/* * lm80.c - From lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl> * and Philip Edelbrock <phil@netroedge.com> * * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END }; /* Insmod parameters */ I2C_CLIENT_INSMOD_1(lm80); /* Many LM80 constants specified below */ /* The LM80 registers */ #define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2) #define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2) #define LM80_REG_IN(nr) (0x20 + (nr)) #define LM80_REG_FAN1 0x28 #define LM80_REG_FAN2 0x29 #define LM80_REG_FAN_MIN(nr) (0x3b + (nr)) #define LM80_REG_TEMP 0x27 #define LM80_REG_TEMP_HOT_MAX 0x38 #define LM80_REG_TEMP_HOT_HYST 0x39 #define LM80_REG_TEMP_OS_MAX 0x3a #define LM80_REG_TEMP_OS_HYST 0x3b #define LM80_REG_CONFIG 0x00 #define LM80_REG_ALARM1 0x01 #define LM80_REG_ALARM2 0x02 #define LM80_REG_MASK1 0x03 #define LM80_REG_MASK2 0x04 #define LM80_REG_FANDIV 0x05 #define LM80_REG_RES 0x06 /* Conversions. Rounding and limit checking is only done on the TO_REG variants. Note that you should be a bit careful with which arguments these macros are called: arguments may be evaluated more than once. Fixing this is just not worth it. */ #define IN_TO_REG(val) (SENSORS_LIMIT(((val)+5)/10,0,255)) #define IN_FROM_REG(val) ((val)*10) static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div) { if (rpm == 0) return 255; rpm = SENSORS_LIMIT(rpm, 1, 1000000); return SENSORS_LIMIT((1350000 + rpm*div / 2) / (rpm*div), 1, 254); } #define FAN_FROM_REG(val,div) ((val)==0?-1:\ (val)==255?0:1350000/((div)*(val))) static inline long TEMP_FROM_REG(u16 temp) { long res; temp >>= 4; if (temp < 0x0800) res = 625 * (long) temp; else res = ((long) temp - 0x01000) * 625; return res / 10; } #define TEMP_LIMIT_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*1000) #define TEMP_LIMIT_TO_REG(val) SENSORS_LIMIT((val)<0?\ ((val)-500)/1000:((val)+500)/1000,0,255) #define DIV_FROM_REG(val) (1 << (val)) /* * Client data (each client gets its own) */ struct lm80_data { struct i2c_client client; struct device *hwmon_dev; struct mutex update_lock; char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ u8 in[7]; /* Register value */ u8 in_max[7]; /* Register value */ u8 in_min[7]; /* Register value */ u8 fan[2]; /* Register value */ u8 fan_min[2]; /* Register value */ u8 fan_div[2]; /* Register encoding, shifted right */ u16 temp; /* Register values, shifted right */ u8 temp_hot_max; /* Register value */ u8 temp_hot_hyst; /* Register value */ u8 temp_os_max; /* Register value */ u8 temp_os_hyst; /* Register value */ u16 alarms; /* Register encoding, combined */ }; /* * Functions declaration */ static int lm80_attach_adapter(struct i2c_adapter *adapter); static int lm80_detect(struct i2c_adapter *adapter, int address, int kind); static void lm80_init_client(struct i2c_client *client); static int lm80_detach_client(struct i2c_client *client); static struct lm80_data *lm80_update_device(struct device *dev); static int lm80_read_value(struct i2c_client *client, u8 reg); static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value); /* * Driver data (common to all clients) */ static struct i2c_driver lm80_driver = { .driver = { .name = "lm80", }, .attach_adapter = lm80_attach_adapter, .detach_client = lm80_detach_client, }; /* * Sysfs stuff */ #define show_in(suffix, value) \ static ssize_t show_in_##suffix(struct device *dev, struct device_attribute *attr, char *buf) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct lm80_data *data = lm80_update_device(dev); \ return sprintf(buf, "%d\n", IN_FROM_REG(data->value[nr])); \ } show_in(min, in_min) show_in(max, in_max) show_in(input, in) #define set_in(suffix, value, reg) \ static ssize_t set_in_##suffix(struct device *dev, struct device_attribute *attr, const char *buf, \ size_t count) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct i2c_client *client = to_i2c_client(dev); \ struct lm80_data *data = i2c_get_clientdata(client); \ long val = simple_strtol(buf, NULL, 10); \ \ mutex_lock(&data->update_lock);\ data->value[nr] = IN_TO_REG(val); \ lm80_write_value(client, reg(nr), data->value[nr]); \ mutex_unlock(&data->update_lock);\ return count; \ } set_in(min, in_min, LM80_REG_IN_MIN) set_in(max, in_max, LM80_REG_IN_MAX) #define show_fan(suffix, value) \ static ssize_t show_fan_##suffix(struct device *dev, struct device_attribute *attr, char *buf) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct lm80_data *data = lm80_update_device(dev); \ return sprintf(buf, "%d\n", FAN_FROM_REG(data->value[nr], \ DIV_FROM_REG(data->fan_div[nr]))); \ } show_fan(min, fan_min) show_fan(input, fan) static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm80_data *data = lm80_update_device(dev); return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm80_data *data = i2c_get_clientdata(client); long val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } /* Note: we save and restore the fan minimum here, because its value is determined in part by the fan divisor. This follows the principle of least surprise; the user doesn't expect the fan minimum to change just because the divisor changed. */ static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct lm80_data *data = i2c_get_clientdata(client); unsigned long min, val = simple_strtoul(buf, NULL, 10); u8 reg; /* Save fan_min */ mutex_lock(&data->update_lock); min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); switch (val) { case 1: data->fan_div[nr] = 0; break; case 2: data->fan_div[nr] = 1; break; case 4: data->fan_div[nr] = 2; break; case 8: data->fan_div[nr] = 3; break; default: dev_err(&client->dev, "fan_div value %ld not " "supported. Choose one of 1, 2, 4 or 8!