/* ** ----------------------------------------------------------------------------- ** ** Perle Specialix driver for Linux ** Ported from existing RIO Driver for SCO sources. * * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ** ** Module : rioparam.c ** SID : 1.3 ** Last Modified : 11/6/98 10:33:45 ** Retrieved : 11/6/98 10:33:50 ** ** ident @(#)rioparam.c 1.3 ** ** ----------------------------------------------------------------------------- */ #ifdef SCCS_LABELS static char *_rioparam_c_sccs_ = "@(#)rioparam.c 1.3"; #endif #include <linux/module.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/tty.h> #include <asm/io.h> #include <asm/system.h> #include <asm/string.h> #include <asm/semaphore.h> #include <asm/uaccess.h> #include <linux/termios.h> #include <linux/serial.h> #include <linux/generic_serial.h> #include "linux_compat.h" #include "rio_linux.h" #include "pkt.h" #include "daemon.h" #include "rio.h" #include "riospace.h" #include "cmdpkt.h" #include "map.h" #include "rup.h" #include "port.h" #include "riodrvr.h" #include "rioinfo.h" #include "func.h" #include "errors.h" #include "pci.h" #include "parmmap.h" #include "unixrup.h" #include "board.h" #include "host.h" #include "phb.h" #include "link.h" #include "cmdblk.h" #include "route.h" #include "cirrus.h" #include "rioioctl.h" #include "param.h" /* ** The Scam, based on email from jeremyr@bugs.specialix.co.uk.... ** ** To send a command on a particular port, you put a packet with the ** command bit set onto the port. The command bit is in the len field, ** and gets ORed in with the actual byte count. ** ** When you send a packet with the command bit set, then the first ** data byte ( data[0] ) is interpretted as the command to execute. ** It also governs what data structure overlay should accompany the packet. ** Commands are defined in cirrus/cirrus.h ** ** If you want the command to pre-emt data already on the queue for the ** port, set the pre-emptive bit in conjunction with the command bit. ** It is not defined what will happen if you set the preemptive bit ** on a packet that is NOT a command. ** ** Pre-emptive commands should be queued at the head of the queue using ** add_start(), whereas normal commands and data are enqueued using ** add_end(). ** ** Most commands do not use the remaining bytes in the data array. The ** exceptions are OPEN MOPEN and CONFIG. (NB. As with the SI CONFIG and ** OPEN are currently analagous). With these three commands the following ** 11 data bytes are all used to pass config information such as baud rate etc. ** The fields are also defined in cirrus.h. Some contain straightforward ** information such as the transmit XON character. Two contain the transmit and ** receive baud rates respectively. For most baud rates there is a direct ** mapping between the rates defined in <sys/termio.h> and the byte in the ** packet. There are additional (non UNIX-standard) rates defined in ** /u/dos/rio/cirrus/h/brates.h. ** ** The rest of the data fields contain approximations to the Cirrus registers ** that are used to program number of bits