/* * Specific bus support for PMC-TWI compliant implementation on MSP71xx. * * Copyright 2005-2007 PMC-Sierra, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/completion.h> #include <linux/mutex.h> #include <linux/delay.h> #include <asm/io.h> #define DRV_NAME "pmcmsptwi" #define MSP_TWI_SF_CLK_REG_OFFSET 0x00 #define MSP_TWI_HS_CLK_REG_OFFSET 0x04 #define MSP_TWI_CFG_REG_OFFSET 0x08 #define MSP_TWI_CMD_REG_OFFSET 0x0c #define MSP_TWI_ADD_REG_OFFSET 0x10 #define MSP_TWI_DAT_0_REG_OFFSET 0x14 #define MSP_TWI_DAT_1_REG_OFFSET 0x18 #define MSP_TWI_INT_STS_REG_OFFSET 0x1c #define MSP_TWI_INT_MSK_REG_OFFSET 0x20 #define MSP_TWI_BUSY_REG_OFFSET 0x24 #define MSP_TWI_INT_STS_DONE (1 << 0) #define MSP_TWI_INT_STS_LOST_ARBITRATION (1 << 1) #define MSP_TWI_INT_STS_NO_RESPONSE (1 << 2) #define MSP_TWI_INT_STS_DATA_COLLISION (1 << 3) #define MSP_TWI_INT_STS_BUSY (1 << 4) #define MSP_TWI_INT_STS_ALL 0x1f #define MSP_MAX_BYTES_PER_RW 8 #define MSP_MAX_POLL 5 #define MSP_POLL_DELAY 10 #define MSP_IRQ_TIMEOUT (MSP_MAX_POLL * MSP_POLL_DELAY) /* IO Operation macros */ #define pmcmsptwi_readl __raw_readl #define pmcmsptwi_writel __raw_writel /* TWI command type */ enum pmcmsptwi_cmd_type { MSP_TWI_CMD_WRITE = 0, /* Write only */ MSP_TWI_CMD_READ = 1, /* Read only */ MSP_TWI_CMD_WRITE_READ = 2, /* Write then Read */ }; /* The possible results of the xferCmd */ enum pmcmsptwi_xfer_result { MSP_TWI_XFER_OK = 0, MSP_TWI_XFER_TIMEOUT, MSP_TWI_XFER_BUSY, MSP_TWI_XFER_DATA_COLLISION, MSP_TWI_XFER_NO_RESPONSE, MSP_TWI_XFER_LOST_ARBITRATION, }; /* Corresponds to a PMCTWI clock configuration register */ struct pmcmsptwi_clock { u8 filter; /* Bits 15:12, default = 0x03 */ u16 clock; /* Bits 9:0, default = 0x001f */ }; struct pmcmsptwi_clockcfg { struct pmcmsptwi_clock standard; /* The standard/fast clock config */ struct pmcmsptwi_clock highspeed; /* The highspeed clock config */ }; /* Corresponds to the main TWI configuration register */ struct pmcmsptwi_cfg { u8 arbf; /* Bits 15:12, default=0x03 */ u8 nak; /* Bits 11:8, default=0x03 */ u8 add10; /* Bit 7, default=0x00 */ u8 mst_code; /* Bits 6:4, default=0x00 */ u8 arb; /* Bit 1, default=0x01 */ u8 highspeed; /* Bit 0, default=0x00 */ }; /* A single pmctwi command to issue */ struct pmcmsptwi_cmd { u16 addr; /* The slave address (7 or 10 bits) */ enum pmcmsptwi_cmd_type type; /* The command type */ u8 write_len; /* Number of bytes in the write buffer */ u8 read_len; /* Number of bytes in the read buffer */ u8 *write_data; /* Buffer of characters to send */ u8 *read_data; /* Buffer to fill with incoming data */ }; /* The private data */ struct pmcmsptwi_data { void __iomem *iobase; /* iomapped base for IO */ int irq; /* IRQ to use (0 disables) */ struct completion wait; /* Completion for xfer */ struct mutex lock; /* Used for threadsafeness */ enum pmcmsptwi_xfer_result last_result; /* result of last xfer */ }; /* The default settings */ static const struct pmcmsptwi_clockcfg pmcmsptwi_defclockcfg = { .standard = { .filter = 0x3, .clock = 0x1f, }, .highspeed = { .filter = 0x3, .clock = 0x1f, }, }; static const struct pmcmsptwi_cfg pmcmsptwi_defcfg = { .arbf = 0x03, .nak = 0x03, .add10 = 