/* * ipmi_ssif.c * * The interface to the IPMI driver for SMBus access to a SMBus * compliant device. Called SSIF by the IPMI spec. * * Author: Intel Corporation * Todd Davis * * Rewritten by Corey Minyard to support the * non-blocking I2C interface, add support for multi-part * transactions, add PEC support, and general clenaup. * * Copyright 2003 Intel Corporation * Copyright 2005 MontaVista Software * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ /* * This file holds the "policy" for the interface to the SSIF state * machine. It does the configuration, handles timers and interrupts, * and drives the real SSIF state machine. */ /* * TODO: Figure out how to use SMB alerts. This will require a new * interface into the I2C driver, I believe. */ #if defined(MODVERSIONS) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PFX "ipmi_ssif: " #define DEVICE_NAME "ipmi_ssif" #define IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD 0x57 #define SSIF_IPMI_REQUEST 2 #define SSIF_IPMI_MULTI_PART_REQUEST_START 6 #define SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE 7 #define SSIF_IPMI_RESPONSE 3 #define SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE 9 /* ssif_debug is a bit-field * SSIF_DEBUG_MSG - commands and their responses * SSIF_DEBUG_STATES - message states * SSIF_DEBUG_TIMING - Measure times between events in the driver */ #define SSIF_DEBUG_TIMING 4 #define SSIF_DEBUG_STATE 2 #define SSIF_DEBUG_MSG 1 #define SSIF_NODEBUG 0 #define SSIF_DEFAULT_DEBUG (SSIF_NODEBUG) /* * Timer values */ #define SSIF_MSG_USEC 20000 /* 20ms between message tries. */ #define SSIF_MSG_PART_USEC 5000 /* 5ms for a message part */ /* How many times to we retry sending/receiving the message. */ #define SSIF_SEND_RETRIES 5 #define SSIF_RECV_RETRIES 250 #define SSIF_MSG_MSEC (SSIF_MSG_USEC / 1000) #define SSIF_MSG_JIFFIES ((SSIF_MSG_USEC * 1000) / TICK_NSEC) #define SSIF_MSG_PART_JIFFIES ((SSIF_MSG_PART_USEC * 1000) / TICK_NSEC) enum ssif_intf_state { SSIF_NORMAL, SSIF_GETTING_FLAGS, SSIF_GETTING_EVENTS, SSIF_CLEARING_FLAGS, SSIF_GETTING_MESSAGES, /* FIXME - add watchdog stuff. */ }; #define SSIF_IDLE(ssif) ((ssif)->ssif_state == SSIF_NORMAL \ && (ssif)->curr_msg == NULL) /* * Indexes into stats[] in ssif_info below. */ enum ssif_stat_indexes { /* Number of total messages sent. */ SSIF_STAT_sent_messages = 0, /* * Number of message parts sent. Messages may be broken into * parts if they are long. */ SSIF_STAT_sent_messages_parts, /* * Number of time a message was retried. */ SSIF_STAT_send_retries, /* * Number of times the send of a message failed. */ SSIF_STAT_send_errors, /* * Number of message responses received. */ SSIF_STAT_received_messages, /* * Number of message fragments received. */ SSIF_STAT_received_message_parts, /* * Number of times the receive of a message was retried. */ SSIF_STAT_receive_retries, /* * Number of errors receiving messages. */ SSIF_STAT_receive_errors, /* * Number of times a flag fetch was requested. */ SSIF_STAT_flag_fetches, /* * Number of times the hardware didn't follow the state machine. */ SSIF_STAT_hosed, /* * Number of received events. */ SSIF_STAT_events, /* Number of asyncronous messages received. */ SSIF_STAT_incoming_messages, /* Number of watchdog pretimeouts. */ SSIF_STAT_watchdog_pretimeouts, /* Always add statistics before this value, it must be last. */ SSIF_NUM_STATS }; struct ssif_addr_info { unsigned short addr; struct i2c_board_info binfo; char *adapter_name; int debug; int slave_addr; enum ipmi_addr_src addr_src; union ipmi_smi_info_union addr_info; struct mutex clients_mutex; struct list_head clients; struct list_head link; }; struct ssif_info; typedef void (*ssif_i2c_done)(struct ssif_info *ssif_info, int result, unsigned char *data, unsigned int len); struct ssif_info { ipmi_smi_t intf; int intf_num; spinlock_t lock; struct ipmi_smi_msg *waiting_msg; struct ipmi_smi_msg *curr_msg; enum ssif_intf_state ssif_state; unsigned long ssif_debug; struct ipmi_smi_handlers handlers; enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ union ipmi_smi_info_union addr_info; /* * Flags from the last GET_MSG_FLAGS