etc. Each registers bit fields is ** defined in cirrus.h. ** ** NB. Only use those bits that are defined as being driver specific ** or common to the RTA and the driver. ** ** All commands going from RTA->Host will be dealt with by the Host code - you ** will never see them. As with the SI there will be three fields to look out ** for in each phb (not yet defined - needs defining a.s.a.p). ** ** modem_status - current state of handshake pins. ** ** port_status - current port status - equivalent to hi_stat for SI, indicates ** if port is IDLE_OPEN, IDLE_CLOSED etc. ** ** break_status - bit X set if break has been received. ** ** Happy hacking. ** */ /* ** RIOParam is used to open or configure a port. You pass it a PortP, ** which will have a tty struct attached to it. You also pass a command, ** either OPEN or CONFIG. The port's setup is taken from the t_ fields ** of the tty struct inside the PortP, and the port is either opened ** or re-configured. You must also tell RIOParam if the device is a modem ** device or not (i.e. top bit of minor number set or clear - take special ** care when deciding on this!). ** RIOParam neither flushes nor waits for drain, and is NOT preemptive. ** ** RIOParam assumes it will be called at splrio(), and also assumes ** that CookMode is set correctly in the port structure. ** ** NB. for MPX ** tty lock must NOT have been previously acquired. */ int RIOParam(struct Port *PortP, int cmd, int Modem, int SleepFlag) { struct tty_struct *TtyP; int retval; struct phb_param __iomem *phb_param_ptr; struct PKT __iomem *PacketP; int res; u8 Cor1 = 0, Cor2 = 0, Cor4 = 0, Cor5 = 0; u8 TxXon = 0, TxXoff = 0, RxXon = 0, RxXoff = 0; u8 LNext = 0, TxBaud = 0, RxBaud = 0; int retries = 0xff; unsigned long flags; func_enter(); TtyP = PortP->gs.tty; rio_dprintk(RIO_DEBUG_PARAM, "RIOParam: Port:%d cmd:%d Modem:%d SleepFlag:%d Mapped: %d, tty=%p\n", PortP->PortNum, cmd, Modem, SleepFlag, PortP->Mapped, TtyP); if (!TtyP) { rio_dprintk(RIO_DEBUG_PARAM, "Can't call rioparam with null tty.\n"); func_exit(); return RIO_FAIL; } rio_spin_lock_irqsave(&PortP->portSem, flags); if (cmd == OPEN) { /* ** If the port is set to store or lock the parameters, and it is ** paramed with OPEN, we want to restore the saved port termio, but ** only if StoredTermio has been saved, i.e. NOT 1st open after reboot. */ } /* ** wait for space */ while (!(res = can_add_transmit(&PacketP, PortP)) || (PortP->InUse != NOT_INUSE)) { if (retries-- <= 0) { break; } if (PortP->InUse != NOT_INUSE) { rio_dprintk(RIO_DEBUG_PARAM, "Port IN_USE for pre-emptive command\n"); } if (!res) { rio_dprintk(RIO_DEBUG_PARAM, "Port has no space on transmit queue\n"); } if (SleepFlag != OK_TO_SLEEP) { rio_spin_unlock_irqrestore(&PortP->portSem, flags); func_exit(); return RIO_FAIL; } rio_dprintk(RIO_DEBUG_PARAM, "wait for can_add_transmit\n"); rio_spin_unlock_irqrestore(&PortP->portSem, flags); retval = RIODelay(PortP, HUNDRED_MS); rio_spin_lock_irqsave(&PortP->portSem, flags); if (retval == RIO_FAIL) { rio_dprintk(RIO_DEBUG_PARAM, "wait for can_add_transmit broken by