0x00, .mst_code = 0x00, .arb = 0x01, .highspeed = 0x00, }; static struct pmcmsptwi_data pmcmsptwi_data; static struct i2c_adapter pmcmsptwi_adapter; /* inline helper functions */ static inline u32 pmcmsptwi_clock_to_reg( const struct pmcmsptwi_clock *clock) { return ((clock->filter & 0xf) << 12) | (clock->clock & 0x03ff); } static inline void pmcmsptwi_reg_to_clock( u32 reg, struct pmcmsptwi_clock *clock) { clock->filter = (reg >> 12) & 0xf; clock->clock = reg & 0x03ff; } static inline u32 pmcmsptwi_cfg_to_reg(const struct pmcmsptwi_cfg *cfg) { return ((cfg->arbf & 0xf) << 12) | ((cfg->nak & 0xf) << 8) | ((cfg->add10 & 0x1) << 7) | ((cfg->mst_code & 0x7) << 4) | ((cfg->arb & 0x1) << 1) | (cfg->highspeed & 0x1); } static inline void pmcmsptwi_reg_to_cfg(u32 reg, struct pmcmsptwi_cfg *cfg) { cfg->arbf = (reg >> 12) & 0xf; cfg->nak = (reg >> 8) & 0xf; cfg->add10 = (reg >> 7) & 0x1; cfg->mst_code = (reg >> 4) & 0x7; cfg->arb = (reg >> 1) & 0x1; cfg->highspeed = reg & 0x1; } /* * Sets the current clock configuration */ static void pmcmsptwi_set_clock_config(const struct pmcmsptwi_clockcfg *cfg, struct pmcmsptwi_data *data) { mutex_lock(&data->lock); pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->standard), data->iobase + MSP_TWI_SF_CLK_REG_OFFSET); pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->highspeed), data->iobase + MSP_TWI_HS_CLK_REG_OFFSET); mutex_unlock(&data->lock); } /* * Gets the current TWI bus configuration */ static void pmcmsptwi_get_twi_config(struct pmcmsptwi_cfg *cfg, struct pmcmsptwi_data *data) { mutex_lock(&data->lock); pmcmsptwi_reg_to_cfg(pmcmsptwi_readl( data->iobase + MSP_TWI_CFG_REG_OFFSET), cfg); mutex_unlock(&data->lock); } /* * Sets the current TWI bus configuration */ static void pmcmsptwi_set_twi_config(const struct pmcmsptwi_cfg *cfg, struct pmcmsptwi_data *data) { mutex_lock(&data->lock); pmcmsptwi_writel(pmcmsptwi_cfg_to_reg(cfg), data->iobase + MSP_TWI_CFG_REG_OFFSET); mutex_unlock(&data->lock); } /* * Parses the 'int_sts' register and returns a well-defined error code */ static enum pmcmsptwi_xfer_result pmcmsptwi_get_result(u32 reg) { if (reg & MSP_TWI_INT_STS_LOST_ARBITRATION) { dev_dbg(&pmcmsptwi_adapter.dev, "Result: Lost arbitration\n"); return MSP_TWI_XFER_LOST_ARBITRATION; } else if (reg & MSP_TWI_INT_STS_NO_RESPONSE) { dev_dbg(&pmcmsptwi_adapter.dev, "Result: No response\n"); return MSP_TWI_XFER_NO_RESPONSE; } else if (reg & MSP_TWI_INT_STS_DATA_COLLISION) { dev_dbg(&pmcmsptwi_adapter.dev, "Result: Data collision\n"); return MSP_TWI_XFER_DATA_COLLISION; } else if (reg & MSP_TWI_INT_STS_BUSY) { dev_dbg(&pmcmsptwi_adapter.dev, "Result: Bus busy\n"); return MSP_TWI_XFER_BUSY; } dev_dbg(&pmcmsptwi_adapter.dev, "Result: Operation succeeded\n"); return MSP_TWI_XFER_OK; } /* * In interrupt mode, handle the interrupt. * NOTE: Assumes data->lock is held. */ static irqreturn_t pmcmsptwi_interrupt(int irq, void *ptr) { struct pmcmsptwi_data *data = ptr; u32 reason = pmcmsptwi_readl(data->iobase + MSP_TWI_INT_STS_REG_OFFSET); pmcmsptwi_writel(reason, data->iobase + MSP_TWI_INT_STS_REG_OFFSET); dev_dbg(&pmcmsptwi_adapter.dev, "Got interrupt 0x%08x\n", reason); if (!