/* * lm90.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (C) 2003-2005 Jean Delvare <khali@linux-fr.org> * * Based on the lm83 driver. The LM90 is a sensor chip made by National * Semiconductor. It reports up to two temperatures (its own plus up to * one external one) with a 0.125 deg resolution (1 deg for local * temperature) and a 3-4 deg accuracy. Complete datasheet can be * obtained from National's website at: * http://www.national.com/pf/LM/LM90.html * * This driver also supports the LM89 and LM99, two other sensor chips * made by National Semiconductor. Both have an increased remote * temperature measurement accuracy (1 degree), and the LM99 * additionally shifts remote temperatures (measured and limits) by 16 * degrees, which allows for higher temperatures measurement. The * driver doesn't handle it since it can be done easily in user-space. * Complete datasheets can be obtained from National's website at: * http://www.national.com/pf/LM/LM89.html * http://www.national.com/pf/LM/LM99.html * Note that there is no way to differentiate between both chips. * * This driver also supports the LM86, another sensor chip made by * National Semiconductor. It is exactly similar to the LM90 except it * has a higher accuracy. * Complete datasheet can be obtained from National's website at: * http://www.national.com/pf/LM/LM86.html * * This driver also supports the ADM1032, a sensor chip made by Analog * Devices. That chip is similar to the LM90, with a few differences * that are not handled by this driver. Complete datasheet can be * obtained from Analog's website at: * http://products.analog.com/products/info.asp?product=ADM1032 * Among others, it has a higher accuracy than the LM90, much like the * LM86 does. * * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor * chips made by Maxim. These chips are similar to the LM86. Complete * datasheet can be obtained at Maxim's website at: * http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2578 * Note that there is no easy way to differentiate between the three * variants. The extra address and features of the MAX6659 are not * supported by this driver. * * This driver also supports the ADT7461 chip from Analog Devices but * only in its "compatability mode". If an ADT7461 chip is found but * is configured in non-compatible mode (where its temperature * register values are decoded differently) it is ignored by this * driver. Complete datasheet can be obtained from Analog's website * at: * http://products.analog.com/products/info.asp?product=ADT7461 * * Since the LM90 was the first chipset supported by this driver, most * comments will refer to this chipset, but are actually general and * concern all supported chipsets, unless mentioned otherwise. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon.h> #include <linux/err.h> /* * Addresses to scan * Address is fully defined internally and cannot be changed except for * MAX6659. * LM86, LM89, LM90, LM99, ADM1032, MAX6657 and MAX6658 have address 0x4c. * LM89-1, and LM99-1 have address 0x4d. * MAX6659 can have address 0x4c, 0x4d or 0x4e (unsupported). * ADT7461 always has address 0x4c. */ static unsigned short normal_i2c[] = { 0x4c, 0x4d, I2C_CLIENT_END }; /* * Insmod parameters */ I2C_CLIENT_INSMOD_6(lm90, adm1032, lm99, lm86, max6657, adt7461); /* * The LM90 registers */ #define LM90_REG_R_MAN_ID 0xFE #define LM90_REG_R_CHIP_ID 0xFF #define LM90_REG_R_CONFIG1 0x03 #define LM90_REG_W_CONFIG1 0x09 #define LM90_REG_R_CONFIG2 0xBF #define LM90_REG_W_CONFIG2 0xBF #define LM90_REG_R_CONVRATE 0x04 #define LM90_REG_W_CONVRATE 0x0A #define LM90_REG_R_STATUS 0x02 #define LM90_REG_R_LOCAL_TEMP 0x00 #define LM90_REG_R_LOCAL_HIGH 0x05 #define LM90_REG_W_LOCAL_HIGH 0x0B #define LM90_REG_R_LOCAL_LOW 0x06 #define LM90_REG_W_LOCAL_LOW 0x0C #define LM90_REG_R_LOCAL_CRIT 0x20 #define LM90_REG_W_LOCAL_CRIT 0x20 #define LM90_REG_R_REMOTE_TEMPH 0x01 #define LM90_REG_R_REMOTE_TEMPL 0x10 #define LM90_REG_R_REMOTE_OFFSH 0x11 #define LM90_REG_W_REMOTE_OFFSH 0x11 #define LM90_REG_R_REMOTE_OFFSL 0x12 #define LM90_REG_W_REMOTE_OFFSL 0x12 #define LM90_REG_R_REMOTE_HIGHH 0x07 #define LM90_REG_W_REMOTE_HIGHH 0x0D #define LM90_REG_R_REMOTE_HIGHL 0x13 #define LM90_REG_W_REMOTE_HIGHL 0x13 #define LM90_REG_R_REMOTE_LOWH 0x08 #define LM90_REG_W_REMOTE_LOWH 0x0E #define LM90_REG_R_REMOTE_LOWL 0x14 #define LM90_REG_W_REMOTE_LOWL 0x14 #define LM90_REG_R_REMOTE_CRIT 0x19 #define LM90_REG_W_REMOTE_CRIT 0x19 #define LM90_REG_R_TCRIT_HYST 0x21 #define LM90_REG_W_TCRIT_HYST 0x21 /* * Conversions and various macros * For local temperatures and limits, critical limits and the hysteresis * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius. * For remote temperatures and limits, it uses signed 11-bit values with * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. */ #define TEMP1_FROM_REG(val) ((val) * 1000) #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \ (val) >= 127000 ? 