signal\n"); rio_spin_unlock_irqrestore(&PortP->portSem, flags); func_exit(); return -EINTR; } if (PortP->State & RIO_DELETED) { rio_spin_unlock_irqrestore(&PortP->portSem, flags); func_exit(); return 0; } } if (!res) { rio_spin_unlock_irqrestore(&PortP->portSem, flags); func_exit(); return RIO_FAIL; } rio_dprintk(RIO_DEBUG_PARAM, "can_add_transmit() returns %x\n", res); rio_dprintk(RIO_DEBUG_PARAM, "Packet is %p\n", PacketP); phb_param_ptr = (struct phb_param __iomem *) PacketP->data; switch (TtyP->termios->c_cflag & CSIZE) { case CS5: { rio_dprintk(RIO_DEBUG_PARAM, "5 bit data\n"); Cor1 |= COR1_5BITS; break; } case CS6: { rio_dprintk(RIO_DEBUG_PARAM, "6 bit data\n"); Cor1 |= COR1_6BITS; break; } case CS7: { rio_dprintk(RIO_DEBUG_PARAM, "7 bit data\n"); Cor1 |= COR1_7BITS; break; } case CS8: { rio_dprintk(RIO_DEBUG_PARAM, "8 bit data\n"); Cor1 |= COR1_8BITS; break; } } if (TtyP->termios->c_cflag & CSTOPB) { rio_dprintk(RIO_DEBUG_PARAM, "2 stop bits\n"); Cor1 |= COR1_2STOP; } else { rio_dprintk(RIO_DEBUG_PARAM, "1 stop bit\n"); Cor1 |= COR1_1STOP; } if (TtyP->termios->c_cflag & PARENB) { rio_dprintk(RIO_DEBUG_PARAM, "Enable parity\n"); Cor1 |= COR1_NORMAL; } else { rio_dprintk(RIO_DEBUG_PARAM, "Disable parity\n"); Cor1 |= COR1_NOP; } if (TtyP->termios->c_cflag & PARODD) { rio_dprintk(RIO_DEBUG_PARAM, "Odd parity\n"); Cor1 |= COR1_ODD; } else { rio_dprintk(RIO_DEBUG_PARAM, "Even parity\n"); Cor1 |= COR1_EVEN; } /* ** COR 2 */ if (TtyP->termios->c_iflag & IXON) { rio_dprintk(RIO_DEBUG_PARAM, "Enable start/stop output control\n"); Cor2 |= COR2_IXON; } else { if (PortP->Config & RIO_IXON) { rio_dprintk(RIO_DEBUG_PARAM, "Force enable start/stop output control\n"); Cor2 |= COR2_IXON; } else rio_dprintk(RIO_DEBUG_PARAM, "IXON has been disabled.\n"); } if (TtyP->termios->c_iflag & IXANY) { if (PortP->Config & RIO_IXANY) { rio_dprintk(RIO_DEBUG_PARAM, "Enable any key to restart output\n"); Cor2 |= COR2_IXANY; } else rio_dprintk(RIO_DEBUG_PARAM, "IXANY has been disabled due to sanity reasons.\n"); } if (TtyP->termios->c_iflag & IXOFF) { rio_dprintk(RIO_DEBUG_PARAM, "Enable start/stop input control 2\n"); Cor2 |= COR2_IXOFF; } if (TtyP->termios->c_cflag & HUPCL) { rio_dprintk(RIO_DEBUG_PARAM, "Hangup on last close\n"); Cor2 |= COR2_HUPCL; } if (C_CRTSCTS(TtyP)) { rio_dprintk(RIO_DEBUG_PARAM, "Rx hardware flow control enabled\n"); Cor2 |= COR2_CTSFLOW; Cor2 |= COR2_RTSFLOW; } else { rio_dprintk(RIO_DEBUG_PARAM, "Rx hardware flow control disabled\n"); Cor2 &= ~COR2_CTSFLOW; Cor2 &= ~COR2_RTSFLOW; } if (TtyP->termios->c_cflag & CLOCAL) { rio_dprintk(RIO_DEBUG_PARAM, "Local line\n"); } else { rio_dprintk(RIO_DEBUG_PARAM, "Possible Modem line\n"); } /* ** COR 4 (there is no COR 3) */ if (TtyP->termios->c_iflag & IGNBRK) { rio_dprintk(RIO_DEBUG_PARAM, "Ignore break condition\n"); Cor4 |= COR4_IGNBRK; } if (!