command, used when an ATTN * is set to hold the flags until we are done handling everything * from the flags. */ #define RECEIVE_MSG_AVAIL 0x01 #define EVENT_MSG_BUFFER_FULL 0x02 #define WDT_PRE_TIMEOUT_INT 0x08 unsigned char msg_flags; bool has_event_buffer; /* * If set to true, this will request events the next time the * state machine is idle. */ bool req_events; /* * If set to true, this will request flags the next time the * state machine is idle. */ bool req_flags; /* * Used to perform timer operations when run-to-completion * mode is on. This is a countdown timer. */ int rtc_us_timer; /* Used for sending/receiving data. +1 for the length. */ unsigned char data[IPMI_MAX_MSG_LENGTH + 1]; unsigned int data_len; /* Temp receive buffer, gets copied into data. */ unsigned char recv[I2C_SMBUS_BLOCK_MAX]; struct i2c_client *client; ssif_i2c_done done_handler; /* Thread interface handling */ struct task_struct *thread; struct completion wake_thread; bool stopping; int i2c_read_write; int i2c_command; unsigned char *i2c_data; unsigned int i2c_size; /* From the device id response. */ struct ipmi_device_id device_id; struct timer_list retry_timer; int retries_left; /* Info from SSIF cmd */ unsigned char max_xmit_msg_size; unsigned char max_recv_msg_size; unsigned int multi_support; int supports_pec; #define SSIF_NO_MULTI 0 #define SSIF_MULTI_2_PART 1 #define SSIF_MULTI_n_PART 2 unsigned char *multi_data; unsigned int multi_len; unsigned int multi_pos; atomic_t stats[SSIF_NUM_STATS]; }; #define ssif_inc_stat(ssif, stat) \ atomic_inc(&(ssif)->stats[SSIF_STAT_ ## stat]) #define ssif_get_stat(ssif, stat) \ ((unsigned int) atomic_read(&(ssif)->stats[SSIF_STAT_ ## stat])) static bool initialized; static atomic_t next_intf = ATOMIC_INIT(0); static void return_hosed_msg(struct ssif_info *ssif_info, struct ipmi_smi_msg *msg); static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags); static int start_send(struct ssif_info *ssif_info, unsigned char *data, unsigned int len); static unsigned long *ipmi_ssif_lock_cond(struct ssif_info *ssif_info, unsigned long *flags) { spin_lock_irqsave(&ssif_info->lock, *flags); return flags; } static void ipmi_ssif_unlock_cond(struct ssif_info *ssif_info, unsigned long *flags) { spin_unlock_irqrestore(&ssif_info->lock, *flags); } static void deliver_recv_msg(struct ssif_info *ssif_info, struct ipmi_smi_msg *msg) { ipmi_smi_t intf = ssif_info->intf; if (!intf) { ipmi_free_smi_msg(msg); } else if (msg->rsp_size < 0) { return_hosed_msg(ssif_info, msg); pr_err(PFX "Malformed message in deliver_recv_msg: rsp_size = %d\n", msg->rsp_size); } else { ipmi_smi_msg_received(intf, msg); } } static void return_hosed_msg(struct ssif_info *ssif_info, struct ipmi_smi_msg *msg) { ssif_inc_stat(ssif_info, hosed); /* Make it a response */ msg->rsp[0] = msg->data[0] | 4; msg->rsp[1] = msg->data[1]; msg->rsp[2] = 0xFF; /* Unknown error. */ msg->rsp_size = 3; deliver_recv_msg(ssif_info, msg); } /* * Must be called with the message lock held. This will release the * message lock. Note that the caller will check SSIF_IDLE and start a * new operation, so there is no need to check for new messages to * start in here. */ static void start_clear_flags(struct ssif_info *ssif_info, unsigned long *flags) { unsigned char msg[3]; ssif_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; ssif_info->ssif_state = SSIF_CLEARING_FLAGS; ipmi_ssif_unlock_cond(ssif_info, flags); /* Make sure the watchdog pre-timeout flag is not set at startup. */ msg[0] = (IPMI_NETFN_APP_REQUEST << 2); msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; msg[2] = WDT_PRE_TIMEOUT_INT; if (start_send(ssif_info, msg, 3) != 0) { /* Error, just go to normal state. */ ssif_info->ssif_state = SSIF_NORMAL; } } static void start_flag_fetch(struct ssif_info *ssif_info, unsigned long *flags) { unsigned char mb[2]; ssif_info->req_flags = false; ssif_info->ssif_state = SSIF_GETTING_FLAGS; ipmi_ssif_unlock_cond(ssif_info, flags); mb[0] = (IPMI_NETFN_APP_REQUEST << 2); mb[1] = IPMI_GET_MSG_FLAGS_CMD; if (start_send(ssif_info, mb, 2) != 0) ssif_info->ssif_state = SSIF_NORMAL; } static void