/* * HID support for Linux * * Copyright (c) 1999 Andreas Gal * Copyright (c) 2000-2005 Vojtech Pavlik * Copyright (c) 2005 Michael Haboustak for Concept2, Inc * Copyright (c) 2006 Jiri Kosina */ /* * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Version Information */ #define DRIVER_VERSION "v2.6" #define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik" #define DRIVER_DESC "HID core driver" #define DRIVER_LICENSE "GPL" /* * Register a new report for a device. */ static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id) { struct hid_report_enum *report_enum = device->report_enum + type; struct hid_report *report; if (report_enum->report_id_hash[id]) return report_enum->report_id_hash[id]; if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL))) return NULL; if (id != 0) report_enum->numbered = 1; report->id = id; report->type = type; report->size = 0; report->device = device; report_enum->report_id_hash[id] = report; list_add_tail(&report->list, &report_enum->report_list); return report; } /* * Register a new field for this report. */ static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values) { struct hid_field *field; if (report->maxfield == HID_MAX_FIELDS) { dbg("too many fields in report"); return NULL; } if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage) + values * sizeof(unsigned), GFP_KERNEL))) return NULL; field->index = report->maxfield++; report->field[field->index] = field; field->usage = (struct hid_usage *)(field + 1); field->value = (unsigned *)(field->usage + usages); field->report = report; return field; } /* * Open a collection. The type/usage is pushed on the stack. */ static int open_collection(struct hid_parser *parser, unsigned type) { struct hid_collection *collection; unsigned usage; usage = parser->local.usage[0]; if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) { dbg("collection stack overflow"); return -1; } if (parser->device->maxcollection == parser->device->collection_size) { collection = kmalloc(sizeof(struct hid_collection) * parser->device->collection_size * 2, GFP_KERNEL); if (collection == NULL) { dbg("failed to reallocate collection array"); return -1; } memcpy(collection, parser->device->collection, sizeof(struct hid_collection) * parser->device->collection_size); memset(collection + parser->device->collection_size, 0, sizeof(struct hid_collection) * parser->device->collection_size); kfree(parser->device->collection); parser->device->collection = collection; parser->device->collection_size *= 2; } parser->collection_stack[parser->collection_stack_ptr++] = parser->device->maxcollection; collection = parser->device->collection + parser->device->maxcollection++; collection->type = type; collection->usage = usage; collection->level = parser->collection_stack_ptr - 1; if (type == HID_COLLECTION_APPLICATION) parser->device->maxapplication++; return 0; } /* * Close a collection. */ static int close_collection(struct hid_parser *parser) { if (!parser->collection_stack_ptr) { dbg("collection stack underflow"); return -1; } parser->collection_stack_ptr--; return 0; } /* * Climb up the stack, search for the specified collection type * and return the usage. */ static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) { int n; for (n = parser->collection_stack_ptr - 1; n >= 0; n--) if (parser->device->collection[parser->collection_stack[n]].type == type) return parser->device->collection[parser->collection_stack[n]].usage; return 0; /* we know nothing about this usage type */ } /* * Add a usage to the temporary parser table. */ static int hid_add_usage(struct hid_parser *parser, unsigned usage) { if (parser->local.usage_index >= HID_MAX_USAGES) { dbg("usage index exceeded"); return -1; } parser->local.usage[parser->local.usage_index] = usage; parser->local.collection_index[parser->local.usage_index] = parser->collection_stack_ptr ? parser->collection_stack[parser->collection_stack_ptr - 1] : 0; parser->local.usage_index++; return 0; } /* * Register a new field for this report. */ static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) { struct hid_report *report; struct hid_field *field; int usages; unsigned offset; int i; if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) { dbg("hid_register_report failed"); return -1; } if (parser->global.logical_maximum < parser->global.logical_minimum) { dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum); return -1; } offset = report->size; report->size += parser->global.report_size * parser->global.report_count; if (!parser->local.usage_index) /* Ignore padding fields */ return 0; usages = max_t(int, parser->local.usage_index, parser->global.report_count); if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL) return 0; field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); for (i = 0; i < usages; i++) { int j = i; /* Duplicate the last usage we parsed if we have excess values */ if (i >= parser->local.usage_index) j = parser->local.usage_index - 1; field->usage[i].hid = parser->local.usage[j]; field->usage[i].collection_index = parser->local.collection_index[j]; } field->maxusage = usages; field->flags = flags; field->report_offset = offset; field->report_type = report_type; field->report_size = parser->global.report_size; field->report_count = parser->global.report_count; field->logical_minimum = parser->global.logical_minimum; field->logical_maximum = parser->global.logical_maximum; field->physical_minimum = parser->global.physical_minimum; field->physical_maximum = parser->global.physical_maximum; field->unit_exponent = parser->global.unit_exponent; field->unit = parser->global.unit; return 0; } /* * Read data value from item. */ static u32 item_udata(struct hid_item *item) { switch (item->size) { case 1: return item->data.u8; case 2: return item->data.u16; case 4: return item->data.u32; } return 0; } static s32 item_sdata(struct hid_item *item) { switch (item->size) { case 1: return item->data.s8; case 2: return item->data.s16; case 4: return item->data.s32; } return 0; } /* * Process a global item. */ static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) { switch (item->tag) { case HID_GLOBAL_ITEM_TAG_PUSH: if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { dbg("global enviroment stack overflow"); return -1; } memcpy(parser->global_stack + parser->global_stack_ptr++, &parser->global, sizeof(struct hid_global)); return 0; case HID_GLOBAL_ITEM_TAG_POP: if (!parser->global_stack_ptr) { dbg("global enviroment stack underflow"); return -1; } memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr, sizeof(struct hid_global)); return 0; case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: parser->global.usage_page = item_udata(item); return 0; case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: parser->global.logical_minimum = item_sdata(item); return 0; case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: if (parser->global.logical_minimum < 0) parser->global.logical_maximum = item_sdata(item); else parser->global.logical_maximum = item_udata(item); return 0; case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: parser->global.physical_minimum = item_sdata(item); return 0; case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: if (parser->global.physical_minimum < 0) parser->global.physical_maximum = item_sdata(item); else parser->global.physical_maximum = item_udata(item); return 0; case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: parser->global.unit_exponent = item_sdata(item); return 0; case HID_GLOBAL_ITEM_TAG_UNIT: parser->global.unit = item_udata(item); return 0; case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: if ((parser->global.report_size = item_udata(item)) > 32) { dbg("invalid report_size %d", parser->global.report_size); return -1; } return 0; case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) { dbg("invalid report_count %d", parser->global.report_count); return -1; } return 0; case HID_GLOBAL_ITEM_TAG_REPORT_ID: if ((parser->global.report_id = item_udata(item)) == 0) { dbg("report_id 0 is invalid"); return -1; } return 0; default: dbg("unknown global tag 0x%x", item->tag); return -1; } } /* * Process a local item. */ static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) { __u32 data; unsigned n; if (item->size == 0) { dbg("item data expected for local item"); return -1; } data = item_udata(item); switch (item->tag) { case HID_LOCAL_ITEM_TAG_DELIMITER: if (data) { /* * We treat items before the first delimiter * as global to all usage sets (branch 0). * In the moment we process only these global * items and the first delimiter