\n", val); mutex_unlock(&data->update_lock); return -EINVAL; } reg = (lm80_read_value(client, LM80_REG_FANDIV) & ~(3 << (2 * (nr + 1)))) | (data->fan_div[nr] << (2 * (nr + 1))); lm80_write_value(client, LM80_REG_FANDIV, reg); /* Restore fan_min */ data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp_input1(struct device *dev, struct device_attribute *attr, char *buf) { struct lm80_data *data = lm80_update_device(dev); return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp)); } #define show_temp(suffix, value) \ static ssize_t show_temp_##suffix(struct device *dev, struct device_attribute *attr, char *buf) \ { \ struct lm80_data *data = lm80_update_device(dev); \ return sprintf(buf, "%d\n", TEMP_LIMIT_FROM_REG(data->value)); \ } show_temp(hot_max, temp_hot_max); show_temp(hot_hyst, temp_hot_hyst); show_temp(os_max, temp_os_max); show_temp(os_hyst, temp_os_hyst); #define set_temp(suffix, value, reg) \ static ssize_t set_temp_##suffix(struct device *dev, struct device_attribute *attr, const char *buf, \ size_t count) \ { \ struct i2c_client *client = to_i2c_client(dev); \ struct lm80_data *data = i2c_get_clientdata(client); \ long val = simple_strtoul(buf, NULL, 10); \ \ mutex_lock(&data->update_lock); \ data->value = TEMP_LIMIT_TO_REG(val); \ lm80_write_value(client, reg, data->value); \ mutex_unlock(&data->update_lock); \ return count; \ } set_temp(hot_max, temp_hot_max, LM80_REG_TEMP_HOT_MAX); set_temp(hot_hyst, temp_hot_hyst, LM80_REG_TEMP_HOT_HYST); set_temp(os_max, temp_os_max, LM80_REG_TEMP_OS_MAX); set_temp(os_hyst, temp_os_hyst, LM80_REG_TEMP_OS_HYST); static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { struct lm80_data *data = lm80_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { int bitnr = to_sensor_dev_attr(attr)->index; struct lm80_data *data = lm80_update_device(dev); return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, set_in_min, 0); static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, set_in_min, 1); static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, set_in_min, 2); static SENSOR_DEVICE_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, set_in_min, 3); static SENSOR_DEVICE_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, set_in_min, 4); static SENSOR_DEVICE_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, set_in_min, 5); static SENSOR_DEVICE_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, set_in_min, 6); static SENSOR_DEVICE_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, set_in_max, 0); static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, set_in_max, 1); static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, set_in_max, 2); static SENSOR_DEVICE_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, set_in_max, 3); static SENSOR_DEVICE_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, set_in_max, 4); static SENSOR_DEVICE_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, set_in_max, 5); static SENSOR_DEVICE_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, set_in_max, 6); static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_in_input, NULL, 0); static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_in_input, NULL, 1); static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_in_input, NULL, 2); static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_in_input, NULL, 3); static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_in_input, NULL, 4); static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_in_input, NULL, 5); static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_in_input, NULL, 6); static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min, set_fan_min, 0); static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min, set_fan_min, 1); static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan_input, NULL, 0); static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan_input, NULL, 1); static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO, show_fan_div, set_fan_div, 0); static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO, show_fan_div, set_fan_div, 1); static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp_input1, NULL); static DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_hot_max, set_temp_hot_max); static DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp_hot_hyst, set_temp_hot_hyst); static DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp_os_max, set_temp_os_max); static DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp_os_hyst, set_temp_os_hyst); static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5); static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10); static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13); /* * Real code */ static int lm80_attach_adapter(struct i2c_adapter *adapter) { if (!