers doesn't provide enough precision. So we'll do boring old look-up table stuff. The unofficial data (see below) have effectively 7-bit resolution (they are rounded to the nearest degree). I'm assuming that the transfer function of the device is monotonic and smooth, so a smooth function fit to the data will allow us to get better precision. I used the 5th-order poly fit described above and solved for VIA register values 0-255. I *10 before rounding, so we get tenth-degree precision. (I could have done all 1024 values for our 10-bit readings, but the function is very linear in the useful range (0-80 deg C), so we'll just use linear interpolation for 10-bit readings.) So, tempLUT is the temp at via register values 0-255: */ static const long tempLUT[] = { -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519, -503, -487, -471, -456, -442, -428, -414, -400, -387, -375, -362, -350, -339, -327, -316, -305, -295, -285, -275, -265, -255, -246, -237, -229, -220, -212, -204, -196, -188, -180, -173, -166, -159, -152, -145, -139, -132, -126, -120, -114, -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49, -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16, 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84, 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189, 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241, 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294, 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348, 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404, 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464, 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532, 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614, 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718, 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856, 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044, 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252, 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462 }; /* the original LUT values from Alex van Kaam (for via register values 12-240): {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31, -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15, -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3, -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12, 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22, 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33, 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45, 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60, 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84, 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110}; Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed an extra term for a good fit to these inverse data!) and then solving for each temp value from -50 to 110 (the useable range for this chip). Here's the fit: viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4 - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01) Note that n=161: */ static const u8 viaLUT[] = { 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66, 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100, 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129, 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199, 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224, 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232, 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 239, 240 }; /* Converting temps to (8-bit) hyst and over registers No interpolation here. The +50 is because the temps start at -50 */ static inline u8 TEMP_TO_REG(long val) { return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 : (val < 0 ? val - 500 : val + 500) / 1000 + 50]; } /* for 8-bit temperature hyst and over registers */ #define TEMP_FROM_REG(val) (tempLUT[(val)] * 100) /* for 10-bit temperature readings */ static inline long TEMP_FROM_REG10(u16 val) { u16 eightBits = val >> 2; u16 twoBits = val & 3; /* no interpolation for these */ if (twoBits == 0 || eightBits == 255) return TEMP_FROM_REG(eightBits); /* do some linear interpolation */ return (tempLUT[eightBits] * (4 - twoBits) + tempLUT[eightBits + 1] * twoBits) * 25; } #define DIV_FROM_REG(val) (1 << (val)) #define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1) /* For the VIA686A, we need to keep some data in memory. The structure is dynamically allocated, at the same