(TtyP->termios->c_iflag & BRKINT)) { rio_dprintk(RIO_DEBUG_PARAM, "Break generates NULL condition\n"); Cor4 |= COR4_NBRKINT; } else { rio_dprintk(RIO_DEBUG_PARAM, "Interrupt on break condition\n"); } if (TtyP->termios->c_iflag & INLCR) { rio_dprintk(RIO_DEBUG_PARAM, "Map newline to carriage return on input\n"); Cor4 |= COR4_INLCR; } if (TtyP->termios->c_iflag & IGNCR) { rio_dprintk(RIO_DEBUG_PARAM, "Ignore carriage return on input\n"); Cor4 |= COR4_IGNCR; } if (TtyP->termios->c_iflag & ICRNL) { rio_dprintk(RIO_DEBUG_PARAM, "Map carriage return to newline on input\n"); Cor4 |= COR4_ICRNL; } if (TtyP->termios->c_iflag & IGNPAR) { rio_dprintk(RIO_DEBUG_PARAM, "Ignore characters with parity errors\n"); Cor4 |= COR4_IGNPAR; } if (TtyP->termios->c_iflag & PARMRK) { rio_dprintk(RIO_DEBUG_PARAM, "Mark parity errors\n"); Cor4 |= COR4_PARMRK; } /* ** Set the RAISEMOD flag to ensure that the modem lines are raised ** on reception of a config packet. ** The download code handles the zero baud condition. */ Cor4 |= COR4_RAISEMOD; /* ** COR 5 */ Cor5 = COR5_CMOE; /* ** Set to monitor tbusy/tstop (or not). */ if (PortP->MonitorTstate) Cor5 |= COR5_TSTATE_ON; else Cor5 |= COR5_TSTATE_OFF; /* ** Could set LNE here if you wanted LNext processing. SVR4 will use it. */ if (TtyP->termios->c_iflag & ISTRIP) { rio_dprintk(RIO_DEBUG_PARAM, "Strip input characters\n"); if (!(PortP->State & RIO_TRIAD_MODE)) { Cor5 |= COR5_ISTRIP; } } if (TtyP->termios->c_oflag & ONLCR) { rio_dprintk(RIO_DEBUG_PARAM, "Map newline to carriage-return, newline on output\n"); if (PortP->CookMode == COOK_MEDIUM) Cor5 |= COR5_ONLCR; } if (TtyP->termios->c_oflag & OCRNL) { rio_dprintk(RIO_DEBUG_PARAM, "Map carriage return to newline on output\n"); if (PortP->CookMode == COOK_MEDIUM) Cor5 |= COR5_OCRNL; } if ((TtyP->termios->c_oflag & TABDLY) == TAB3) { rio_dprintk(RIO_DEBUG_PARAM, "Tab delay 3 set\n"); if (PortP->CookMode == COOK_MEDIUM) Cor5 |= COR5_TAB3; } /* ** Flow control bytes. */ TxXon = TtyP->termios->c_cc[VSTART]; TxXoff = TtyP->termios->c_cc[VSTOP]; RxXon = TtyP->termios->c_cc[VSTART]; RxXoff = TtyP->termios->c_cc[VSTOP]; /* ** LNEXT byte */ LNext = 0; /* ** Baud rate bytes */ rio_dprintk(RIO_DEBUG_PARAM, "Mapping of rx/tx baud %x (%x)\n", TtyP->termios->c_cflag, CBAUD); switch (TtyP->termios->c_cflag & CBAUD) { #define e(b) case B ## b : RxBaud = TxBaud = RIO_B ## b ;break e(50); e(75); e(110); e(134); e(150); e(200); e(300); e(600); e(1200); e(1800); e(2400); e(4800); e(9600); e(19200); e(38400); e(57600); e(115200); /* e(230400);e(460800); e(921600); */ } rio_dprintk(RIO_DEBUG_PARAM, "tx baud 0x%x, rx baud 0x%x\n", TxBaud, RxBaud); /* ** Leftovers */ if (TtyP->termios->c_cflag & CREAD) rio_dprintk(RIO_DEBUG_PARAM, "Enable receiver\n"); #ifdef RCV1EN if (TtyP->termios->c_cflag & RCV1EN) rio_dprintk(RIO_DEBUG_PARAM, "RCV1EN (?)\n"); #endif #ifdef XMT1EN if (TtyP->termios->c_cflag & XMT1EN) rio_dprintk(RIO_DEBUG_PARAM, "XMT1EN (?)