check_start_send(struct ssif_info *ssif_info, unsigned long *flags, struct ipmi_smi_msg *msg) { if (start_send(ssif_info, msg->data, msg->data_size) != 0) { unsigned long oflags; flags = ipmi_ssif_lock_cond(ssif_info, &oflags); ssif_info->curr_msg = NULL; ssif_info->ssif_state = SSIF_NORMAL; ipmi_ssif_unlock_cond(ssif_info, flags); ipmi_free_smi_msg(msg); } } static void start_event_fetch(struct ssif_info *ssif_info, unsigned long *flags) { struct ipmi_smi_msg *msg; ssif_info->req_events = false; msg = ipmi_alloc_smi_msg(); if (!msg) { ssif_info->ssif_state = SSIF_NORMAL; return; } ssif_info->curr_msg = msg; ssif_info->ssif_state = SSIF_GETTING_EVENTS; ipmi_ssif_unlock_cond(ssif_info, flags); msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; msg->data_size = 2; check_start_send(ssif_info, flags, msg); } static void start_recv_msg_fetch(struct ssif_info *ssif_info, unsigned long *flags) { struct ipmi_smi_msg *msg; msg = ipmi_alloc_smi_msg(); if (!msg) { ssif_info->ssif_state = SSIF_NORMAL; return; } ssif_info->curr_msg = msg; ssif_info->ssif_state = SSIF_GETTING_MESSAGES; ipmi_ssif_unlock_cond(ssif_info, flags); msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); msg->data[1] = IPMI_GET_MSG_CMD; msg->data_size = 2; check_start_send(ssif_info, flags, msg); } /* * Must be called with the message lock held. This will release the * message lock. Note that the caller will check SSIF_IDLE and start a * new operation, so there is no need to check for new messages to * start in here. */ static void handle_flags(struct ssif_info *ssif_info, unsigned long *flags) { if (ssif_info->msg_flags & WDT_PRE_TIMEOUT_INT) { ipmi_smi_t intf = ssif_info->intf; /* Watchdog pre-timeout */ ssif_inc_stat(ssif_info, watchdog_pretimeouts); start_clear_flags(ssif_info, flags); if (intf) ipmi_smi_watchdog_pretimeout(intf); } else if (ssif_info->msg_flags & RECEIVE_MSG_AVAIL) /* Messages available. */ start_recv_msg_fetch(ssif_info, flags); else if (ssif_info->msg_flags & EVENT_MSG_BUFFER_FULL) /* Events available. */ start_event_fetch(ssif_info, flags); else { ssif_info->ssif_state = SSIF_NORMAL; ipmi_ssif_unlock_cond(ssif_info, flags); } } static int ipmi_ssif_thread(void *data) { struct ssif_info *ssif_info = data; while (!kthread_should_stop()) { int result; /* Wait for something to do */ result = wait_for_completion_interruptible( &ssif_info->wake_thread); if (ssif_info->stopping) break; if (result == -ERESTARTSYS) continue; init_completion(&ssif_info->wake_thread); if (ssif_info->i2c_read_write == I2C_SMBUS_WRITE) { result = i2c_smbus_write_block_data( ssif_info->client, SSIF_IPMI_REQUEST, ssif_info->i2c_data[0], ssif_info->i2c_data + 1); ssif_info->done_handler(ssif_info, result, NULL, 0); } else { result = i2c_smbus_read_block_data( ssif_info->client, SSIF_IPMI_RESPONSE, ssif_info->i2c_data); if (result < 0) ssif_info->done_handler(ssif_info, result, NULL, 0); else ssif_info->done_handler(ssif_info, 0, ssif_info->i2c_data, result); } } return 0; } static int ssif_i2c_send(struct ssif_info *ssif_info, ssif_i2c_done handler, int read_write, int command, unsigned char *data, unsigned int size) { ssif_info->done_handler = handler; ssif_info->i2c_read_write = read_write; ssif_info->i2c_command = command; ssif_info->i2c_data = data; ssif_info->i2c_size = size; complete(&ssif_info->wake_thread); return 0; } static void msg_done_handler(struct ssif_info *ssif_info, int result, unsigned char *data, unsigned int len); static void retry_timeout(unsigned long data) { struct ssif_info *ssif_info = (void *) data; int rv; if (ssif_info->stopping) return; ssif_info->rtc_us_timer = 0; rv = ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, SSIF_IPMI_RESPONSE, ssif_info->recv, I2C_SMBUS_BLOCK_DATA); if (rv < 0) { /* request failed, just return the error. */ if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) pr_info("Error from i2c_non_blocking_op(5)\n"); msg_done_handler(ssif_info, -EIO, NULL, 0); } } static int start_resend(struct ssif_info *ssif_info); static void msg_done_handler(struct ssif_info *ssif_info, int result, unsigned char *data, unsigned int len) { struct