127 : \ (val) < 0 ? ((val) - 500) / 1000 : \ ((val) + 500) / 1000) #define TEMP2_FROM_REG(val) ((val) / 32 * 125) #define TEMP2_TO_REG(val) ((val) <= -128000 ? 0x8000 : \ (val) >= 127875 ? 0x7FE0 : \ (val) < 0 ? ((val) - 62) / 125 * 32 : \ ((val) + 62) / 125 * 32) #define HYST_TO_REG(val) ((val) <= 0 ? 0 : (val) >= 30500 ? 31 : \ ((val) + 500) / 1000) /* * ADT7461 is almost identical to LM90 except that attempts to write * values that are outside the range 0 < temp < 127 are treated as * the boundary value. */ #define TEMP1_TO_REG_ADT7461(val) ((val) <= 0 ? 0 : \ (val) >= 127000 ? 127 : \ ((val) + 500) / 1000) #define TEMP2_TO_REG_ADT7461(val) ((val) <= 0 ? 0 : \ (val) >= 127750 ? 0x7FC0 : \ ((val) + 125) / 250 * 64) /* * Functions declaration */ static int lm90_attach_adapter(struct i2c_adapter *adapter); static int lm90_detect(struct i2c_adapter *adapter, int address, int kind); static void lm90_init_client(struct i2c_client *client); static int lm90_detach_client(struct i2c_client *client); static struct lm90_data *lm90_update_device(struct device *dev); /* * Driver data (common to all clients) */ static struct i2c_driver lm90_driver = { .owner = THIS_MODULE, .name = "lm90", .id = I2C_DRIVERID_LM90, .flags = I2C_DF_NOTIFY, .attach_adapter = lm90_attach_adapter, .detach_client = lm90_detach_client, }; /* * Client data (each client gets its own) */ struct lm90_data { struct i2c_client client; struct class_device *class_dev; struct semaphore update_lock; char valid; /* zero until following fields are valid */ unsigned long last_updated; /* in jiffies */ int kind; /* registers values */ s8 temp8[5]; /* 0: local input 1: local low limit 2: local high limit 3: local critical limit 4: remote critical limit */ s16 temp11[3]; /* 0: remote input 1: remote low limit 2: remote high limit */ u8 temp_hyst; u8 alarms; /* bitvector */ }; /* * Sysfs stuff */ static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm90_data *data = lm90_update_device(dev); return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp8[attr->index])); } static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { static const u8 reg[4] = { LM90_REG_W_LOCAL_LOW, LM90_REG_W_LOCAL_HIGH, LM90_REG_W_LOCAL_CRIT, LM90_REG_W_REMOTE_CRIT, }; struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct lm90_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); int nr = attr->index; down(&data->update_lock); if (data->kind == adt7461) data->temp8[nr] = TEMP1_TO_REG_ADT7461(val); else data->temp8[nr] = TEMP1_TO_REG(val); i2c_smbus_write_byte_data(client, reg[nr - 1], data->temp8[nr]); up(&data->update_lock); return count; } static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm90_data *data = lm90_update_device(dev); return sprintf(buf, "%d\n", TEMP2_FROM_REG(data->temp11[attr->index])); } static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { static const u8 reg[4] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, }; struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct lm90_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); int nr = attr->index; down(&data->update_lock); if (data->kind == adt7461) data->temp11[nr] = TEMP2_TO_REG_ADT7461(val); else data->temp11[nr] = TEMP2_TO_REG(val); i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2], data->temp11[nr] >> 8); i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2 + 1], data->temp11[nr] & 0xff); up(&data->update_lock); return count; } static ssize_t show_temphyst(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm90_data *data = lm90_update_device(dev); return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp8[attr->index]) - TEMP1_FROM_REG(data->temp_hyst)); } static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct lm90_data *data = i2c_get_clientdata(client); long val = simple_strtol(buf, NULL, 10); long hyst; down(&data->update_lock); hyst = TEMP1_FROM_REG(data->temp8[3]) - val; i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST, HYST_TO_REG(hyst)); up(&data->update_lock); return count; } static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy, char *buf) { struct lm90_data *data = lm90_update_device(dev); return