\n"); #endif if (TtyP->termios->c_lflag & ISIG) rio_dprintk(RIO_DEBUG_PARAM, "Input character signal generating enabled\n"); if (TtyP->termios->c_lflag & ICANON) rio_dprintk(RIO_DEBUG_PARAM, "Canonical input: erase and kill enabled\n"); if (TtyP->termios->c_lflag & XCASE) rio_dprintk(RIO_DEBUG_PARAM, "Canonical upper/lower presentation\n"); if (TtyP->termios->c_lflag & ECHO) rio_dprintk(RIO_DEBUG_PARAM, "Enable input echo\n"); if (TtyP->termios->c_lflag & ECHOE) rio_dprintk(RIO_DEBUG_PARAM, "Enable echo erase\n"); if (TtyP->termios->c_lflag & ECHOK) rio_dprintk(RIO_DEBUG_PARAM, "Enable echo kill\n"); if (TtyP->termios->c_lflag & ECHONL) rio_dprintk(RIO_DEBUG_PARAM, "Enable echo newline\n"); if (TtyP->termios->c_lflag & NOFLSH) rio_dprintk(RIO_DEBUG_PARAM, "Disable flush after interrupt or quit\n"); #ifdef TOSTOP if (TtyP->termios->c_lflag & TOSTOP) rio_dprintk(RIO_DEBUG_PARAM, "Send SIGTTOU for background output\n"); #endif #ifdef XCLUDE if (TtyP->termios->c_lflag & XCLUDE) rio_dprintk(RIO_DEBUG_PARAM, "Exclusive use of this line\n"); #endif if (TtyP->termios->c_iflag & IUCLC) rio_dprintk(RIO_DEBUG_PARAM, "Map uppercase to lowercase on input\n"); if (TtyP->termios->c_oflag & OPOST) rio_dprintk(RIO_DEBUG_PARAM, "Enable output post-processing\n"); if (TtyP->termios->c_oflag & OLCUC) rio_dprintk(RIO_DEBUG_PARAM, "Map lowercase to uppercase on output\n"); if (TtyP->termios->c_oflag & ONOCR) rio_dprintk(RIO_DEBUG_PARAM, "No carriage return output at column 0\n"); if (TtyP->termios->c_oflag & ONLRET) rio_dprintk(RIO_DEBUG_PARAM, "Newline performs carriage return function\n"); if (TtyP->termios->c_oflag & OFILL) rio_dprintk(RIO_DEBUG_PARAM, "Use fill characters for delay\n"); if (TtyP->termios->c_oflag & OFDEL) rio_dprintk(RIO_DEBUG_PARAM, "Fill character is DEL\n"); if (TtyP->termios->c_oflag & NLDLY) rio_dprintk(RIO_DEBUG_PARAM, "Newline delay set\n"); if (TtyP->termios->c_oflag & CRDLY) rio_dprintk(RIO_DEBUG_PARAM, "Carriage return delay set\n"); if (TtyP->termios->c_oflag & TABDLY) rio_dprintk(RIO_DEBUG_PARAM, "Tab delay set\n"); /* ** These things are kind of useful in a later life! */ PortP->Cor2Copy = Cor2; if (PortP->State & RIO_DELETED) { rio_spin_unlock_irqrestore(&PortP->portSem, flags); func_exit(); return RIO_FAIL; } /* ** Actually write the info into the packet to be sent */ writeb(cmd, &phb_param_ptr->Cmd); writeb(Cor1, &phb_param_ptr->Cor1); writeb(Cor2, &phb_param_ptr->Cor2); writeb(Cor4, &phb_param_ptr->Cor4); writeb(Cor5, &phb_param_ptr->Cor5); writeb(TxXon, &phb_param_ptr->TxXon); writeb(RxXon, &phb_param_ptr->RxXon); writeb(TxXoff, &phb_param_ptr->TxXoff); writeb(RxXoff, &phb_param_ptr->RxXoff); writeb(LNext, &phb_param_ptr->LNext); writeb(TxBaud, &phb_param_ptr->TxBaud); writeb(RxBaud, &phb_param_ptr->RxBaud); /* ** Set the length/command field */ writeb(12 | PKT_CMD_BIT, &PacketP->len); /* ** The packet is formed - now, whack it off ** to its final destination: */ add_transmit(PortP); /* ** Count characters transmitted for port statistics reporting */ if (PortP->statsGather) PortP->txchars += 12; rio_spin_unlock_irqrestore(&PortP->portSem, flags); rio_dprintk(RIO_DEBUG_PARAM, "add_transmit returned.\n"); /* ** job done. */ func_exit(); return 0; } /* ** We can add another packet to a transmit queue if the packet pointer pointed ** to by the TxAdd pointer has PKT_IN_USE clear in its address. */ int can_add_transmit(struct PKT __iomem **PktP, struct Port *PortP) { struct PKT __iomem *tp; *PktP = tp = (struct PKT __iomem *) RIO_PTR(PortP->Caddr, readw(PortP->TxAdd)); return !