(reason & MSP_TWI_INT_STS_DONE)) return IRQ_NONE; data->last_result = pmcmsptwi_get_result(reason); complete(&data->wait); return IRQ_HANDLED; } /* * Probe for and register the device and return 0 if there is one. */ static int __devinit pmcmsptwi_probe(struct platform_device *pldev) { struct resource *res; int rc = -ENODEV; /* get the static platform resources */ res = platform_get_resource(pldev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pldev->dev, "IOMEM resource not found\n"); goto ret_err; } /* reserve the memory region */ if (!request_mem_region(res->start, resource_size(res), pldev->name)) { dev_err(&pldev->dev, "Unable to get memory/io address region 0x%08x\n", res->start); rc = -EBUSY; goto ret_err; } /* remap the memory */ pmcmsptwi_data.iobase = ioremap_nocache(res->start, resource_size(res)); if (!pmcmsptwi_data.iobase) { dev_err(&pldev->dev, "Unable to ioremap address 0x%08x\n", res->start); rc = -EIO; goto ret_unreserve; } /* request the irq */ pmcmsptwi_data.irq = platform_get_irq(pldev, 0); if (pmcmsptwi_data.irq) { rc = request_irq(pmcmsptwi_data.irq, &pmcmsptwi_interrupt, IRQF_SHARED | IRQF_DISABLED | IRQF_SAMPLE_RANDOM, pldev->name, &pmcmsptwi_data); if (rc == 0) { /* * Enable 'DONE' interrupt only. * * If you enable all interrupts, you will get one on * error and another when the operation completes. * This way you only have to handle one interrupt, * but you can still check all result flags. */ pmcmsptwi_writel(MSP_TWI_INT_STS_DONE, pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET); } else { dev_warn(&pldev->dev, "Could not assign TWI IRQ handler " "to irq %d (continuing with poll)\n", pmcmsptwi_data.irq); pmcmsptwi_data.irq = 0; } } init_completion(&pmcmsptwi_data.wait); mutex_init(&pmcmsptwi_data.lock); pmcmsptwi_set_clock_config(&pmcmsptwi_defclockcfg, &pmcmsptwi_data); pmcmsptwi_set_twi_config(&pmcmsptwi_defcfg, &pmcmsptwi_data); printk(KERN_INFO DRV_NAME ": Registering MSP71xx I2C adapter\n"); pmcmsptwi_adapter.dev.parent = &pldev->dev; platform_set_drvdata(pldev, &pmcmsptwi_adapter); i2c_set_adapdata(&pmcmsptwi_adapter, &pmcmsptwi_data); rc = i2c_add_adapter(&pmcmsptwi_adapter); if (rc) { dev_err(&pldev->dev, "Unable to register I2C adapter\n"); goto ret_unmap; } return 0; ret_unmap: platform_set_drvdata(pldev, NULL); if (pmcmsptwi_data.irq) { pmcmsptwi_writel(0, pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET); free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data); } iounmap(pmcmsptwi_data.iobase); ret_unreserve: release_mem_region(res->start, resource_size(res)); ret_err: return rc; } /* * Release the device and return 0 if there is one. */ static int __devexit pmcmsptwi_remove(struct platform_device *pldev) { struct resource *res; i2c_del_adapter(&pmcmsptwi_adapter); platform_set_drvdata(pldev, NULL); if (pmcmsptwi_data.irq) { pmcmsptwi_writel(0, pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET); free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data); } iounmap(pmcmsptwi_data.iobase); res = platform_get_resource(pldev, IORESOURCE_MEM, 0); release_mem_region(res->start, resource_size(res)); return 0; } /* * Polls the 'busy' register until