set. */ if (parser->local.delimiter_depth != 0) { dbg("nested delimiters"); return -1; } parser->local.delimiter_depth++; parser->local.delimiter_branch++; } else { if (parser->local.delimiter_depth < 1) { dbg("bogus close delimiter"); return -1; } parser->local.delimiter_depth--; } return 1; case HID_LOCAL_ITEM_TAG_USAGE: if (parser->local.delimiter_branch > 1) { dbg("alternative usage ignored"); return 0; } if (item->size <= 2) data = (parser->global.usage_page << 16) + data; return hid_add_usage(parser, data); case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: if (parser->local.delimiter_branch > 1) { dbg("alternative usage ignored"); return 0; } if (item->size <= 2) data = (parser->global.usage_page << 16) + data; parser->local.usage_minimum = data; return 0; case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: if (parser->local.delimiter_branch > 1) { dbg("alternative usage ignored"); return 0; } if (item->size <= 2) data = (parser->global.usage_page << 16) + data; for (n = parser->local.usage_minimum; n <= data; n++) if (hid_add_usage(parser, n)) { dbg("hid_add_usage failed\n"); return -1; } return 0; default: dbg("unknown local item tag 0x%x", item->tag); return 0; } return 0; } /* * Process a main item. */ static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) { __u32 data; int ret; data = item_udata(item); switch (item->tag) { case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: ret = open_collection(parser, data & 0xff); break; case HID_MAIN_ITEM_TAG_END_COLLECTION: ret = close_collection(parser); break; case HID_MAIN_ITEM_TAG_INPUT: ret = hid_add_field(parser, HID_INPUT_REPORT, data); break; case HID_MAIN_ITEM_TAG_OUTPUT: ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); break; case HID_MAIN_ITEM_TAG_FEATURE: ret = hid_add_field(parser, HID_FEATURE_REPORT, data); break; default: dbg("unknown main item tag 0x%x", item->tag); ret = 0; } memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ return ret; } /* * Process a reserved item. */ static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) { dbg("reserved item type, tag 0x%x", item->tag); return 0; } /* * Free a report and all registered fields. The field->usage and * field->value table's are allocated behind the field, so we need * only to free(field) itself. */ static void hid_free_report(struct hid_report *report) { unsigned n; for (n = 0; n < report->maxfield; n++) kfree(report->field[n]); kfree(report); } /* * Free a device structure, all reports, and all fields. */ void hid_free_device(struct hid_device *device) { unsigned i,j; for (i = 0; i < HID_REPORT_TYPES; i++) { struct hid_report_enum *report_enum = device->report_enum + i; for (j = 0; j < 256; j++) { struct hid_report *report = report_enum->report_id_hash[j]; if (report) hid_free_report(report); } } kfree(device->rdesc); kfree(device->collection); kfree(device); } EXPORT_SYMBOL_GPL(hid_free_device); /* * Fetch a report description item from the data stream. We support long * items, though they are not used yet. */ static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) { u8 b; if ((end - start) <= 0) return NULL; b = *start++; item->type = (b >> 2) & 3; item->tag = (b >> 4) & 15; if (item->tag == HID_ITEM_TAG_LONG) { item->format = HID_ITEM_FORMAT_LONG; if ((end - start) < 2) return NULL; item->size = *start++; item->tag = *start++; if ((end - start) < item->size) return NULL; item->data.longdata = start; start += item->size; return start; } item->format = HID_ITEM_FORMAT_SHORT; item->size = b & 3; switch (item->size) { case 0: return start; case 1: if ((end - start) < 1) return NULL; item->data.u8 = *start++; return start; case 2: if ((end - start) < 2) return NULL; item->data.u16 = le16_to_cpu(get_unaligned((__le16*)start)); start = (__u8 *)((__le16 *)start + 1); return start; case 3: item->size++; if ((end - start) < 4) return NULL; item->data.u32 = le32_to_cpu(get_unaligned((__le32*)start)); start = (__u8 *)((__le32 *)start + 1); return start; } return NULL; } /* * Parse a report description into a hid_device structure. Reports are * enumerated, fields are attached to these reports. */ struct hid_device *hid_parse_report(__u8 *start, unsigned size) { struct hid_device *device; struct hid_parser *parser; struct hid_item item; __u8 *end; unsigned i; static int (*dispatch_type[])(struct hid_parser *parser, struct hid_item *item) = { hid_parser_main, hid_parser_global, hid_parser_local, hid_parser_reserved }; if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL))) return NULL; if (!