/* * Renesas SuperH DMA Engine support * * base is drivers/dma/flsdma.c * * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com> * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved. * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * - DMA of SuperH does not have Hardware DMA chain mode. * - MAX DMA size is 16MB. * */ #include <linux/init.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/dmaengine.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/platform_device.h> #include <cpu/dma.h> #include <asm/dma-sh.h> #include "shdma.h" /* DMA descriptor control */ #define DESC_LAST (-1) #define DESC_COMP (1) #define DESC_NCOMP (0) #define NR_DESCS_PER_CHANNEL 32 /* * Define the default configuration for dual address memory-memory transfer. * The 0x400 value represents auto-request, external->external. * * And this driver set 4byte burst mode. * If you want to change mode, you need to change RS_DEFAULT of value. * (ex 1byte burst mode -> (RS_DUAL & ~TS_32) */ #define RS_DEFAULT (RS_DUAL) #define SH_DMAC_CHAN_BASE(id) (dma_base_addr[id]) static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg) { ctrl_outl(data, (SH_DMAC_CHAN_BASE(sh_dc->id) + reg)); } static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg) { return ctrl_inl((SH_DMAC_CHAN_BASE(sh_dc->id) + reg)); } static void dmae_init(struct sh_dmae_chan *sh_chan) { u32 chcr = RS_DEFAULT; /* default is DUAL mode */ sh_dmae_writel(sh_chan, chcr, CHCR); } /* * Reset DMA controller * * SH7780 has two DMAOR register */ static void sh_dmae_ctl_stop(int id) { unsigned short dmaor = dmaor_read_reg(id); dmaor &= ~(DMAOR_NMIF | DMAOR_AE); dmaor_write_reg(id, dmaor); } static int sh_dmae_rst(int id) { unsigned short dmaor; sh_dmae_ctl_stop(id); dmaor = (dmaor_read_reg(id)|DMAOR_INIT); dmaor_write_reg(id, dmaor); if ((dmaor_read_reg(id) & (DMAOR_AE | DMAOR_NMIF))) { pr_warning(KERN_ERR "dma-sh: Can't initialize DMAOR.\n"); return -EINVAL; } return 0; } static int dmae_is_idle(struct sh_dmae_chan *sh_chan) { u32 chcr = sh_dmae_readl(sh_chan, CHCR); if (chcr & CHCR_DE) { if (!(chcr & CHCR_TE)) return -EBUSY; /* working */ } return 0; /* waiting */ } static inline unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan) { u32 chcr = sh_dmae_readl(sh_chan, CHCR); return ts_shift[(chcr & CHCR_TS_MASK) >> CHCR_TS_SHIFT]; } static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs hw) { sh_dmae_writel(sh_chan, hw.sar, SAR); sh_dmae_writel(sh_chan, hw.dar, DAR); sh_dmae_writel(sh_chan, (hw.tcr >> calc_xmit_shift(sh_chan)), TCR); } static void dmae_start(struct sh_dmae_chan *sh_chan) { u32 chcr = sh_dmae_readl(sh_chan, CHCR); chcr |= (CHCR_DE|CHCR_IE); sh_dmae_writel(sh_chan, chcr, CHCR); } static void dmae_halt(struct sh_dmae_chan *sh_chan) { u32 chcr = sh_dmae_readl(sh_chan, CHCR); chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE); sh_dmae_writel(sh_chan, chcr, CHCR); } static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val) { int ret = dmae_is_idle(sh_chan); /* When DMA was working, can not set data to CHCR */ if (ret) return ret; sh_dmae_writel(sh_chan, val, CHCR); return 0; } #define DMARS1_ADDR 0x04 #define DMARS2_ADDR 0x08 #define DMARS_SHIFT 8 #define DMARS_CHAN_MSK 0x01 static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val) { u32 addr; int shift = 0; int ret = dmae_is_idle(sh_chan); if (ret) return ret; if (sh_chan->id & DMARS_CHAN_MSK) shift = DMARS_SHIFT; switch (sh_chan->id) { /* DMARS0 */ case 0: case 1: addr = SH_DMARS_BASE; break; /* DMARS1 */ case 2: case 3: addr = (SH_DMARS_BASE + DMARS1_ADDR); break; /* DMARS2 */ case 4: case 5: addr = (SH_DMARS_BASE + DMARS2_ADDR); break; default: return -EINVAL; } ctrl_outw((val << shift) | (ctrl_inw(addr) & (shift ? 