(adapter->class & I2C_CLASS_HWMON)) return 0; return i2c_probe(adapter, &addr_data, lm80_detect); } static struct attribute *lm80_attributes[] = { &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &dev_attr_temp1_input.attr, &dev_attr_temp1_max.attr, &dev_attr_temp1_max_hyst.attr, &dev_attr_temp1_crit.attr, &dev_attr_temp1_crit_hyst.attr, &dev_attr_alarms.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, &sensor_dev_attr_in6_alarm.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm80_group = { .attrs = lm80_attributes, }; static int lm80_detect(struct i2c_adapter *adapter, int address, int kind) { int i, cur; struct i2c_client *client; struct lm80_data *data; int err = 0; const char *name; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) goto exit; /* OK. For now, we presume we have a valid client. We now create the client structure, even though we cannot fill it completely yet. But it allows us to access lm80_{read,write}_value. */ if (!(data = kzalloc(sizeof(struct lm80_data), GFP_KERNEL))) { err = -ENOMEM; goto exit; } client = &data->client; i2c_set_clientdata(client, data); client->addr = address; client->adapter = adapter; client->driver = &lm80_driver; /* Now, we do the remaining detection. It is lousy. */ if (lm80_read_value(client, LM80_REG_ALARM2) & 0xc0) goto error_free; for (i = 0x2a; i <= 0x3d; i++) { cur = i2c_smbus_read_byte_data(client, i); if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur) || (i2c_smbus_read_byte_data(client, i + 0x80) != cur) || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur)) goto error_free; } /* Determine the chip type - only one kind supported! */ kind = lm80; name = "lm80"; /* Fill in the remaining client fields */ strlcpy(client->name, name, I2C_NAME_SIZE); mutex_init(&data->update_lock); /* Tell the I2C layer a new client has arrived */ if ((err = i2c_attach_client(client))) goto error_free; /* Initialize the LM80 chip */ lm80_init_client(client); /* A few vars need to be filled upon startup */ data->fan_min[0] = lm80_read_value(client, LM80_REG_FAN_MIN(1)); data->fan_min[1] = lm80_read_value(client, LM80_REG_FAN_MIN(2)); /* Register sysfs hooks */ if ((err = sysfs_create_group(&client->dev.kobj, &lm80_group))) goto error_detach; data->hwmon_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto error_remove; } return 0; error_remove: sysfs_remove_group(&client->dev.kobj, &lm80_group); error_detach: i2c_detach_client(client); error_free: kfree(data); exit: return err; } static int lm80_detach_client(struct i2c_client *client) { struct lm80_data *data = i2c_get_clientdata(client); int err; hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &lm80_group); if ((err = i2c_detach_client(client))) return err; kfree(data); return 0; } static int lm80_read_value(struct i2c_client *client, u8 reg) { return i2c_smbus_read_byte_data(client, reg); } static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value) { return i2c_smbus_write_byte_data(client, reg, value); } /* Called when we have found a new LM80. */ static void lm80_init_client(struct i2c_client *client) { /* Reset all except Watchdog values and last conversion values This sets fan-divs to 2, among others. This makes most other initializations unnecessary */ lm80_write_value(client, LM80_REG_CONFIG, 0x80); /* Set 11-bit temperature resolution */ lm80_write_value(client, LM80_REG_RES, 0x08); /* Start monitoring */ lm80_write_value(client, LM80_REG_CONFIG, 0x01); } static struct lm80_data *lm80_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct lm80_data *data = i2c_get_clientdata(client); int i; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) { dev_dbg(&client->dev, "Starting lm80 update\n"); for (i = 0; i <= 6; i++) { data->in[i] = lm80_read_value(client, LM80_REG_IN(i)); data->in_min[i] = lm80_read_value(client, LM80_REG_IN_MIN(i)); data->in_max[i] = lm80_read_value(client, LM80_REG_IN_MAX(i)); } data->fan[0] = lm80_read_value(client, LM80_REG_FAN1); data->fan_min[0] = lm80_read_value(client, LM80_REG_FAN_MIN(1)); data->fan[1] = lm80_read_value(client, LM80_REG_FAN2); data->fan_min[1] = lm80_read_value(client, LM80_REG_FAN_MIN(2)); data->temp = (lm80_read_value(client, LM80_REG_TEMP) << 8) | (lm80_read_value(client, LM80_REG_RES) & 0xf0); data->temp_os_max = lm80_read_value(client, LM80_REG_TEMP_OS_MAX); data->temp_os_hyst = lm80_read_value(client, LM80_REG_TEMP_OS_HYST); data->temp_hot_max = lm80_read_value(client, LM80_REG_TEMP_HOT_MAX); data->temp_hot_hyst = lm80_read_value(client, LM80_REG_TEMP_HOT_HYST); i = lm80_read_value(client, LM80_REG_FANDIV); data->fan_div[0] = (i >> 2) & 0x03; data->fan_div[1] = (i >> 4) & 0x03; data->alarms = lm80_read_value(client, LM80_REG_ALARM1) + (lm80_read_value(client, LM80_REG_ALARM2) << 8); data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } static int __init sensors_lm80_init(void) { return i2c_add_driver(&lm80_driver); } static void __exit sensors_lm80_exit(void) { i2c_del_driver(&lm80_driver); } MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and " "Philip Edelbrock <phil@netroedge.com>"); MODULE_DESCRIPTION("LM80 driver"); MODULE_LICENSE("GPL"); module_init(sensors_lm80_init); module_exit(sensors_lm80_exit);