time when a new via686a client is allocated. */ struct via686a_data { struct i2c_client client; struct semaphore update_lock; char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ u8 in[5]; /* Register value */ u8 in_max[5]; /* Register value */ u8 in_min[5]; /* Register value */ u8 fan[2]; /* Register value */ u8 fan_min[2]; /* Register value */ u16 temp[3]; /* Register value 10 bit */ u8 temp_over[3]; /* Register value */ u8 temp_hyst[3]; /* Register value */ u8 fan_div[2]; /* Register encoding, shifted right */ u16 alarms; /* Register encoding, combined */ }; static struct pci_dev *s_bridge; /* pointer to the (only) via686a */ static int via686a_attach_adapter(struct i2c_adapter *adapter); static int via686a_detect(struct i2c_adapter *adapter, int address, int kind); static int via686a_detach_client(struct i2c_client *client); static inline int via686a_read_value(struct i2c_client *client, u8 reg) { return (inb_p(client->addr + reg)); } static inline void via686a_write_value(struct i2c_client *client, u8 reg, u8 value) { outb_p(value, client->addr + reg); } static struct via686a_data *via686a_update_device(struct device *dev); static void via686a_init_client(struct i2c_client *client); /* following are the sysfs callback functions */ /* 7 voltage sensors */ static ssize_t show_in(struct device *dev, char *buf, int nr) { struct via686a_data *data = via686a_update_device(dev); return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr)); } static ssize_t show_in_min(struct device *dev, char *buf, int nr) { struct via686a_data *data = via686a_update_device(dev); return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr)); } static ssize_t show_in_max(struct device *dev, char *buf, int nr) { struct via686a_data *data = via686a_update_device(dev); return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr)); } static ssize_t set_in_min(struct device *dev, const char *buf, size_t count, int nr) { struct i2c_client *client = to_i2c_client(dev); struct via686a_data *data = i2c_get_clientdata(client); unsigned long val = simple_strtoul(buf, NULL, 10); down(&data->update_lock); data->in_min[nr] = IN_TO_REG(val, nr); via686a_write_value(client, VIA686A_REG_IN_MIN(nr), data->in_min[nr]); up(&data->update_lock); return count; } static ssize_t set_in_max(struct device *dev, const char *buf, size_t count, int nr) { struct i2c_client *client = to_i2c_client(dev); struct via686a_data *data = i2c_get_clientdata(client); unsigned long val = simple_strtoul(buf, NULL, 10); down(&data->update_lock); data->in_max[nr] = IN_TO_REG(val, nr); via686a_write_value(client, VIA686A_REG_IN_MAX(nr), data->in_max[nr]); up(&data->update_lock); return count; } #define show_in_offset(offset) \ static ssize_t \ show_in##offset (struct device *dev, struct device_attribute *attr, char *buf) \ { \ return show_in(dev, buf, offset); \ } \ static ssize_t \ show_in##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \ { \ return show_in_min(dev, buf, offset); \ } \ static ssize_t \ show_in##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \ { \ return show_in_max(dev, buf, offset); \ } \ static ssize_t set_in##offset##_min (struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ return set_in_min(dev, buf, count, offset); \ } \ static ssize_t set_in##offset##_max (struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ return set_in_max(dev, buf, count, offset); \ } \ static DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in##offset, NULL);\ static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ show_in##offset##_min, set_in##offset##_min); \ static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ show_in##offset##_max, set_in##offset##_max); show_in_offset(0); show_in_offset(1); show_in_offset(2); show_in_offset(3); show_in_offset(4); /* 3 temperatures */ static ssize_t show_temp(struct device *dev, char *buf, int nr) { struct via686a_data *data = via686a_update_device(dev); return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr])); } static ssize_t show_temp_over(struct device *dev, char *buf, int nr) { struct via686a_data *data = via686a_update_device(dev); return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr])); } static ssize_t show_temp_hyst(struct device *dev, char *buf, int nr) { struct via686a_data *data = via686a_update_device(dev); return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr])); } static