0xFF00 : 0x00FF)), addr); return 0; } static dma_cookie_t sh_dmae_tx_submit(struct dma_async_tx_descriptor *tx) { struct sh_desc *desc = tx_to_sh_desc(tx); struct sh_dmae_chan *sh_chan = to_sh_chan(tx->chan); dma_cookie_t cookie; spin_lock_bh(&sh_chan->desc_lock); cookie = sh_chan->common.cookie; cookie++; if (cookie < 0) cookie = 1; /* If desc only in the case of 1 */ if (desc->async_tx.cookie != -EBUSY) desc->async_tx.cookie = cookie; sh_chan->common.cookie = desc->async_tx.cookie; list_splice_init(&desc->tx_list, sh_chan->ld_queue.prev); spin_unlock_bh(&sh_chan->desc_lock); return cookie; } static struct sh_desc *sh_dmae_get_desc(struct sh_dmae_chan *sh_chan) { struct sh_desc *desc, *_desc, *ret = NULL; spin_lock_bh(&sh_chan->desc_lock); list_for_each_entry_safe(desc, _desc, &sh_chan->ld_free, node) { if (async_tx_test_ack(&desc->async_tx)) { list_del(&desc->node); ret = desc; break; } } spin_unlock_bh(&sh_chan->desc_lock); return ret; } static void sh_dmae_put_desc(struct sh_dmae_chan *sh_chan, struct sh_desc *desc) { if (desc) { spin_lock_bh(&sh_chan->desc_lock); list_splice_init(&desc->tx_list, &sh_chan->ld_free); list_add(&desc->node, &sh_chan->ld_free); spin_unlock_bh(&sh_chan->desc_lock); } } static int sh_dmae_alloc_chan_resources(struct dma_chan *chan) { struct sh_dmae_chan *sh_chan = to_sh_chan(chan); struct sh_desc *desc; spin_lock_bh(&sh_chan->desc_lock); while (sh_chan->descs_allocated < NR_DESCS_PER_CHANNEL) { spin_unlock_bh(&sh_chan->desc_lock); desc = kzalloc(sizeof(struct sh_desc), GFP_KERNEL); if (!desc) { spin_lock_bh(&sh_chan->desc_lock); break; } dma_async_tx_descriptor_init(&desc->async_tx, &sh_chan->common); desc->async_tx.tx_submit = sh_dmae_tx_submit; desc->async_tx.flags = DMA_CTRL_ACK; INIT_LIST_HEAD(&desc->tx_list); sh_dmae_put_desc(sh_chan, desc); spin_lock_bh(&sh_chan->desc_lock); sh_chan->descs_allocated++; } spin_unlock_bh(&sh_chan->desc_lock); return sh_chan->descs_allocated; } /* * sh_dma_free_chan_resources - Free all resources of the channel. */ static void sh_dmae_free_chan_resources(struct dma_chan *chan) { struct sh_dmae_chan *sh_chan = to_sh_chan(chan); struct sh_desc *desc, *_desc; LIST_HEAD(list); BUG_ON(!list_empty(&sh_chan->ld_queue)); spin_lock_bh(&sh_chan->desc_lock); list_splice_init(&sh_chan->ld_free, &list); sh_chan->descs_allocated = 0; spin_unlock_bh(&sh_chan->desc_lock); list_for_each_entry_safe(desc, _desc, &list, node) kfree(desc); } static struct dma_async_tx_descriptor *sh_dmae_prep_memcpy( struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src, size_t len, unsigned long flags) { struct sh_dmae_chan *sh_chan; struct sh_desc *first = NULL, *prev = NULL, *new; size_t copy_size; if (!chan) return NULL; if (!len) return NULL; sh_chan = to_sh_chan(chan); do { /* Allocate the link descriptor from DMA pool */ new = sh_dmae_get_desc(sh_chan); if (!new) { dev_err(sh_chan->dev, "No free memory for link descriptor\n"); goto err_get_desc; } copy_size = min(len, (size_t)SH_DMA_TCR_MAX); new->hw.sar = dma_src; new->hw.dar = dma_dest; new->hw.tcr = copy_size; if (!first) first = new; new->mark = DESC_NCOMP; async_tx_ack(&new->async_tx); prev = new; len -= copy_size; dma_src += copy_size; dma_dest += copy_size; /* Insert the link descriptor to the LD ring */ list_add_tail(&new->node, &first->tx_list); } while (len); new->async_tx.flags = flags; /* client is in control of this ack */ new->async_tx.cookie = -EBUSY; /* Last desc */ return &first->async_tx; err_get_desc: sh_dmae_put_desc(sh_chan, first); return NULL; } /* * sh_chan_ld_cleanup - Clean up link descriptors * * This function clean up the ld_queue of DMA channel. */ static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan) { struct sh_desc *desc, *_desc; spin_lock_bh(&sh_chan->desc_lock); list_for_each_entry_safe(desc, _desc, &sh_chan->ld_queue, node) { dma_async_tx_callback callback; void *callback_param; /* non send data */ if (desc->mark == DESC_NCOMP) break; /* send data sesc */ callback = desc->async_tx.callback; callback_param = desc->async_tx.callback_param; /* Remove from ld_queue list */ list_splice_init(&desc->tx_list, &sh_chan->ld_free); dev_dbg(sh_chan->dev, "link descriptor %p will be recycle.\n", desc); list_move(&desc->node, &sh_chan->ld_free); /* Run the link descriptor callback function */ if (callback) { spin_unlock_bh(&sh_chan->desc_lock); dev_dbg(sh_chan->dev, "link descriptor %p callback\n", desc); callback(callback_param); spin_lock_bh(&sh_chan->desc_lock); } } spin_unlock_bh(&sh_chan->desc_lock); } static void sh_chan_xfer_ld_queue(struct sh_dmae_chan *sh_chan) { struct list_head *ld_node; struct sh_dmae_regs hw; /* DMA work check */ if (dmae_is_idle(sh_chan)) return; /* Find the first un-transfer desciptor */ for (ld_node = sh_chan->ld_queue.next; (ld_node != &sh_chan->ld_queue) && (to_sh_desc(ld_node)->mark == DESC_COMP); ld_node = ld_node->next) cpu_relax(); if (ld_node != &sh_chan->ld_queue) { /* Get the ld start address from ld_queue */ hw = to_sh_desc(ld_node)->hw; dmae_set_reg(sh_chan, hw); dmae_start(sh_chan); } } static void sh_dmae_memcpy_issue_pending(struct dma_chan *chan) { struct sh_dmae_chan *sh_chan = to_sh_chan(chan); sh_chan_xfer_ld_queue(sh_chan); } static enum dma_status sh_dmae_is_complete(struct dma_chan *chan, dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) { struct sh_dmae_chan *sh_chan = to_sh_chan(chan); dma_cookie_t last_used; dma_cookie_t last_complete; sh_dmae_chan_ld_cleanup(sh_chan); last_used = chan->cookie; last_complete = sh_chan->completed_cookie; if (last_complete == -EBUSY) last_complete = last_used; if (done) *done = last_complete; if (used) *used = last_used; return dma_async_is_complete(cookie, last_complete, last_used); } static irqreturn_t sh_dmae_interrupt(int irq, void *data) { irqreturn_t ret = IRQ_NONE; struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data; u32 chcr = sh_dmae_readl(sh_chan, CHCR); if (chcr & CHCR_TE) { /* DMA stop */ dmae_halt(sh_chan); ret = IRQ_HANDLED; tasklet_schedule(&sh_chan->tasklet); } return ret; } #if defined(CONFIG_CPU_SH4) static irqreturn_t sh_dmae_err(int irq, void *data) { int err = 0; struct sh_dmae_device *shdev = (struct sh_dmae_device *)data; /* IRQ Multi */ if (shdev->pdata.mode & SHDMA_MIX_IRQ) { int cnt = 0; switch (irq) { #if defined(DMTE6_IRQ) && defined(DMAE1_IRQ) case DMTE6_IRQ: cnt++; #endif case DMTE0_IRQ: if (dmaor_read_reg(cnt) & (DMAOR_NMIF | DMAOR_AE)) { disable_irq(irq); return IRQ_HANDLED; } default: return IRQ_NONE; } } else { /* reset dma controller */ err = sh_dmae_rst(0); if (err) return err; if (shdev->pdata.mode & SHDMA_DMAOR1) { err = sh_dmae_rst(1); if (err) return err; } disable_irq(irq); return IRQ_HANDLED; } } #endif static void dmae_do_tasklet(unsigned long data) { struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data; struct sh_desc *desc, *_desc, *cur_desc = NULL; u32 sar_buf = sh_dmae_readl(sh_chan, SAR); list_for_each_entry_safe(desc, _desc, &sh_chan->ld_queue, node) { if ((desc->hw.sar + desc->hw.tcr) == sar_buf) { cur_desc = desc; break; } } if (cur_desc) { switch (cur_desc->async_tx.cookie) { case 0: /* other desc data */ break; case -EBUSY: /* last desc */ sh_chan->completed_cookie = cur_desc->async_tx.cookie; break; default: /* first desc ( 0 < )*/ sh_chan->completed_cookie = cur_desc->async_tx.cookie - 1; break; } cur_desc->mark = DESC_COMP; } /* Next desc */ sh_chan_xfer_ld_queue(sh_chan); sh_dmae_chan_ld_cleanup(sh_chan); } static unsigned int get_dmae_irq(unsigned int id) { unsigned int irq = 0; if (id < ARRAY_SIZE(dmte_irq_map)) irq = dmte_irq_map[id]; return irq; } static int __devinit sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id) { int err; unsigned int irq = get_dmae_irq(id); unsigned long irqflags = IRQF_DISABLED; struct sh_dmae_chan *new_sh_chan; /* alloc channel */ new_sh_chan = kzalloc(sizeof(struct sh_dmae_chan), GFP_KERNEL); if (!new_sh_chan) { dev_err(shdev->common.dev, "No free memory for allocating " "dma channels!\n"); return -ENOMEM; } new_sh_chan->dev = shdev->common.dev; new_sh_chan->id = id; /* Init DMA tasklet */ tasklet_init(&new_sh_chan->tasklet, dmae_do_tasklet, (unsigned long)new_sh_chan); /* Init the channel */ dmae_init(new_sh_chan); spin_lock_init(&new_sh_chan->desc_lock); /* Init descripter manage list */ INIT_LIST_HEAD(&new_sh_chan->ld_queue); INIT_LIST_HEAD(&new_sh_chan->ld_free); /* copy struct dma_device */ new_sh_chan->common.device = &shdev->common; /* Add the channel to DMA device channel list */ list_add_tail(&new_sh_chan->common.device_node, &shdev->common.channels); shdev->common.chancnt++; if (shdev->pdata.mode & SHDMA_MIX_IRQ) { irqflags = IRQF_SHARED; #if defined(DMTE6_IRQ) if (irq >= DMTE6_IRQ) irq = DMTE6_IRQ; else #endif irq = DMTE0_IRQ; } snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id), "sh-dmae%d", new_sh_chan->id); /* set up channel irq */ err = request_irq(irq, &sh_dmae_interrupt, irqflags, new_sh_chan->dev_id, new_sh_chan); if (err) { dev_err(shdev->common.dev, "DMA channel %d request_irq error " "with return %d\n", id, err); goto err_no_irq; } /* CHCR register control function */ new_sh_chan->set_chcr = dmae_set_chcr; /* DMARS register control function */ new_sh_chan->set_dmars = dmae_set_dmars; shdev->chan[id] = new_sh_chan; return 0; err_no_irq: /* remove from dmaengine device node */ list_del(&new_sh_chan->common.device_node); kfree(new_sh_chan); return err; } static void sh_dmae_chan_remove(struct sh_dmae_device *shdev) { int i; for (i = shdev->common.chancnt - 1 ; i >= 0 ; i--) { if (shdev->chan[i]) { struct sh_dmae_chan *shchan = shdev->chan[i]; if (!