sprintf(buf, "%d\n", data->alarms); } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp8, NULL, 0); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp11, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8, set_temp8, 1); static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp11, set_temp11, 1); static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8, set_temp8, 2); static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp11, set_temp11, 2); static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8, set_temp8, 3); static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8, set_temp8, 4); static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst, set_temphyst, 3); static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL, 4); static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); /* * Real code */ static int lm90_attach_adapter(struct i2c_adapter *adapter) { if (!(adapter->class & I2C_CLASS_HWMON)) return 0; return i2c_probe(adapter, &addr_data, lm90_detect); } /* * The following function does more than just detection. If detection * succeeds, it also registers the new chip. */ static int lm90_detect(struct i2c_adapter *adapter, int address, int kind) { struct i2c_client *new_client; struct lm90_data *data; int err = 0; const char *name = ""; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) goto exit; if (!(data = kmalloc(sizeof(struct lm90_data), GFP_KERNEL))) { err = -ENOMEM; goto exit; } memset(data, 0, sizeof(struct lm90_data)); /* The common I2C client data is placed right before the LM90-specific data. */ new_client = &data->client; i2c_set_clientdata(new_client, data); new_client->addr = address; new_client->adapter = adapter; new_client->driver = &lm90_driver; new_client->flags = 0; /* * Now we do the remaining detection. A negative kind means that * the driver was loaded with no force parameter (default), so we * must both detect and identify the chip. A zero kind means that * the driver was loaded with the force parameter, the detection * step shall be skipped. A positive kind means that the driver * was loaded with the force parameter and a given kind of chip is * requested, so both the detection and the identification steps * are skipped. */ /* Default to an LM90 if forced */ if (kind == 0) kind = lm90; if (kind < 0) { /* detection and identification */ u8 man_id, chip_id, reg_config1, reg_convrate; man_id = i2c_smbus_read_byte_data(new_client, LM90_REG_R_MAN_ID); chip_id = i2c_smbus_read_byte_data(new_client, LM90_REG_R_CHIP_ID); reg_config1 = i2c_smbus_read_byte_data(new_client, LM90_REG_R_CONFIG1); reg_convrate = i2c_smbus_read_byte_data(new_client, LM90_REG_R_CONVRATE); if (man_id == 0x01) { /* National Semiconductor */ u8 reg_config2; reg_config2 = i2c_smbus_read_byte_data(new_client, LM90_REG_R_CONFIG2); if ((reg_config1 & 0x2A) == 0x00 && (reg_config2 & 0xF8) == 0x00 && reg_convrate <= 0x09) { if (address == 0x4C && (chip_id & 0xF0) == 0x20) { /* LM90 */ kind = lm90; } else if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */ kind = lm99; } else if (address == 0x4C && (chip_id & 0xF0) == 0x10) { /* LM86 */ kind = lm86; } } } else if (man_id == 0x41) { /* Analog Devices */ if (address == 0x4C && (chip_id & 0xF0) == 0x40 /* ADM1032 */ && (reg_config1 & 0x3F) == 0x00 && reg_convrate <= 0x0A) { kind = adm1032; } else if (address == 0x4c && chip_id == 0x51 /* ADT7461 */ && (reg_config1 & 0x1F) == 0x00 /* check compat mode */ && reg_convrate <= 0x0A) { kind = adt7461; } } else if (man_id == 0x4D) { /* Maxim */ /* * The Maxim variants do NOT have a chip_id register. * Reading from that address will return the last read * value, which in our case is those of the man_id * register. Likewise, the config1 register seems to * lack a low nibble, so the value will be those of the * previous read, so in our case those of the man_id * register. */ if (chip_id == man_id && (reg_config1 & 0x1F) == (man_id & 0x0F) && reg_convrate <= 0x09) { kind = max6657; } } if (kind <= 0) { /* identification failed */ dev_info(&adapter->dev, "Unsupported chip (man_id=0x%02X, " "chip_id=0x%02X).