/* * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd. * http://www.samsung.com * * EXYNOS - CPU frequency scaling support for EXYNOS series * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kernel.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/regulator/consumer.h> #include <linux/cpufreq.h> #include <linux/suspend.h> #include <mach/cpufreq.h> #include <plat/cpu.h> static struct exynos_dvfs_info *exynos_info; static struct regulator *arm_regulator; static struct cpufreq_freqs freqs; static unsigned int locking_frequency; static bool frequency_locked; static DEFINE_MUTEX(cpufreq_lock); int exynos_verify_speed(struct cpufreq_policy *policy) { return cpufreq_frequency_table_verify(policy, exynos_info->freq_table); } unsigned int exynos_getspeed(unsigned int cpu) { return clk_get_rate(exynos_info->cpu_clk) / 1000; } static int exynos_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { unsigned int index, old_index; unsigned int arm_volt, safe_arm_volt = 0; int ret = 0; struct cpufreq_frequency_table *freq_table = exynos_info->freq_table; unsigned int *volt_table = exynos_info->volt_table; unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz; mutex_lock(&cpufreq_lock); freqs.old = policy->cur; if (frequency_locked && target_freq != locking_frequency) { ret = -EAGAIN; goto out; } /* * The policy max have been changed so that we cannot get proper * old_index with cpufreq_frequency_table_target(). Thus, ignore * policy and get the index from the raw freqeuncy table. */ for (old_index = 0; freq_table[old_index].frequency != CPUFREQ_TABLE_END; old_index++) if (freq_table[old_index].frequency == freqs.old) break; if (freq_table[old_index].frequency == CPUFREQ_TABLE_END) { ret = -EINVAL; goto out; } if (cpufreq_frequency_table_target(policy, freq_table, target_freq, relation, &index)) { ret = -EINVAL; goto out; } freqs.new = freq_table[index].frequency; freqs.cpu = policy->cpu; /* * ARM clock source will be changed APLL to MPLL temporary * To support this level, need to control regulator for * required voltage level */ if (exynos_info->need_apll_change != NULL) { if (exynos_info->need_apll_change(old_index, index) && (freq_table[index].frequency < mpll_freq_khz) && (freq_table[old_index].frequency < mpll_freq_khz)) safe_arm_volt = volt_table[exynos_info->pll_safe_idx]; } arm_volt = volt_table[index]; cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); /* When the new frequency is higher than current frequency */ if ((freqs.new > freqs.old) && !safe_arm_volt) { /* Firstly, voltage up to increase frequency */ regulator_set_voltage(arm_regulator, arm_volt, arm_volt); } if (safe_arm_volt) regulator_set_voltage(arm_regulator, safe_arm_volt, safe_arm_volt); if (freqs.new != freqs.old) exynos_info->set_freq(old_index, index); cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); /* When the new frequency is lower than current frequency */ if ((freqs.new < freqs.old) || ((freqs.new > freqs.old) && safe_arm_volt)) { /* down the voltage after frequency change */ regulator_set_voltage(arm_regulator, arm_volt, arm_volt); } out: mutex_unlock(&cpufreq_lock); return ret; } #ifdef CONFIG_PM static int exynos_cpufreq_suspend(struct cpufreq_policy *policy) { return 0; } static int exynos_cpufreq_resume(struct cpufreq_policy *policy) { return 0; } #endif /** * exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume * context * @notifier * @pm_event * @v * * While frequency_locked == true, target() ignores every frequency but * locking_frequency. The locking_frequency value is the initial frequency, * which is set by the bootloader. In order to eliminate possible * inconsistency in clock values, we save and restore frequencies during * suspend and resume and block CPUFREQ activities. Note that the standard * suspend/resume cannot be used as they are too deep (syscore_ops) for * regulator actions. */ static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier, unsigned long pm_event, void *v) { struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */ static unsigned int saved_frequency; unsigned int temp; mutex_lock(&cpufreq_lock); switch (pm_event) { case PM_SUSPEND_PREPARE: if (frequency_locked) goto out; frequency_locked = true; if (locking_frequency) { saved_frequency = exynos_getspeed(0); mutex_unlock(&cpufreq_lock); exynos_target(policy, locking_frequency, CPUFREQ_RELATION_H); mutex_lock(&cpufreq_lock); } break; case PM_POST_SUSPEND: if (saved_frequency) { /* * While frequency_locked, only locking_frequency * is valid for target(). In order to use * saved_frequency while keeping frequency_locked, * we temporarly overwrite locking_frequency. */ temp = locking_frequency; locking_frequency = saved_frequency; mutex_unlock(&cpufreq_lock); exynos_target(policy, locking_frequency, CPUFREQ_RELATION_H); mutex_lock(&cpufreq_lock); locking_frequency = temp; } frequency_locked = false; break; } out: mutex_unlock(&cpufreq_lock); return NOTIFY_OK; } static struct notifier_block exynos_cpufreq_nb = { .notifier_call = exynos_cpufreq_pm_notifier, }; static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy) { policy->cur = policy->min = policy->max = exynos_getspeed(policy->cpu); cpufreq_frequency_table_get_attr(exynos_info->freq_table, policy->cpu); locking_frequency = exynos_getspeed(0); /* set the transition latency value */ policy->cpuinfo.transition_latency = 100000; /* * EXYNOS4 multi-core processors has 2 cores * that the frequency cannot be set independently. * Each cpu is bound to the same speed. * So the affected cpu is all of the cpus. */ if (num_online_cpus() == 1) { cpumask_copy(policy->related_cpus, cpu_possible_mask); cpumask_copy(policy->cpus, cpu_online_mask); } else { cpumask_setall(policy->cpus); } return cpufreq_frequency_table_cpuinfo(policy, exynos_info->freq_table); } static struct cpufreq_driver exynos_driver = { .flags = CPUFREQ_STICKY, .verify = exynos_verify_speed, .target = exynos_target, .get = exynos_getspeed, .init = exynos_cpufreq_cpu_init, .name = "exynos_cpufreq", #ifdef CONFIG_PM .suspend = exynos_cpufreq_suspend, .resume = exynos_cpufreq_resume, #endif }; static int __init exynos_cpufreq_init(void) { int ret = -EINVAL; exynos_info = kzalloc(sizeof(struct exynos_dvfs_info), GFP_KERNEL); if (!exynos_info) return -ENOMEM; if (soc_is_exynos4210()) ret = exynos4210_cpufreq_init(exynos_info); else if (soc_is_exynos4212() || soc_is_exynos4412()) ret = exynos4x12_cpufreq_init(exynos_info); else if (soc_is_exynos5250()) ret = exynos5250_cpufreq_init(exynos_info); else pr_err("%s: CPU type not found\n", __func__); if (ret) goto err_vdd_arm; if (exynos_info->set_freq == NULL) { pr_err("%s: No set_freq function (ERR)\n", __func__); goto err_vdd_arm; } arm_regulator = regulator_get(NULL, "vdd_arm"); if (IS_ERR(arm_regulator)) { pr_err("%s: failed to get resource vdd_arm\n", __func__); goto err_vdd_arm; } register_pm_notifier(&exynos_cpufreq_nb); if (cpufreq_register_driver(&exynos_driver)) { pr_err("%s: failed to register cpufreq driver\n", __func__); goto err_cpufreq; } return 0; err_cpufreq: unregister_pm_notifier(&exynos_cpufreq_nb); if (!IS_ERR(arm_regulator)) regulator_put(arm_regulator); err_vdd_arm: kfree(exynos_info); pr_debug("%s: failed initialization\n", __func__); return -EINVAL; } late_initcall(exynos_cpufreq_init);