/* * Copyright(c) 2011-2015 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "intel_drv.h" #include "i915_vgpu.h" /** * DOC: Intel GVT-g guest support * * Intel GVT-g is a graphics virtualization technology which shares the * GPU among multiple virtual machines on a time-sharing basis. Each * virtual machine is presented a virtual GPU (vGPU), which has equivalent * features as the underlying physical GPU (pGPU), so i915 driver can run * seamlessly in a virtual machine. This file provides vGPU specific * optimizations when running in a virtual machine, to reduce the complexity * of vGPU emulation and to improve the overall performance. * * A primary function introduced here is so-called "address space ballooning" * technique. Intel GVT-g partitions global graphics memory among multiple VMs, * so each VM can directly access a portion of the memory without hypervisor's * intervention, e.g. filling textures or queuing commands. However with the * partitioning an unmodified i915 driver would assume a smaller graphics * memory starting from address ZERO, then requires vGPU emulation module to * translate the graphics address between 'guest view' and 'host view', for * all registers and command opcodes which contain a graphics memory address. * To reduce the complexity, Intel GVT-g introduces "address space ballooning", * by telling the exact partitioning knowledge to each guest i915 driver, which * then reserves and prevents non-allocated portions from allocation. Thus vGPU * emulation module only needs to scan and validate graphics addresses without * complexity of address translation. * */ /** * i915_check_vgpu - detect virtual GPU * @dev: drm device * * * This function is called at the initialization stage, to detect whether * running on a vGPU. */ void i915_check_vgpu(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); uint64_t magic; uint32_t version; BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE); if (!IS_HASWELL(dev)) return; magic = readq(dev_priv->regs + vgtif_reg(magic)); if (magic != VGT_MAGIC) return; version = INTEL_VGT_IF_VERSION_ENCODE( readw(dev_priv->regs + vgtif_reg(version_major)), readw(dev_priv->regs + vgtif_reg(version_minor))); if (version != INTEL_VGT_IF_VERSION) { DRM_INFO("VGT interface version mismatch!\n"); return; } dev_priv->vgpu.active = true; DRM_INFO("Virtual GPU for Intel GVT-g detected.\n"); }