/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Keith Packard * */ #include #include "drmP.h" #include "drm.h" #include "drm_crtc.h" #include "drm_crtc_helper.h" #include "intel_drv.h" #include "i915_drm.h" #include "i915_drv.h" #include "drm_dp_helper.h" #define DP_LINK_STATUS_SIZE 6 #define DP_LINK_CHECK_TIMEOUT (10 * 1000) #define DP_LINK_CONFIGURATION_SIZE 9 #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP) struct intel_dp_priv { uint32_t output_reg; uint32_t DP; uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]; uint32_t save_DP; uint8_t save_link_configuration[DP_LINK_CONFIGURATION_SIZE]; bool has_audio; int dpms_mode; uint8_t link_bw; uint8_t lane_count; uint8_t dpcd[4]; struct intel_output *intel_output; struct i2c_adapter adapter; struct i2c_algo_dp_aux_data algo; }; static void intel_dp_link_train(struct intel_output *intel_output, uint32_t DP, uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]); static void intel_dp_link_down(struct intel_output *intel_output, uint32_t DP); void intel_edp_link_config (struct intel_output *intel_output, int *lane_num, int *link_bw) { struct intel_dp_priv *dp_priv = intel_output->dev_priv; *lane_num = dp_priv->lane_count; if (dp_priv->link_bw == DP_LINK_BW_1_62) *link_bw = 162000; else if (dp_priv->link_bw == DP_LINK_BW_2_7) *link_bw = 270000; } static int intel_dp_max_lane_count(struct intel_output *intel_output) { struct intel_dp_priv *dp_priv = intel_output->dev_priv; int max_lane_count = 4; if (dp_priv->dpcd[0] >= 0x11) { max_lane_count = dp_priv->dpcd[2] & 0x1f; switch (max_lane_count) { case 1: case 2: case 4: break; default: max_lane_count = 4; } } return max_lane_count; } static int intel_dp_max_link_bw(struct intel_output *intel_output) { struct intel_dp_priv *dp_priv = intel_output->dev_priv; int max_link_bw = dp_priv->dpcd[1]; switch (max_link_bw) { case DP_LINK_BW_1_62: case DP_LINK_BW_2_7: break; default: max_link_bw = DP_LINK_BW_1_62; break; } return max_link_bw; } static int intel_dp_link_clock(uint8_t link_bw) { if (link_bw == DP_LINK_BW_2_7) return 270000; else return 162000; } /* I think this is a fiction */ static int intel_dp_link_required(int pixel_clock) { return pixel_clock * 3; } static int intel_dp_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_output *intel_output = to_intel_output(connector); int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output)); int max_lanes = intel_dp_max_lane_count(intel_output); if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes) return MODE_CLOCK_HIGH; if (mode->clock < 10000) return MODE_CLOCK_LOW; return MODE_OK; } static uint32_t pack_aux(uint8_t *src, int src_bytes) { int i; uint32_t v = 0; if (src_bytes > 4) src_bytes = 4; for (i = 0; i < src_bytes; i++) v |= ((uint32_t) src[i]) << ((3-i) * 8); return v; } static void unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) { int i; if (dst_bytes > 4) dst_bytes = 4; for (i = 0; i < dst_bytes; i++) dst[i] = src >> ((3-i) * 8); } /* hrawclock is 1/4 the FSB frequency */ static int intel_hrawclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t clkcfg; clkcfg = I915_READ(CLKCFG); switch (clkcfg & CLKCFG_FSB_MASK) { case CLKCFG_FSB_400: return 100; case CLKCFG_FSB_533: return 133; case CLKCFG_FSB_667: return 166; case CLKCFG_FSB_800: return 200; case CLKCFG_FSB_1067: return 266; case CLKCFG_FSB_1333: return 333; /* these two are just a guess; one of them might be right */ case CLKCFG_FSB_1600: case CLKCFG_FSB_1600_ALT: return 400; default: return 133; } } static int intel_dp_aux_ch(struct intel_output *intel_output, uint8_t *send, int send_bytes, uint8_t *recv, int recv_size) { struct intel_dp_priv *dp_priv = intel_output->dev_priv; uint32_t output_reg = dp_priv->output_reg; struct drm_device *dev = intel_output->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t ch_ctl = output_reg + 0x10; uint32_t ch_data = ch_ctl + 4; int i; int recv_bytes; uint32_t ctl; uint32_t status; uint32_t aux_clock_divider; int try; /* The clock divider is based off the hrawclk, * and would like to run at 2MHz. So, take the * hrawclk value and divide by 2 and use that */ if (IS_eDP(intel_output)) aux_clock_divider = 225; /* eDP input clock at 450Mhz */ else if (IS_IRONLAKE(dev)) aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */ else aux_clock_divider = intel_hrawclk(dev) / 2; /* Must try at least 3 times according to DP spec */ for (try = 0; try < 5; try++) { /* Load the send data into the aux channel data registers */ for (i = 0; i < send_bytes; i += 4) { uint32_t d = pack_aux(send + i, send_bytes - i); I915_WRITE(ch_data + i, d); } ctl = (DP_AUX_CH_CTL_SEND_BUSY | DP_AUX_CH_CTL_TIME_OUT_400us | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); /* Send the command and wait for it to complete */ I915_WRITE(ch_ctl, ctl); (void) I915_READ(ch_ctl); for (;;) { udelay(100); status = I915_READ(ch_ctl); if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) break; } /* Clear done status and any errors */ I915_WRITE(ch_ctl, (status | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR)); (void) I915_READ(ch_ctl); if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0) break; } if ((status & DP_AUX_CH_CTL_DONE) == 0) { DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); return -EBUSY; } /* Check for timeout or receive error. * Timeouts occur when the sink is not connected */ if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); return -EIO; } /* Timeouts occur when the device isn't connected, so they're * "normal" -- don't fill the kernel log with these */ if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); return -ETIMEDOUT; } /* Unload any bytes sent back from the other side */ recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); if (recv_bytes > recv_size) recv_bytes = recv_size; for (i = 0; i < recv_bytes; i += 4) { uint32_t d = I915_READ(ch_data + i); unpack_aux(d, recv + i, recv_bytes - i); } return recv_bytes; } /* Write data to the aux channel in native mode */ static int intel_dp_aux_native_write(struct intel_output *intel_output, uint16_t address, uint8_t *send, int send_bytes) { int ret; uint8_t msg[20]; int msg_bytes; uint8_t ack; if (send_bytes > 16) return -1; msg[0] = AUX_NATIVE_WRITE << 4; msg[1] = address >> 8; msg[2] = address & 0xff; msg[3] = send_bytes - 1; memcpy(&msg[4], send, send_bytes); msg_bytes = send_bytes + 4; for (;;) { ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1); if (ret < 0) return ret; if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) break; else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER) udelay(100); else return -EIO; } return send_bytes; } /* Write a single byte to the aux channel in native mode */ static int intel_dp_aux_native_write_1(struct intel_output *intel_output, uint16_t address, uint8_t byte) { return intel_dp_aux_native_write(intel_output, address, &byte, 1); } /* read bytes from a native aux channel */ static int intel_dp_aux_native_read(struct intel_output *intel_output, uint16_t address, uint8_t *recv, int recv_bytes) { uint8_t msg[4]; int msg_bytes; uint8_t reply[20]; int reply_bytes; uint8_t ack; int ret; msg[0] = AUX_NATIVE_READ << 4; msg[1] = address >> 8; msg[2] = address & 0xff; msg[3] = recv_bytes - 1; msg_bytes = 4; reply_bytes = recv_bytes + 1; for (;;) { ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, reply, reply_bytes); if (ret == 0) return -EPROTO; if (ret < 0) return ret; ack = reply[0]; if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) { memcpy(recv, reply + 1, ret - 1); return ret - 1; } else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER) udelay(100); else return -EIO; } } static int intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode, uint8_t write_byte, uint8_t *read_byte) { struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; struct intel_dp_priv *dp_priv = container_of(adapter, struct intel_dp_priv, adapter); struct intel_output *intel_output = dp_priv->intel_output; uint16_t address = algo_data->address; uint8_t msg[5]; uint8_t reply[2]; int msg_bytes; int reply_bytes; int ret; /* Set up the command byte */ if (mode & MODE_I2C_READ) msg[0] = AUX_I2C_READ << 4; else msg[0] = AUX_I2C_WRITE << 4; if (!