(device->collection = kzalloc(sizeof(struct hid_collection) * HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) { kfree(device); return NULL; } device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; for (i = 0; i < HID_REPORT_TYPES; i++) INIT_LIST_HEAD(&device->report_enum[i].report_list); if (!(device->rdesc = kmalloc(size, GFP_KERNEL))) { kfree(device->collection); kfree(device); return NULL; } memcpy(device->rdesc, start, size); device->rsize = size; if (!(parser = kzalloc(sizeof(struct hid_parser), GFP_KERNEL))) { kfree(device->rdesc); kfree(device->collection); kfree(device); return NULL; } parser->device = device; end = start + size; while ((start = fetch_item(start, end, &item)) != NULL) { if (item.format != HID_ITEM_FORMAT_SHORT) { dbg("unexpected long global item"); hid_free_device(device); kfree(parser); return NULL; } if (dispatch_type[item.type](parser, &item)) { dbg("item %u %u %u %u parsing failed\n", item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag); hid_free_device(device); kfree(parser); return NULL; } if (start == end) { if (parser->collection_stack_ptr) { dbg("unbalanced collection at end of report description"); hid_free_device(device); kfree(parser); return NULL; } if (parser->local.delimiter_depth) { dbg("unbalanced delimiter at end of report description"); hid_free_device(device); kfree(parser); return NULL; } kfree(parser); return device; } } dbg("item fetching failed at offset %d\n", (int)(end - start)); hid_free_device(device); kfree(parser); return NULL; } EXPORT_SYMBOL_GPL(hid_parse_report); /* * Convert a signed n-bit integer to signed 32-bit integer. Common * cases are done through the compiler, the screwed things has to be * done by hand. */ static s32 snto32(__u32 value, unsigned n) { switch (n) { case 8: return ((__s8)value); case 16: return ((__s16)value); case 32: return ((__s32)value); } return value & (1 << (n - 1)) ? value | (-1 << n) : value; } /* * Convert a signed 32-bit integer to a signed n-bit integer. */ static u32 s32ton(__s32 value, unsigned n) { s32 a = value >> (n - 1); if (a && a != -1) return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; return value & ((1 << n) - 1); } /* * Extract/implement a data field from/to a little endian report (bit array). * * Code sort-of follows HID spec: * http://www.usb.org/developers/devclass_docs/HID1_11.pdf * * While the USB HID spec allows unlimited length bit fields in "report * descriptors", most devices never use more than 16 bits. * One model of UPS is claimed to report "LINEV" as a 32-bit field. * Search linux-kernel and linux-usb-devel archives for "hid-core extract". */ static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n) { u64 x; WARN_ON(n > 32); report += offset >> 3; /* adjust byte index */ offset &= 7; /* now only need bit offset into one byte */ x = le64_to_cpu(get_unaligned((__le64 *) report)); x = (x >> offset) & ((1ULL << n) - 1); /* extract bit field */ return (u32) x; } /* * "implement" : set bits in a little endian bit stream. * Same concepts as "extract" (see comments above). * The data mangled in the bit stream remains in little endian * order the whole time. It make more sense to talk about * endianness of register values by considering a register * a "cached" copy of the little endiad bit stream. */ static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value) { __le64 x; u64 m = (1ULL << n) - 1; WARN_ON(n > 32); WARN_ON(value > m); value &= m; report += offset >> 3; offset &= 7; x = get_unaligned((__le64 *)report); x &= cpu_to_le64(~(m << offset)); x |= cpu_to_le64(((u64) value) << offset); put_unaligned(x, (__le64 *) report); } /* * Search an array for a value. */ static __inline__ int search(__s32 *array, __s32 value, unsigned n) { while (n--) { if (*array++ == value) return 0; } return -1; } static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt) { hid_dump_input(usage, value); if (hid->claimed & HID_CLAIMED_INPUT) hidinput_hid_event(hid, field, usage, value); if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) hid->hiddev_hid_event(hid, field, usage, value); } /* * Analyse