ssize_t set_temp_over(struct device *dev, const char *buf, size_t count, int nr) { struct i2c_client *client = to_i2c_client(dev); struct via686a_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); down(&data->update_lock); data->temp_over[nr] = TEMP_TO_REG(val); via686a_write_value(client, VIA686A_REG_TEMP_OVER(nr), data->temp_over[nr]); up(&data->update_lock); return count; } static ssize_t set_temp_hyst(struct device *dev, const char *buf, size_t count, int nr) { struct i2c_client *client = to_i2c_client(dev); struct via686a_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); down(&data->update_lock); data->temp_hyst[nr] = TEMP_TO_REG(val); via686a_write_value(client, VIA686A_REG_TEMP_HYST(nr), data->temp_hyst[nr]); up(&data->update_lock); return count; } #define show_temp_offset(offset) \ static ssize_t show_temp_##offset (struct device *dev, struct device_attribute *attr, char *buf) \ { \ return show_temp(dev, buf, offset - 1); \ } \ static ssize_t \ show_temp_##offset##_over (struct device *dev, struct device_attribute *attr, char *buf) \ { \ return show_temp_over(dev, buf, offset - 1); \ } \ static ssize_t \ show_temp_##offset##_hyst (struct device *dev, struct device_attribute *attr, char *buf) \ { \ return show_temp_hyst(dev, buf, offset - 1); \ } \ static ssize_t set_temp_##offset##_over (struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ return set_temp_over(dev, buf, count, offset - 1); \ } \ static ssize_t set_temp_##offset##_hyst (struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ return set_temp_hyst(dev, buf, count, offset - 1); \ } \ static DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp_##offset, NULL);\ static DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ show_temp_##offset##_over, set_temp_##offset##_over); \ static DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \ show_temp_##offset##_hyst, set_temp_##offset##_hyst); show_temp_offset(1); show_temp_offset(2); show_temp_offset(3); /* 2 Fans */ static ssize_t show_fan(struct device *dev, char *buf, int nr) { struct via686a_data *data = via686a_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], DIV_FROM_REG(data->fan_div[nr])) ); } static ssize_t show_fan_min(struct device *dev, char *buf, int nr) { struct via686a_data *data = via686a_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])) ); } static ssize_t show_fan_div(struct device *dev, char *buf, int nr) { struct via686a_data *data = via686a_update_device(dev); return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]) ); } static ssize_t set_fan_min(struct device *dev, const char *buf, size_t count, int nr) { struct i2c_client *client = to_i2c_client(dev); struct via686a_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); down(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); via686a_write_value(client, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]); up(&data->update_lock); return count; } static ssize_t set_fan_div(struct device *dev, const char *buf, size_t count, int nr) { struct i2c_client *client = to_i2c_client(dev); struct via686a_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); int old; down(&data->update_lock); old = via686a_read_value(client, VIA686A_REG_FANDIV); data->fan_div[nr] = DIV_TO_REG(val); old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4); via686a_write_value(client, VIA686A_REG_FANDIV, old); up(&data->update_lock); return count; } #define show_fan_offset(offset) \ static ssize_t show_fan_##offset (struct device *dev, struct device_attribute *attr, char *buf) \ { \ return show_fan(dev, buf, offset - 1); \ } \ static ssize_t show_fan_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \ { \ return show_fan_min(dev, buf, offset - 1); \ } \ static ssize_t show_fan_##offset##_div (struct device *dev, struct device_attribute *attr, char *buf) \ { \ return show_fan_div(dev, buf, offset - 1); \ } \ static ssize_t set_fan_##offset##_min (struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ return set_fan_min(dev, buf, count, offset - 1); \ } \ static ssize_t set_fan_##offset##_div (struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ return set_fan_div(dev, buf, count, offset - 1); \ } \ static DEVICE_ATTR(fan##offset##_input, S_IRUGO, show_fan_##offset, NULL);\ static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ show_fan_##offset##_min, set_fan_##offset##_min); \ static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ show_fan_##offset##_div, set_fan_##offset##_div); show_fan_offset(1); show_fan_offset(2); /* Alarms */ static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { struct via686a_data *data = via686a_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); /* The driver. I choose to use type i2c_driver, as at is identical to both smbus_driver and isa_driver, and clients could be of either kind */ static struct i2c_driver via686a_driver = { .owner = THIS_MODULE, .name = "via686a", .id = I2C_DRIVERID_VIA686A, .flags = I2C_DF_NOTIFY, .attach_adapter = via686a_attach_adapter, .detach_client = via686a_detach_client, }; /* This is called when the module is loaded */ static int via686a_attach_adapter(struct i2c_adapter *adapter) { if (!(adapter->class & I2C_CLASS_HWMON)) return 0; return i2c_detect(adapter, &addr_data, via686a_detect); } static int via686a_detect(struct i2c_adapter *adapter, int address, int kind) { struct i2c_client *new_client; struct via686a_data *data; int err = 0; const char client_name[] = "via686a"; u16 val; /* Make sure we are probing the ISA bus!! */ if (!i2c_is_isa_adapter(adapter)) { dev_err(&adapter->dev, "via686a_detect called for an I2C bus adapter?!?\n"); return 0; } /* 8231 requires multiple of 256, we enforce that on 686 as well */ if (force_addr) address = force_addr & 0xFF00; if (force_addr) { dev_warn(&adapter->dev, "forcing ISA address 0x%04X\n", address); if (PCIBIOS_SUCCESSFUL != pci_write_config_word(s_bridge, VIA686A_BASE_REG, address)) return -ENODEV; } if (PCIBIOS_SUCCESSFUL != pci_read_config_word(s_bridge, VIA686A_ENABLE_REG, &val)) return -ENODEV; if (!(val & 0x0001)) { dev_warn(&adapter->dev, "enabling sensors\n"); if (PCIBIOS_SUCCESSFUL != pci_write_config_word(s_bridge, VIA686A_ENABLE_REG, val | 0x0001)) return -ENODEV; } /* Reserve the ISA region */ if (!request_region(address, VIA686A_EXTENT, via686a_driver.name)) { dev_err(&adapter->dev, "region 0x%x already in use!\n", address); return -ENODEV; } if (!(data = kmalloc(sizeof(struct via686a_data), GFP_KERNEL))) { err = -ENOMEM; goto ERROR0; } memset(data, 0, sizeof(struct via686a_data)); new_client = &data->client; i2c_set_clientdata(new_client, data); new_client->addr = address; new_client->adapter = adapter; new_client->driver = &via686a_driver; new_client->flags = 0; /* Fill in the remaining client fields and put into the global list */ strlcpy(new_client->name, client_name, I2C_NAME_SIZE); data->valid = 0; init_MUTEX(&data->update_lock); /* Tell the I2C layer a new client has arrived */ if ((err = i2c_attach_client(new_client))) goto ERROR3; /* Initialize the VIA686A chip */ via686a_init_client(new_client); /* Register sysfs hooks */ device_create_file(&new_client->dev, &dev_attr_in0_input); device_create_file(&new_client->dev, &dev_attr_in1_input); device_create_file(&new_client->dev, &dev_attr_in2_input); device_create_file(&new_client->dev, &dev_attr_in3_input); device_create_file(&new_client->dev, &dev_attr_in4_input); device_create_file(&new_client->dev, &dev_attr_in0_min); device_create_file(&new_client->dev, &dev_attr_in1_min); device_create_file(&new_client->dev, &dev_attr_in2_min); device_create_file(&new_client->dev, &dev_attr_in3_min); device_create_file(&new_client->dev, &dev_attr_in4_min); device_create_file(&new_client->dev, &dev_attr_in0_max); device_create_file(&new_client->dev, &dev_attr_in1_max); device_create_file(&new_client->dev, &dev_attr_in2_max); device_create_file(&new_client->dev, &dev_attr_in3_max); device_create_file(&new_client->dev, &dev_attr_in4_max); device_create_file(&new_client->dev, &dev_attr_temp1_input); device_create_file(&new_client->dev, &dev_attr_temp2_input); device_create_file(&new_client->dev, &dev_attr_temp3_input); device_create_file(&new_client->dev, &dev_attr_temp1_max); device_create_file(&new_client->dev, &dev_attr_temp2_max); device_create_file(&new_client->dev, &dev_attr_temp3_max); device_create_file(&new_client->dev, &dev_attr_temp1_max_hyst); device_create_file(&new_client->dev, &dev_attr_temp2_max_hyst); device_create_file(&new_client->dev, &dev_attr_temp3_max_hyst); device_create_file(&new_client->dev, &dev_attr_fan1_input); device_create_file(&new_client->dev, &dev_attr_fan2_input); device_create_file(&new_client->dev, &dev_attr_fan1_min); device_create_file(&new_client->dev, &dev_attr_fan2_min); device_create_file(&new_client->dev, &dev_attr_fan1_div); device_create_file(&new_client->dev, &dev_attr_fan2_div); device_create_file(&new_client->dev, &dev_attr_alarms); return 0; ERROR3: kfree(data); ERROR0: release_region(address, VIA686A_EXTENT); return err; } static int via686a_detach_client(struct i2c_client *client) { int err; if ((err = i2c_detach_client(client))) { dev_err(&client->dev, "Client deregistration failed, client not detached.