(mode & MODE_I2C_STOP)) msg[0] |= AUX_I2C_MOT << 4; msg[1] = address >> 8; msg[2] = address; switch (mode) { case MODE_I2C_WRITE: msg[3] = 0; msg[4] = write_byte; msg_bytes = 5; reply_bytes = 1; break; case MODE_I2C_READ: msg[3] = 0; msg_bytes = 4; reply_bytes = 2; break; default: msg_bytes = 3; reply_bytes = 1; break; } for (;;) { ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, reply, reply_bytes); if (ret < 0) { DRM_DEBUG_KMS("aux_ch failed %d\n", ret); return ret; } switch (reply[0] & AUX_I2C_REPLY_MASK) { case AUX_I2C_REPLY_ACK: if (mode == MODE_I2C_READ) { *read_byte = reply[1]; } return reply_bytes - 1; case AUX_I2C_REPLY_NACK: DRM_DEBUG_KMS("aux_ch nack\n"); return -EREMOTEIO; case AUX_I2C_REPLY_DEFER: DRM_DEBUG_KMS("aux_ch defer\n"); udelay(100); break; default: DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]); return -EREMOTEIO; } } } static int intel_dp_i2c_init(struct intel_output *intel_output, const char *name) { struct intel_dp_priv *dp_priv = intel_output->dev_priv; DRM_DEBUG_KMS("i2c_init %s\n", name); dp_priv->algo.running = false; dp_priv->algo.address = 0; dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch; memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter)); dp_priv->adapter.owner = THIS_MODULE; dp_priv->adapter.class = I2C_CLASS_DDC; strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1); dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0'; dp_priv->adapter.algo_data = &dp_priv->algo; dp_priv->adapter.dev.parent = &intel_output->base.kdev; return i2c_dp_aux_add_bus(&dp_priv->adapter); } static bool intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct intel_output *intel_output = enc_to_intel_output(encoder); struct intel_dp_priv *dp_priv = intel_output->dev_priv; int lane_count, clock; int max_lane_count = intel_dp_max_lane_count(intel_output); int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0; static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 }; for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) { for (clock = 0; clock <= max_clock; clock++) { int link_avail = intel_dp_link_clock(bws[clock]) * lane_count; if (intel_dp_link_required(mode->clock) <= link_avail) { dp_priv->link_bw = bws[clock]; dp_priv->lane_count = lane_count; adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw); DRM_DEBUG_KMS("Display port link bw %02x lane " "count %d clock %d\n", dp_priv->link_bw, dp_priv->lane_count, adjusted_mode->clock); return true; } } } return false; } struct intel_dp_m_n { uint32_t tu; uint32_t gmch_m; uint32_t gmch_n; uint32_t link_m; uint32_t link_n; }; static void intel_reduce_ratio(uint32_t *num, uint32_t *den) { while (*num > 0xffffff || *den > 0xffffff) { *num >>= 1; *den >>= 1; } } static void intel_dp_compute_m_n(int bytes_per_pixel, int nlanes, int pixel_clock, int link_clock, struct intel_dp_m_n *m_n) { m_n->tu = 64; m_n->gmch_m = pixel_clock * bytes_per_pixel; m_n->gmch_n = link_clock * nlanes; intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); m_n->link_m = pixel_clock; m_n->link_n = link_clock; intel_reduce_ratio(&m_n->link_m, &m_n->link_n); } void intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = crtc->dev; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_connector *connector; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int lane_count = 4; struct intel_dp_m_n m_n; /* * Find the lane count in the intel_output private */ list_for_each_entry(connector, &mode_config->connector_list, head) { struct intel_output *intel_output = to_intel_output(connector); struct intel_dp_priv *dp_priv = intel_output->dev_priv; if (!connector->encoder || connector->encoder->crtc != crtc) continue; if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) { lane_count = dp_priv->lane_count; break; } } /* * Compute the GMCH and Link ratios. The '3' here is * the number of bytes_per_pixel post-LUT, which we always * set up for 8-bits of R/G/B, or 3 bytes total. */ intel_dp_compute_m_n(3, lane_count, mode->clock, adjusted_mode->clock, &m_n); if (IS_IRONLAKE(dev)) { if (intel_crtc->pipe == 0) { I915_WRITE(TRANSA_DATA_M1, ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | m_n.gmch_m); I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n); I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m); I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n); } else { I915_WRITE(TRANSB_DATA_M1, ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | m_n.gmch_m); I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n); I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m); I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n); } } else { if (intel_crtc->pipe == 0) { I915_WRITE(PIPEA_GMCH_DATA_M, ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | m_n.gmch_m); I915_WRITE(PIPEA_GMCH_DATA_N, m_n.gmch_n); I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m); I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n); } else { I915_WRITE(PIPEB_GMCH_DATA_M, ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | m_n.gmch_m); I915_WRITE(PIPEB_GMCH_DATA_N, m_n.gmch_n); I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m); I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n); } } } static void intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct intel_output *intel_output = enc_to_intel_output(encoder); struct intel_dp_priv *dp_priv = intel_output->dev_priv; struct drm_crtc *crtc = intel_output->enc.crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); dp_priv->DP = (DP_LINK_TRAIN_OFF | DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0 | DP_SYNC_VS_HIGH | DP_SYNC_HS_HIGH); switch (dp_priv->lane_count) { case 1: dp_priv->DP |= DP_PORT_WIDTH_1; break; case 2: dp_priv->DP |= DP_PORT_WIDTH_2; break; case 4: dp_priv->DP |= DP_PORT_WIDTH_4; break; } if (dp_priv->has_audio) dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE; memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE); dp_priv->link_configuration[0] = dp_priv->link_bw; dp_priv->link_configuration[1] = dp_priv->lane_count; /* * Check for DPCD version > 1.1, * enable enahanced frame stuff in that case */ if (dp_priv->dpcd[0] >= 0x11) { dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; dp_priv->DP |= DP_ENHANCED_FRAMING; } if (intel_crtc->pipe == 1) dp_priv->DP |= DP_PIPEB_SELECT; if (IS_eDP(intel_output)) { /* don't miss out required setting for eDP */ dp_priv->DP |= DP_PLL_ENABLE; if (adjusted_mode->clock < 200000) dp_priv->DP |= DP_PLL_FREQ_160MHZ; else dp_priv->DP |= DP_PLL_FREQ_270MHZ; } } static void ironlake_edp_backlight_on (struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; DRM_DEBUG_KMS("\n"); pp = I915_READ(PCH_PP_CONTROL); pp |= EDP_BLC_ENABLE; I915_WRITE(PCH_PP_CONTROL, pp); } static void ironlake_edp_backlight_off (struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; DRM_DEBUG_KMS("\n"); pp = I915_READ(PCH_PP_CONTROL); pp &= ~EDP_BLC_ENABLE; I915_WRITE(PCH_PP_CONTROL, pp); } static void intel_dp_dpms(struct drm_encoder *encoder, int mode) { struct intel_output *intel_output = enc_to_intel_output(encoder); struct intel_dp_priv *dp_priv = intel_output->dev_priv; struct drm_device *dev = intel_output->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dp_reg = I915_READ(dp_priv->output_reg); if (mode != DRM_MODE_DPMS_ON) { if (dp_reg & DP_PORT_EN) { intel_dp_link_down(intel_output, dp_priv->DP); if (IS_eDP(intel_output)) ironlake_edp_backlight_off(dev); } } else { if (!(dp_reg & DP_PORT_EN)) { intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration); if (IS_eDP(intel_output)) ironlake_edp_backlight_on(dev); } } dp_priv->dpms_mode = mode; } /* * Fetch AUX CH registers 0x202 - 0x207 which contain * link status information */ static bool intel_dp_get_link_status(struct intel_output *intel_output, uint8_t link_status[DP_LINK_STATUS_SIZE]) { int ret; ret = intel_dp_aux_native_read(intel_output, DP_LANE0_1_STATUS, link_status, DP_LINK_STATUS_SIZE); if (ret != DP_LINK_STATUS_SIZE) return false; return true; } static uint8_t intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE], int r) { return link_status[r - DP_LANE0_1_STATUS]; } static void intel_dp_save(struct drm_connector *connector) { struct intel_output *intel_output = to_intel_output(connector); struct drm_device *dev = intel_output->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dp_priv *dp_priv = intel_output->dev_priv; dp_priv->save_DP = I915_READ(dp_priv->output_reg); intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET, dp_priv->save_link_configuration, sizeof (dp_priv->save_link_configuration)); } static uint8_t intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); uint8_t l = intel_dp_link_status(link_status, i); return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; } static uint8_t intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); uint8_t l = intel_dp_link_status(link_status, i); return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; } #if 0 static char *voltage_names[] = { "0.4V", "0.6V", "0.8V", "1.2V" }; static char *pre_emph_names[] = { "0dB", "3.5dB", "6dB", "9.5dB" }; static char *link_train_names[] = { "pattern 1", "pattern 2", "idle", "off" }; #endif /* * These are source-specific values; current Intel hardware supports * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB */ #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800 static uint8_t intel_dp_pre_emphasis_max(uint8_t voltage_swing) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_600: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_800: return DP_TRAIN_PRE_EMPHASIS_3_5; case DP_TRAIN_VOLTAGE_SWING_1200: default: return DP_TRAIN_PRE_EMPHASIS_0; } } static void intel_get_adjust_train(struct intel_output *intel_output, uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count, uint8_t train_set[4]) { uint8_t v = 0; uint8_t p = 0; int lane; for (lane = 0; lane < lane_count; lane++) { uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane); uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane); if (this_v > v) v = this_v; if (this_p > p) p = this_p; } if (v >= I830_DP_VOLTAGE_MAX) v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED; if (p >= intel_dp_pre_emphasis_max(v)) p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; for (lane = 0; lane < 4; lane++) train_set[lane] = v | p; } static uint32_t intel_dp_signal_levels(uint8_t train_set, int lane_count) { uint32_t signal_levels = 0; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: default: signal_levels |= DP_VOLTAGE_0_4; break; case DP_TRAIN_VOLTAGE_SWING_600: signal_levels |= DP_VOLTAGE_0_6; break; case DP_TRAIN_VOLTAGE_SWING_800: signal_levels |= DP_VOLTAGE_0_8; break; case DP_TRAIN_VOLTAGE_SWING_1200: signal_levels |= DP_VOLTAGE_1_2; break; } switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPHASIS_0: default: signal_levels |= DP_PRE_EMPHASIS_0; break; case DP_TRAIN_PRE_EMPHASIS_3_5: signal_levels |= DP_PRE_EMPHASIS_3_5; break; case DP_TRAIN_PRE_EMPHASIS_6: signal_levels |= DP_PRE_EMPHASIS_6; break; case DP_TRAIN_PRE_EMPHASIS_9_5: signal_levels |= DP_PRE_EMPHASIS_9_5; break; } return signal_levels; } static uint8_t intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_LANE0_1_STATUS + (lane >> 1); int s = (lane & 1) * 4; uint8_t l = intel_dp_link_status(link_status, i); return (l >> s) & 0xf; } /* Check for clock recovery is done on all channels */ static bool intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count) { int lane; uint8_t lane_status; for (lane = 0; lane < lane_count; lane++) { lane_status = intel_get_lane_status(link_status, lane); if ((lane_status & DP_LANE_CR_DONE) == 0) return false; } return true; } /* Check to see if channel eq is done on all channels */ #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\ DP_LANE_CHANNEL_EQ_DONE|\ DP_LANE_SYMBOL_LOCKED) static bool intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count) { uint8_t lane_align; uint8_t lane_status; int lane; lane_align = intel_dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) return false; for (lane = 0; lane < lane_count; lane++) { lane_status = intel_get_lane_status(link_status, lane); if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS) return false; } return true; } static bool intel_dp_set_link_train(struct intel_output *intel_output, uint32_t dp_reg_value, uint8_t dp_train_pat, uint8_t train_set[4], bool first) { struct drm_device *dev = intel_output->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dp_priv *dp_priv = intel_output->dev_priv; int ret; I915_WRITE(dp_priv->output_reg, dp_reg_value); POSTING_READ(dp_priv->output_reg); if (first) intel_wait_for_vblank(dev); intel_dp_aux_native_write_1(intel_output, DP_TRAINING_PATTERN_SET, dp_train_pat); ret = intel_dp_aux_native_write(intel_output, DP_TRAINING_LANE0_SET, train_set, 4); if (ret != 4) return false; return true; } static void intel_dp_link_train(struct intel_output *intel_output, uint32_t DP, uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]) { struct drm_device *dev = intel_output->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dp_priv *dp_priv = intel_output->dev_priv; uint8_t train_set[4]; uint8_t link_status[DP_LINK_STATUS_SIZE]; int i; uint8_t voltage; bool clock_recovery = false; bool channel_eq = false; bool first = true; int tries; /* Write the link configuration data */ intel_dp_aux_native_write(intel_output, 0x100, link_configuration, DP_LINK_CONFIGURATION_SIZE); DP |= DP_PORT_EN; DP &= ~DP_LINK_TRAIN_MASK; memset(train_set, 0, 4); voltage = 0xff; tries = 0; clock_recovery = false; for (;;) { /* Use train_set[0] to set the voltage and pre emphasis values */ uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count); DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels; if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1, DP_TRAINING_PATTERN_1, train_set, first)) break; first = false; /* Set training pattern 1 */ udelay(100); if (!intel_dp_get_link_status(intel_output, link_status)) break; if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) { clock_recovery = true; break; } /* Check to see if we've tried the max voltage */ for (i = 0; i < dp_priv->lane_count; i++) if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) break; if (i == dp_priv->lane_count) break; /* Check to see if we've tried the same voltage 5 times */ if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { ++tries; if (tries == 5) break; } else tries = 0; voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; /* Compute new train_set as requested by target */ intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set); } /* channel equalization */ tries = 0; channel_eq = false; for (;;) { /* Use train_set[0] to set the voltage and pre emphasis values */ uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count); DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels; /* channel eq pattern */ if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2, DP_TRAINING_PATTERN_2, train_set, false)) break; udelay(400); if (!intel_dp_get_link_status(intel_output, link_status)) break; if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) { channel_eq = true; break; } /* Try 5 times */ if (tries > 5) break; /* Compute new train_set as requested by target */ intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set); ++tries; } I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF); POSTING_READ(dp_priv->output_reg); intel_dp_aux_native_write_1(intel_output, DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE); } static void intel_dp_link_down(struct intel_output *intel_output, uint32_t DP) { struct drm_device *dev = intel_output->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dp_priv *dp_priv = intel_output->dev_priv; DRM_DEBUG_KMS("\n"); if (IS_eDP(intel_output)) { DP &= ~DP_PLL_ENABLE; I915_WRITE(dp_priv->output_reg, DP); POSTING_READ(dp_priv->output_reg); udelay(100); } DP &= ~DP_LINK_TRAIN_MASK; I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE); POSTING_READ(dp_priv->output_reg); udelay(17000); if (IS_eDP(intel_output)) DP |= DP_LINK_TRAIN_OFF; I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN); POSTING_READ(dp_priv->output_reg); } static void intel_dp_restore(struct drm_connector *connector) { struct intel_output *intel_output = to_intel_output(connector); struct intel_dp_priv *dp_priv = intel_output->dev_priv; if (dp_priv->save_DP & DP_PORT_EN) intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration); else intel_dp_link_down(intel_output, dp_priv->save_DP); } /* * According to DP spec * 5.1.2: * 1. Read DPCD * 2. Configure link according to