the command is complete. * NOTE: Assumes data->lock is held. */ static void pmcmsptwi_poll_complete(struct pmcmsptwi_data *data) { int i; for (i = 0; i < MSP_MAX_POLL; i++) { u32 val = pmcmsptwi_readl(data->iobase + MSP_TWI_BUSY_REG_OFFSET); if (val == 0) { u32 reason = pmcmsptwi_readl(data->iobase + MSP_TWI_INT_STS_REG_OFFSET); pmcmsptwi_writel(reason, data->iobase + MSP_TWI_INT_STS_REG_OFFSET); data->last_result = pmcmsptwi_get_result(reason); return; } udelay(MSP_POLL_DELAY); } dev_dbg(&pmcmsptwi_adapter.dev, "Result: Poll timeout\n"); data->last_result = MSP_TWI_XFER_TIMEOUT; } /* * Do the transfer (low level): * May use interrupt-driven or polling, depending on if an IRQ is * presently registered. * NOTE: Assumes data->lock is held. */ static enum pmcmsptwi_xfer_result pmcmsptwi_do_xfer( u32 reg, struct pmcmsptwi_data *data) { dev_dbg(&pmcmsptwi_adapter.dev, "Writing cmd reg 0x%08x\n", reg); pmcmsptwi_writel(reg, data->iobase + MSP_TWI_CMD_REG_OFFSET); if (data->irq) { unsigned long timeleft = wait_for_completion_timeout( &data->wait, MSP_IRQ_TIMEOUT); if (timeleft == 0) { dev_dbg(&pmcmsptwi_adapter.dev, "Result: IRQ timeout\n"); complete(&data->wait); data->last_result = MSP_TWI_XFER_TIMEOUT; } } else pmcmsptwi_poll_complete(data); return data->last_result; } /* * Helper routine, converts 'pmctwi_cmd' struct to register format */ static inline u32 pmcmsptwi_cmd_to_reg(const struct pmcmsptwi_cmd *cmd) { return ((cmd->type & 0x3) << 8) | (((cmd->write_len - 1) & 0x7) << 4) | ((cmd->read_len - 1) & 0x7); } /* * Do the transfer (high level) */ static enum pmcmsptwi_xfer_result pmcmsptwi_xfer_cmd( struct pmcmsptwi_cmd *cmd, struct pmcmsptwi_data *data) { enum pmcmsptwi_xfer_result retval; if ((cmd->type == MSP_TWI_CMD_WRITE && cmd->write_len == 0) || (cmd->type == MSP_TWI_CMD_READ && cmd->read_len == 0) || (cmd->type == MSP_TWI_CMD_WRITE_READ && (cmd->read_len == 0 || cmd->write_len == 0))) { dev_err(&pmcmsptwi_adapter.dev, "%s: Cannot transfer less than 1 byte\n", __func__); return -EINVAL; } if (cmd->read_len > MSP_MAX_BYTES_PER_RW || cmd->write_len > MSP_MAX_BYTES_PER_RW) { dev_err(&pmcmsptwi_adapter.dev, "%s: Cannot transfer more than %d bytes\n", __func__, MSP_MAX_BYTES_PER_RW); return -EINVAL; } mutex_lock(&data->lock); dev_dbg(&pmcmsptwi_adapter.dev, "Setting address to 0x%04x\n", cmd->addr); pmcmsptwi_writel(cmd->addr, data->iobase + MSP_TWI_ADD_REG_OFFSET); if (cmd->type == MSP_TWI_CMD_WRITE || cmd->type == MSP_TWI_CMD_WRITE_READ) { u64 tmp = be64_to_cpup((__be64 *)cmd->write_data); tmp >>= (MSP_MAX_BYTES_PER_RW - cmd->write_len) * 8; dev_dbg(&pmcmsptwi_adapter.dev, "Writing 0x%016llx\n", tmp); pmcmsptwi_writel(tmp & 0x00000000ffffffffLL, data->iobase + MSP_TWI_DAT_0_REG_OFFSET); if (cmd->write_len > 4) pmcmsptwi_writel(tmp >> 32, data->iobase + MSP_TWI_DAT_1_REG_OFFSET); } retval = pmcmsptwi_do_xfer(pmcmsptwi_cmd_to_reg(cmd), data); if (retval != MSP_TWI_XFER_OK) goto xfer_err; if (cmd->type == MSP_TWI_CMD_READ || cmd->type == MSP_TWI_CMD_WRITE_READ) { int i; u64 rmsk = ~(0xffffffffffffffffLL << (cmd->read_len * 8)); u64 tmp = (u64)pmcmsptwi_readl(data->iobase + MSP_TWI_DAT_0_REG_OFFSET); if (cmd->read_len > 4) tmp |= (u64)pmcmsptwi_readl(data->iobase + MSP_TWI_DAT_1_REG_OFFSET) << 32; tmp &= rmsk; dev_dbg(&pmcmsptwi_adapter.dev, "Read 0x%016llx\n", tmp); for (i = 0; i < cmd->read_len; i++) cmd->read_data[i] = tmp >> i; } xfer_err: mutex_unlock(&data->lock); return retval; } /* -- Algorithm functions -- */ /* * Sends an i2c command out on the adapter */ static int pmcmsptwi_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num) { struct pmcmsptwi_data *data = i2c_get_adapdata(adap); struct pmcmsptwi_cmd cmd; struct pmcmsptwi_cfg oldcfg, newcfg; int ret; if (num > 2) { dev_dbg(&adap->dev, "%d messages unsupported\n", num); return -EINVAL; } else if (num == 2) { /* Check for a dual write-then-read command */ struct i2c_msg *nextmsg = msg + 1; if (!(msg->flags & I2C_M_RD) && (nextmsg->flags & I2C_M_RD) && msg->addr == nextmsg->addr) { cmd.type = MSP_TWI_CMD_WRITE_READ; cmd.write_len = msg->len; cmd.write_data = msg->buf; cmd.read_len = nextmsg->len; cmd.read_data = nextmsg->buf; } else { dev_dbg(&adap->dev, "Non write-read dual messages unsupported\n"); return -EINVAL; } } else if (msg->flags & I2C_M_RD) { cmd.type = MSP_TWI_CMD_READ; cmd.read_len = msg->len; cmd.read_data = msg->buf; cmd.write_len = 0; cmd.write_data = NULL; } else { cmd.type = MSP_TWI_CMD_WRITE; cmd.read_len = 0; cmd.read_data = NULL; cmd.write_len = msg->len; cmd.write_data = msg->buf; } if (msg->len == 0) { dev_err(&adap->dev, "Zero-byte messages unsupported\n"); return -EINVAL; } cmd.addr = msg->addr; if (msg->flags & I2C_M_TEN) { pmcmsptwi_get_twi_config(&newcfg, data); memcpy(&oldcfg, &newcfg, sizeof(oldcfg)); /* Set the special 10-bit address flag */ newcfg.add10 = 1; pmcmsptwi_set_twi_config(&newcfg, data); } /* Execute the command */ ret = pmcmsptwi_xfer_cmd(&cmd, data); if (msg->flags & I2C_M_TEN) pmcmsptwi_set_twi_config(&oldcfg, data); dev_dbg(&adap->dev, "I2C %s of %d bytes %s\n", (msg->flags & I2C_M_RD) ? "read" : "write", msg->len, (ret == MSP_TWI_XFER_OK) ? "succeeded" : "failed"); if (ret != MSP_TWI_XFER_OK) { /* * TODO: We could potentially loop and retry in the case * of MSP_TWI_XFER_TIMEOUT. */ return -1; } return 0; } static u32 pmcmsptwi_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR | I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_PROC_CALL; } /* -- Initialization -- */ static struct i2c_algorithm pmcmsptwi_algo = { .master_xfer = pmcmsptwi_master_xfer, .functionality = pmcmsptwi_i2c_func, }; static struct i2c_adapter pmcmsptwi_adapter = { .owner = THIS_MODULE, .class = I2C_CLASS_HWMON | I2C_CLASS_SPD, .algo = &pmcmsptwi_algo, .name = DRV_NAME, }; /* work with hotplug and coldplug */ MODULE_ALIAS("platform:" DRV_NAME); static struct platform_driver pmcmsptwi_driver = { .probe = pmcmsptwi_probe, .remove = __devexit_p(pmcmsptwi_remove), .driver = { .name = DRV_NAME, .owner = THIS_MODULE, }, }; static int __init pmcmsptwi_init(void) { return platform_driver_register(&pmcmsptwi_driver); } static void __exit pmcmsptwi_exit(void) { platform_driver_unregister(&pmcmsptwi_driver); } MODULE_DESCRIPTION("PMC MSP TWI/SMBus/I2C driver"); MODULE_LICENSE("GPL"); module_init(pmcmsptwi_init); module_exit(pmcmsptwi_exit);