a received field, and fetch the data from it. The field * content is stored for next report processing (we do differential * reporting to the layer). */ void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, int interrupt) { unsigned n; unsigned count = field->report_count; unsigned offset = field->report_offset; unsigned size = field->report_size; __s32 min = field->logical_minimum; __s32 max = field->logical_maximum; __s32 *value; if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC))) return; for (n = 0; n < count; n++) { value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) : extract(data, offset + n * size, size); if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */ && value[n] >= min && value[n] <= max && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) goto exit; } for (n = 0; n < count; n++) { if (HID_MAIN_ITEM_VARIABLE & field->flags) { hid_process_event(hid, field, &field->usage[n], value[n], interrupt); continue; } if (field->value[n] >= min && field->value[n] <= max && field->usage[field->value[n] - min].hid && search(value, field->value[n], count)) hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt); if (value[n] >= min && value[n] <= max && field->usage[value[n] - min].hid && search(field->value, value[n], count)) hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt); } memcpy(field->value, value, count * sizeof(__s32)); exit: kfree(value); } EXPORT_SYMBOL_GPL(hid_input_field); /* * Output the field into the report. */ static void hid_output_field(struct hid_field *field, __u8 *data) { unsigned count = field->report_count; unsigned offset = field->report_offset; unsigned size = field->report_size; unsigned n; /* make sure the unused bits in the last byte are zeros */ if (count > 0 && size > 0) data[(offset+count*size-1)/8] = 0; for (n = 0; n < count; n++) { if (field->logical_minimum < 0) /* signed values */ implement(data, offset + n * size, size, s32ton(field->value[n], size)); else /* unsigned values */ implement(data, offset + n * size, size, field->value[n]); } } /* * Create a report. */ void hid_output_report(struct hid_report *report, __u8 *data) { unsigned n; if (report->id > 0) *data++ = report->id; for (n = 0; n < report->maxfield; n++) hid_output_field(report->field[n], data); } EXPORT_SYMBOL_GPL(hid_output_report); /* * Set a field value. The report this field belongs to has to be * created and transferred to the device, to set this value in the * device. */ int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) { unsigned size = field->report_size; hid_dump_input(field->usage + offset, value); if (offset >= field->report_count) { dbg("offset (%d) exceeds report_count (%d)", offset, field->report_count); hid_dump_field(field, 8); return -1; } if (field->logical_minimum < 0) { if (value != snto32(s32ton(value, size), size)) { dbg("value %d is out of range", value); return -1; } } field->value[offset] = value; return 0; } EXPORT_SYMBOL_GPL(hid_set_field); int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt) { struct hid_report_enum *report_enum = hid->report_enum + type; struct hid_report *report; int n, rsize; if (!hid) return -ENODEV; if (!size) { dbg("empty report"); return -1; } #ifdef CONFIG_HID_DEBUG printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered)\n", size, report_enum->numbered ? "" : "un"); #endif n = 0; /* Normally report number is 0 */ if (report_enum->numbered) { /* Device uses numbered reports, data[0] is report number */ n = *data++; size--; } #ifdef CONFIG_HID_DEBUG { int i; printk(KERN_DEBUG __FILE__ ": report %d (size %u) = ", n, size); for (i = 0; i < size; i++) printk(" %02x", data[i]); printk("\n"); } #endif if (!(report = report_enum->report_id_hash[n])) { dbg("undefined report_id %d received", n); return -1; } rsize = ((report->size - 1) >> 3) + 1; if (size < rsize) { dbg("report %d is too short, (%d < %d)", report->id, size, rsize); return -1; } if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) hid->hiddev_report_event(hid, report); for (n = 0; n < report->maxfield; n++) hid_input_field(hid, report->field[n], data, interrupt); if (hid->claimed & HID_CLAIMED_INPUT) hidinput_report_event(hid, report); return 0; } EXPORT_SYMBOL_GPL(hid_input_report); MODULE_LICENSE(DRIVER_LICENSE);