Receiver Capabilities * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 * 4. Check link status on receipt of hot-plug interrupt */ static void intel_dp_check_link_status(struct intel_output *intel_output) { struct intel_dp_priv *dp_priv = intel_output->dev_priv; uint8_t link_status[DP_LINK_STATUS_SIZE]; if (!intel_output->enc.crtc) return; if (!intel_dp_get_link_status(intel_output, link_status)) { intel_dp_link_down(intel_output, dp_priv->DP); return; } if (!intel_channel_eq_ok(link_status, dp_priv->lane_count)) intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration); } static enum drm_connector_status ironlake_dp_detect(struct drm_connector *connector) { struct intel_output *intel_output = to_intel_output(connector); struct intel_dp_priv *dp_priv = intel_output->dev_priv; enum drm_connector_status status; status = connector_status_disconnected; if (intel_dp_aux_native_read(intel_output, 0x000, dp_priv->dpcd, sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd)) { if (dp_priv->dpcd[0] != 0) status = connector_status_connected; } return status; } /** * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection. * * \return true if DP port is connected. * \return false if DP port is disconnected. */ static enum drm_connector_status intel_dp_detect(struct drm_connector *connector) { struct intel_output *intel_output = to_intel_output(connector); struct drm_device *dev = intel_output->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dp_priv *dp_priv = intel_output->dev_priv; uint32_t temp, bit; enum drm_connector_status status; dp_priv->has_audio = false; if (IS_IRONLAKE(dev)) return ironlake_dp_detect(connector); temp = I915_READ(PORT_HOTPLUG_EN); I915_WRITE(PORT_HOTPLUG_EN, temp | DPB_HOTPLUG_INT_EN | DPC_HOTPLUG_INT_EN | DPD_HOTPLUG_INT_EN); POSTING_READ(PORT_HOTPLUG_EN); switch (dp_priv->output_reg) { case DP_B: bit = DPB_HOTPLUG_INT_STATUS; break; case DP_C: bit = DPC_HOTPLUG_INT_STATUS; break; case DP_D: bit = DPD_HOTPLUG_INT_STATUS; break; default: return connector_status_unknown; } temp = I915_READ(PORT_HOTPLUG_STAT); if ((temp & bit) == 0) return connector_status_disconnected; status = connector_status_disconnected; if (intel_dp_aux_native_read(intel_output, 0x000, dp_priv->dpcd, sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd)) { if (dp_priv->dpcd[0] != 0) status = connector_status_connected; } return status; } static int intel_dp_get_modes(struct drm_connector *connector) { struct intel_output *intel_output = to_intel_output(connector); struct drm_device *dev = intel_output->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; /* We should parse the EDID data and find out if it has an audio sink */ ret = intel_ddc_get_modes(intel_output); if (ret) return ret; /* if eDP has no EDID, try to use fixed panel mode from VBT */ if (IS_eDP(intel_output)) { if (dev_priv->panel_fixed_mode != NULL) { struct drm_display_mode *mode; mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode); drm_mode_probed_add(connector, mode); return 1; } } return 0; } static void intel_dp_destroy (struct drm_connector *connector) { struct intel_output *intel_output = to_intel_output(connector); if (intel_output->i2c_bus) intel_i2c_destroy(intel_output->i2c_bus); drm_sysfs_connector_remove(connector); drm_connector_cleanup(connector); kfree(intel_output); } static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = { .dpms = intel_dp_dpms, .mode_fixup = intel_dp_mode_fixup, .prepare = intel_encoder_prepare, .mode_set = intel_dp_mode_set, .commit = intel_encoder_commit, }; static const struct drm_connector_funcs intel_dp_connector_funcs = { .dpms = drm_helper_connector_dpms, .save = intel_dp_save, .restore = intel_dp_restore, .detect = intel_dp_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = intel_dp_destroy, }; static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { .get_modes = intel_dp_get_modes, .mode_valid = intel_dp_mode_valid, .best_encoder = intel_best_encoder, }; static void intel_dp_enc_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); } static const struct drm_encoder_funcs intel_dp_enc_funcs = { .destroy = intel_dp_enc_destroy, }; void intel_dp_hot_plug(struct intel_output *intel_output) { struct intel_dp_priv *dp_priv = intel_output->dev_priv; if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON) intel_dp_check_link_status(intel_output); } /* * Enumerate the child dev array parsed from VBT to check whether * the given DP is present. * If it is present, return 1. * If it is not present, return false. * If no child dev is parsed from VBT, it is assumed that the given * DP is present. */ static int dp_is_present_in_vbt(struct drm_device *dev, int dp_reg) { struct drm_i915_private *dev_priv = dev->dev_private; struct child_device_config *p_child; int i, dp_port, ret; if (!dev_priv->child_dev_num) return 1; dp_port = 0; if (dp_reg == DP_B || dp_reg == PCH_DP_B) dp_port = PORT_IDPB; else if (dp_reg == DP_C || dp_reg == PCH_DP_C) dp_port = PORT_IDPC; else if (dp_reg == DP_D || dp_reg == PCH_DP_D) dp_port = PORT_IDPD; ret = 0; for (i = 0; i < dev_priv->child_dev_num; i++) { p_child = dev_priv->child_dev + i; /* * If the device type is not DP, continue. */ if (p_child->device_type != DEVICE_TYPE_DP && p_child->device_type != DEVICE_TYPE_eDP) continue; /* Find the eDP port */ if (dp_reg == DP_A && p_child->device_type == DEVICE_TYPE_eDP) { ret = 1; break; } /* Find the DP port */ if (p_child->dvo_port == dp_port) { ret = 1; break; } } return ret; } void intel_dp_init(struct drm_device *dev, int output_reg) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_connector *connector; struct intel_output *intel_output; struct intel_dp_priv *dp_priv; const char *name = NULL; if (!dp_is_present_in_vbt(dev, output_reg)) { DRM_DEBUG_KMS("DP is not present. Ignore it\n"); return; } intel_output = kcalloc(sizeof(struct intel_output) + sizeof(struct intel_dp_priv), 1, GFP_KERNEL); if (!intel_output) return; dp_priv = (struct intel_dp_priv *)(intel_output + 1); connector = &intel_output->base; drm_connector_init(dev, connector, &intel_dp_connector_funcs, DRM_MODE_CONNECTOR_DisplayPort); drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); if (output_reg == DP_A) intel_output->type = INTEL_OUTPUT_EDP; else intel_output->type = INTEL_OUTPUT_DISPLAYPORT; if (output_reg == DP_B || output_reg == PCH_DP_B) intel_output->clone_mask = (1 << INTEL_DP_B_CLONE_BIT); else if (output_reg == DP_C || output_reg == PCH_DP_C) intel_output->clone_mask = (1 << INTEL_DP_C_CLONE_BIT); else if (output_reg == DP_D || output_reg == PCH_DP_D) intel_output->clone_mask = (1 << INTEL_DP_D_CLONE_BIT); if (IS_eDP(intel_output)) { intel_output->crtc_mask = (1 << 1); intel_output->clone_mask = (1 << INTEL_EDP_CLONE_BIT); } else intel_output->crtc_mask = (1 << 0) | (1 << 1); connector->interlace_allowed = true; connector->doublescan_allowed = 0; dp_priv->intel_output = intel_output; dp_priv->output_reg = output_reg; dp_priv->has_audio = false; dp_priv->dpms_mode = DRM_MODE_DPMS_ON; intel_output->dev_priv = dp_priv; drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS); drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs); drm_mode_connector_attach_encoder(&intel_output->base, &intel_output->enc); drm_sysfs_connector_add(connector); /* Set up the DDC bus. */ switch (output_reg) { case DP_A: name = "DPDDC-A"; break; case DP_B: case PCH_DP_B: name = "DPDDC-B"; break; case DP_C: case PCH_DP_C: name = "DPDDC-C"; break; case DP_D: case PCH_DP_D: name = "DPDDC-D"; break; } intel_dp_i2c_init(intel_output, name); intel_output->ddc_bus = &dp_priv->adapter; intel_output->hot_plug = intel_dp_hot_plug; if (output_reg == DP_A) { /* initialize panel mode from VBT if available for eDP */ if (dev_priv->lfp_lvds_vbt_mode) { dev_priv->panel_fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode); if (dev_priv->panel_fixed_mode) { dev_priv->panel_fixed_mode->type |= DRM_MODE_TYPE_PREFERRED; } } } /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written * 0xd. Failure to do so will result in spurious interrupts being * generated on the port when a cable is not attached. */ if (IS_G4X(dev) && !IS_GM45(dev)) { u32 temp = I915_READ(PEG_BAND_GAP_DATA); I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); } }