\n"); return err; } release_region(client->addr, VIA686A_EXTENT); kfree(i2c_get_clientdata(client)); return 0; } /* Called when we have found a new VIA686A. Set limits, etc. */ static void via686a_init_client(struct i2c_client *client) { u8 reg; /* Start monitoring */ reg = via686a_read_value(client, VIA686A_REG_CONFIG); via686a_write_value(client, VIA686A_REG_CONFIG, (reg|0x01)&0x7F); /* Configure temp interrupt mode for continuous-interrupt operation */ via686a_write_value(client, VIA686A_REG_TEMP_MODE, via686a_read_value(client, VIA686A_REG_TEMP_MODE) & !(VIA686A_TEMP_MODE_MASK | VIA686A_TEMP_MODE_CONTINUOUS)); } static struct via686a_data *via686a_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct via686a_data *data = i2c_get_clientdata(client); int i; down(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { for (i = 0; i <= 4; i++) { data->in[i] = via686a_read_value(client, VIA686A_REG_IN(i)); data->in_min[i] = via686a_read_value(client, VIA686A_REG_IN_MIN (i)); data->in_max[i] = via686a_read_value(client, VIA686A_REG_IN_MAX(i)); } for (i = 1; i <= 2; i++) { data->fan[i - 1] = via686a_read_value(client, VIA686A_REG_FAN(i)); data->fan_min[i - 1] = via686a_read_value(client, VIA686A_REG_FAN_MIN(i)); } for (i = 0; i <= 2; i++) { data->temp[i] = via686a_read_value(client, VIA686A_REG_TEMP(i)) << 2; data->temp_over[i] = via686a_read_value(client, VIA686A_REG_TEMP_OVER(i)); data->temp_hyst[i] = via686a_read_value(client, VIA686A_REG_TEMP_HYST(i)); } /* add in lower 2 bits temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1 temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23 temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23 */ data->temp[0] |= (via686a_read_value(client, VIA686A_REG_TEMP_LOW1) & 0xc0) >> 6; data->temp[1] |= (via686a_read_value(client, VIA686A_REG_TEMP_LOW23) & 0x30) >> 4; data->temp[2] |= (via686a_read_value(client, VIA686A_REG_TEMP_LOW23) & 0xc0) >> 6; i = via686a_read_value(client, VIA686A_REG_FANDIV); data->fan_div[0] = (i >> 4) & 0x03; data->fan_div[1] = i >> 6; data->alarms = via686a_read_value(client, VIA686A_REG_ALARM1) | (via686a_read_value(client, VIA686A_REG_ALARM2) << 8); data->last_updated = jiffies; data->valid = 1; } up(&data->update_lock); return data; } static struct pci_device_id via686a_pci_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) }, { 0, } }; MODULE_DEVICE_TABLE(pci, via686a_pci_ids); static int __devinit via686a_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { u16 val; int addr = 0; if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VIA686A_BASE_REG, &val)) return -ENODEV; addr = val & ~(VIA686A_EXTENT - 1); if (addr == 0 && force_addr == 0) { dev_err(&dev->dev, "base address not set - upgrade BIOS " "or use force_addr=0xaddr\n"); return -ENODEV; } if (force_addr) addr = force_addr; /* so detect will get called */ if (!addr) { dev_err(&dev->dev, "No Via 686A sensors found.\n"); return -ENODEV; } normal_isa[0] = addr; s_bridge = pci_dev_get(dev); if (i2c_add_driver(&via686a_driver)) { pci_dev_put(s_bridge); s_bridge = NULL; } /* Always return failure here. This is to allow other drivers to bind * to this pci device. We don't really want to have control over the * pci device, we only wanted to read as few register values from it. */ return -ENODEV; } static struct pci_driver via686a_pci_driver = { .name = "via686a", .id_table = via686a_pci_ids, .probe = via686a_pci_probe, }; static int __init sm_via686a_init(void) { return pci_register_driver(&via686a_pci_driver); } static void __exit sm_via686a_exit(void) { pci_unregister_driver(&via686a_pci_driver); if (s_bridge != NULL) { i2c_del_driver(&via686a_driver); pci_dev_put(s_bridge); s_bridge = NULL; } } MODULE_AUTHOR("Kyösti Mälkki , " "Mark Studebaker " "and Bob Dougherty "); MODULE_DESCRIPTION("VIA 686A Sensor device"); MODULE_LICENSE("GPL"); module_init(sm_via686a_init); module_exit(sm_via686a_exit);