(shdev->pdata.mode & SHDMA_MIX_IRQ)) free_irq(dmte_irq_map[i], shchan); list_del(&shchan->common.device_node); kfree(shchan); shdev->chan[i] = NULL; } } shdev->common.chancnt = 0; } static int __init sh_dmae_probe(struct platform_device *pdev) { int err = 0, cnt, ecnt; unsigned long irqflags = IRQF_DISABLED; #if defined(CONFIG_CPU_SH4) int eirq[] = { DMAE0_IRQ, #if defined(DMAE1_IRQ) DMAE1_IRQ #endif }; #endif struct sh_dmae_device *shdev; shdev = kzalloc(sizeof(struct sh_dmae_device), GFP_KERNEL); if (!shdev) { dev_err(&pdev->dev, "No enough memory\n"); err = -ENOMEM; goto shdev_err; } /* get platform data */ if (!pdev->dev.platform_data) goto shdev_err; /* platform data */ memcpy(&shdev->pdata, pdev->dev.platform_data, sizeof(struct sh_dmae_pdata)); /* reset dma controller */ err = sh_dmae_rst(0); if (err) goto rst_err; /* SH7780/85/23 has DMAOR1 */ if (shdev->pdata.mode & SHDMA_DMAOR1) { err = sh_dmae_rst(1); if (err) goto rst_err; } INIT_LIST_HEAD(&shdev->common.channels); dma_cap_set(DMA_MEMCPY, shdev->common.cap_mask); shdev->common.device_alloc_chan_resources = sh_dmae_alloc_chan_resources; shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources; shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy; shdev->common.device_is_tx_complete = sh_dmae_is_complete; shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending; shdev->common.dev = &pdev->dev; #if defined(CONFIG_CPU_SH4) /* Non Mix IRQ mode SH7722/SH7730 etc... */ if (shdev->pdata.mode & SHDMA_MIX_IRQ) { irqflags = IRQF_SHARED; eirq[0] = DMTE0_IRQ; #if defined(DMTE6_IRQ) && defined(DMAE1_IRQ) eirq[1] = DMTE6_IRQ; #endif } for (ecnt = 0 ; ecnt < ARRAY_SIZE(eirq); ecnt++) { err = request_irq(eirq[ecnt], sh_dmae_err, irqflags, "DMAC Address Error", shdev); if (err) { dev_err(&pdev->dev, "DMA device request_irq" "error (irq %d) with return %d\n", eirq[ecnt], err); goto eirq_err; } } #endif /* CONFIG_CPU_SH4 */ /* Create DMA Channel */ for (cnt = 0 ; cnt < MAX_DMA_CHANNELS ; cnt++) { err = sh_dmae_chan_probe(shdev, cnt); if (err) goto chan_probe_err; } platform_set_drvdata(pdev, shdev); dma_async_device_register(&shdev->common); return err; chan_probe_err: sh_dmae_chan_remove(shdev); eirq_err: for (ecnt-- ; ecnt >= 0; ecnt--) free_irq(eirq[ecnt], shdev); rst_err: kfree(shdev); shdev_err: return err; } static int __exit sh_dmae_remove(struct platform_device *pdev) { struct sh_dmae_device *shdev = platform_get_drvdata(pdev); dma_async_device_unregister(&shdev->common); if (shdev->pdata.mode & SHDMA_MIX_IRQ) { free_irq(DMTE0_IRQ, shdev); #if defined(DMTE6_IRQ) free_irq(DMTE6_IRQ, shdev); #endif } /* channel data remove */ sh_dmae_chan_remove(shdev); if (!(shdev->pdata.mode & SHDMA_MIX_IRQ)) { free_irq(DMAE0_IRQ, shdev); #if defined(DMAE1_IRQ) free_irq(DMAE1_IRQ, shdev); #endif } kfree(shdev); return 0; } static void sh_dmae_shutdown(struct platform_device *pdev) { struct sh_dmae_device *shdev = platform_get_drvdata(pdev); sh_dmae_ctl_stop(0); if (shdev->pdata.mode & SHDMA_DMAOR1) sh_dmae_ctl_stop(1); } static struct platform_driver sh_dmae_driver = { .remove = __exit_p(sh_dmae_remove), .shutdown = sh_dmae_shutdown, .driver = { .name = "sh-dma-engine", }, }; static int __init sh_dmae_init(void) { return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe); } module_init(sh_dmae_init); static void __exit sh_dmae_exit(void) { platform_driver_unregister(&sh_dmae_driver); } module_exit(sh_dmae_exit); MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>"); MODULE_DESCRIPTION("Renesas SH DMA Engine driver"); MODULE_LICENSE("GPL");