((unsigned long) tp & PKT_IN_USE); } /* ** To add a packet to the queue, you set the PKT_IN_USE bit in the address, ** and then move the TxAdd pointer along one position to point to the next ** packet pointer. You must wrap the pointer from the end back to the start. */ void add_transmit(struct Port *PortP) { if (readw(PortP->TxAdd) & PKT_IN_USE) { rio_dprintk(RIO_DEBUG_PARAM, "add_transmit: Packet has been stolen!"); } writew(readw(PortP->TxAdd) | PKT_IN_USE, PortP->TxAdd); PortP->TxAdd = (PortP->TxAdd == PortP->TxEnd) ? PortP->TxStart : PortP->TxAdd + 1; writew(RIO_OFF(PortP->Caddr, PortP->TxAdd), &PortP->PhbP->tx_add); } /**************************************** * Put a packet onto the end of the * free list ****************************************/ void put_free_end(struct Host *HostP, struct PKT __iomem *PktP) { struct rio_free_list __iomem *tmp_pointer; unsigned short old_end, new_end; unsigned long flags; rio_spin_lock_irqsave(&HostP->HostLock, flags); /************************************************* * Put a packet back onto the back of the free list * ************************************************/ rio_dprintk(RIO_DEBUG_PFE, "put_free_end(PktP=%p)\n", PktP); if ((old_end = readw(&HostP->ParmMapP->free_list_end)) != TPNULL) { new_end = RIO_OFF(HostP->Caddr, PktP); tmp_pointer = (struct rio_free_list __iomem *) RIO_PTR(HostP->Caddr, old_end); writew(new_end, &tmp_pointer->next); writew(old_end, &((struct rio_free_list __iomem *) PktP)->prev); writew(TPNULL, &((struct rio_free_list __iomem *) PktP)->next); writew(new_end, &HostP->ParmMapP->free_list_end); } else { /* First packet on the free list this should never happen! */ rio_dprintk(RIO_DEBUG_PFE, "put_free_end(): This should never happen\n"); writew(RIO_OFF(HostP->Caddr, PktP), &HostP->ParmMapP->free_list_end); tmp_pointer = (struct rio_free_list __iomem *) PktP; writew(TPNULL, &tmp_pointer->prev); writew(TPNULL, &tmp_pointer->next); } rio_dprintk(RIO_DEBUG_CMD, "Before unlock: %p\n", &HostP->HostLock); rio_spin_unlock_irqrestore(&HostP->HostLock, flags); } /* ** can_remove_receive(PktP,P) returns non-zero if PKT_IN_USE is set ** for the next packet on the queue. It will also set PktP to point to the ** relevant packet, [having cleared the PKT_IN_USE bit]. If PKT_IN_USE is clear, ** then can_remove_receive() returns 0. */ int can_remove_receive(struct PKT __iomem **PktP, struct Port *PortP) { if (readw(PortP->RxRemove) & PKT_IN_USE) { *PktP = (struct PKT __iomem *) RIO_PTR(PortP->Caddr, readw(PortP->RxRemove) & ~PKT_IN_USE); return 1; } return 0; } /* ** To remove a packet from the receive queue you clear its PKT_IN_USE bit, ** and then bump the pointers. Once the pointers get to the end, they must ** be wrapped back to the start. */ void remove_receive(struct Port *PortP) { writew(readw(PortP->RxRemove) & ~PKT_IN_USE, PortP->RxRemove); PortP->RxRemove = (PortP->RxRemove == PortP->RxEnd) ? PortP->RxStart : PortP->RxRemove + 1; writew(RIO_OFF(PortP->Caddr, PortP->RxRemove), &PortP->PhbP->rx_remove); }