\n", man_id, chip_id); goto exit_free; } } if (kind == lm90) { name = "lm90"; } else if (kind == adm1032) { name = "adm1032"; } else if (kind == lm99) { name = "lm99"; } else if (kind == lm86) { name = "lm86"; } else if (kind == max6657) { name = "max6657"; } else if (kind == adt7461) { name = "adt7461"; } /* We can fill in the remaining client fields */ strlcpy(new_client->name, name, I2C_NAME_SIZE); data->valid = 0; data->kind = kind; init_MUTEX(&data->update_lock); /* Tell the I2C layer a new client has arrived */ if ((err = i2c_attach_client(new_client))) goto exit_free; /* Initialize the LM90 chip */ lm90_init_client(new_client); /* Register sysfs hooks */ data->class_dev = hwmon_device_register(&new_client->dev); if (IS_ERR(data->class_dev)) { err = PTR_ERR(data->class_dev); goto exit_detach; } device_create_file(&new_client->dev, &sensor_dev_attr_temp1_input.dev_attr); device_create_file(&new_client->dev, &sensor_dev_attr_temp2_input.dev_attr); device_create_file(&new_client->dev, &sensor_dev_attr_temp1_min.dev_attr); device_create_file(&new_client->dev, &sensor_dev_attr_temp2_min.dev_attr); device_create_file(&new_client->dev, &sensor_dev_attr_temp1_max.dev_attr); device_create_file(&new_client->dev, &sensor_dev_attr_temp2_max.dev_attr); device_create_file(&new_client->dev, &sensor_dev_attr_temp1_crit.dev_attr); device_create_file(&new_client->dev, &sensor_dev_attr_temp2_crit.dev_attr); device_create_file(&new_client->dev, &sensor_dev_attr_temp1_crit_hyst.dev_attr); device_create_file(&new_client->dev, &sensor_dev_attr_temp2_crit_hyst.dev_attr); device_create_file(&new_client->dev, &dev_attr_alarms); return 0; exit_detach: i2c_detach_client(new_client); exit_free: kfree(data); exit: return err; } static void lm90_init_client(struct i2c_client *client) { u8 config; /* * Start the conversions. */ i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, 5); /* 2 Hz */ config = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1); if (config & 0x40) i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config & 0xBF); /* run */ } static int lm90_detach_client(struct i2c_client *client) { struct lm90_data *data = i2c_get_clientdata(client); int err; hwmon_device_unregister(data->class_dev); if ((err = i2c_detach_client(client))) return err; kfree(data); return 0; } static struct lm90_data *lm90_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct lm90_data *data = i2c_get_clientdata(client); down(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) { u8 oldh, newh; dev_dbg(&client->dev, "Updating lm90 data.\n"); data->temp8[0] = i2c_smbus_read_byte_data(client, LM90_REG_R_LOCAL_TEMP); data->temp8[1] = i2c_smbus_read_byte_data(client, LM90_REG_R_LOCAL_LOW); data->temp8[2] = i2c_smbus_read_byte_data(client, LM90_REG_R_LOCAL_HIGH); data->temp8[3] = i2c_smbus_read_byte_data(client, LM90_REG_R_LOCAL_CRIT); data->temp8[4] = i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_CRIT); data->temp_hyst = i2c_smbus_read_byte_data(client, LM90_REG_R_TCRIT_HYST); /* * There is a trick here. We have to read two registers to * have the remote sensor temperature, but we have to beware * a conversion could occur inbetween the readings. The * datasheet says we should either use the one-shot * conversion register, which we don't want to do (disables * hardware monitoring) or monitor the busy bit, which is * impossible (we can't read the values and monitor that bit * at the exact same time). So the solution used here is to * read the high byte once, then the low byte, then the high * byte again. If the new high byte matches the old one, * then we have a valid reading. Else we have to read the low * byte again, and now we believe we have a correct reading. */ oldh = i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_TEMPH); data->temp11[0] = i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_TEMPL); newh = i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_TEMPH); if (newh != oldh) { data->temp11[0] = i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_TEMPL); #ifdef DEBUG oldh = i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_TEMPH); /* oldh is actually newer */ if (newh != oldh) dev_warn(&client->dev, "Remote temperature may be " "wrong.\n"); #endif } data->temp11[0] |= (newh << 8); data->temp11[1] = (i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_LOWH) << 8) + i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_LOWL); data->temp11[2] = (i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_HIGHH) << 8) + i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_HIGHL); data->alarms = i2c_smbus_read_byte_data(client, LM90_REG_R_STATUS); data->last_updated = jiffies; data->valid = 1; } up(&data->update_lock); return data; } static int __init sensors_lm90_init(void) { return i2c_add_driver(&lm90_driver); } static void __exit sensors_lm90_exit(void) { i2c_del_driver(&lm90_driver); } MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>"); MODULE_DESCRIPTION("LM90/ADM1032 driver"); MODULE_LICENSE("GPL"); module_init(sensors_lm90_init); module_exit(sensors_lm90_exit);