ipmi_smi_msg *msg; unsigned long oflags, *flags; int rv; /* * We are single-threaded here, so no need for a lock until we * start messing with driver states or the queues. */ if (result < 0) { ssif_info->retries_left--; if (ssif_info->retries_left > 0) { ssif_inc_stat(ssif_info, receive_retries); mod_timer(&ssif_info->retry_timer, jiffies + SSIF_MSG_JIFFIES); ssif_info->rtc_us_timer = SSIF_MSG_USEC; return; } ssif_inc_stat(ssif_info, receive_errors); if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) pr_info("Error in msg_done_handler: %d\n", result); len = 0; goto continue_op; } if ((len > 1) && (ssif_info->multi_pos == 0) && (data[0] == 0x00) && (data[1] == 0x01)) { /* Start of multi-part read. Start the next transaction. */ int i; ssif_inc_stat(ssif_info, received_message_parts); /* Remove the multi-part read marker. */ for (i = 0; i < (len-2); i++) ssif_info->data[i] = data[i+2]; len -= 2; ssif_info->multi_len = len; ssif_info->multi_pos = 1; rv = ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE, ssif_info->recv, I2C_SMBUS_BLOCK_DATA); if (rv < 0) { if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) pr_info("Error from i2c_non_blocking_op(1)\n"); result = -EIO; } else return; } else if (ssif_info->multi_pos) { /* Middle of multi-part read. Start the next transaction. */ int i; unsigned char blocknum; if (len == 0) { result = -EIO; if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) pr_info(PFX "Middle message with no data\n"); goto continue_op; } blocknum = data[ssif_info->multi_len]; if (ssif_info->multi_len+len-1 > IPMI_MAX_MSG_LENGTH) { /* Received message too big, abort the operation. */ result = -E2BIG; if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) pr_info("Received message too big\n"); goto continue_op; } /* Remove the blocknum from the data. */ for (i = 0; i < (len-1); i++) ssif_info->data[i+ssif_info->multi_len] = data[i+1]; len--; ssif_info->multi_len += len; if (blocknum == 0xff) { /* End of read */ len = ssif_info->multi_len; data = ssif_info->data; } else if ((blocknum+1) != ssif_info->multi_pos) { /* * Out of sequence block, just abort. Block * numbers start at zero for the second block, * but multi_pos starts at one, so the +1. */ result = -EIO; } else { ssif_inc_stat(ssif_info, received_message_parts); ssif_info->multi_pos++; rv = ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE, ssif_info->recv, I2C_SMBUS_BLOCK_DATA); if (rv < 0) { if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) pr_info(PFX "Error from i2c_non_blocking_op(2)\n"); result = -EIO; } else return; } } if (result < 0) { ssif_inc_stat(ssif_info, receive_errors); } else { ssif_inc_stat(ssif_info, received_messages); ssif_inc_stat(ssif_info, received_message_parts); } continue_op: if (ssif_info->ssif_debug & SSIF_DEBUG_STATE) pr_info(PFX "DONE 1: state = %d, result=%d.\n", ssif_info->ssif_state, result); flags = ipmi_ssif_lock_cond(ssif_info, &oflags); msg = ssif_info->curr_msg; if (msg) { msg->rsp_size = len; if (msg->rsp_size > IPMI_MAX_MSG_LENGTH) msg->rsp_size = IPMI_MAX_MSG_LENGTH; memcpy(msg->rsp, data, msg->rsp_size); ssif_info->curr_msg = NULL; } switch (ssif_info->ssif_state) { case SSIF_NORMAL: ipmi_ssif_unlock_cond(ssif_info, flags); if (!msg) break; if (result < 0) return_hosed_msg(ssif_info, msg); else deliver_recv_msg(ssif_info, msg); break; case SSIF_GETTING_FLAGS: /* We got the flags from the SSIF, now handle them. */ if ((result < 0) || (len < 4) || (data[2] != 0)) { /* * Error fetching flags, or invalid length, * just give up for now. */ ssif_info->ssif_state = SSIF_NORMAL; ipmi_ssif_unlock_cond(ssif_info, flags); pr_warn(PFX "Error getting flags: %d %d, %x\n", result, len, data[2]); } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || data[1] != IPMI_GET_MSG_FLAGS_CMD) { pr_warn(PFX "Invalid response getting flags: %x %x\n", data[0], data[1]); } else { ssif_inc_stat(ssif_info, flag_fetches); ssif_info->msg_flags = data[3]; handle_flags(ssif_info, flags); } break; case SSIF_CLEARING_FLAGS: /* We cleared the flags. */ if ((result < 0) || (len < 3) || (data[2] != 0)) { /* Error clearing flags */ pr_warn(PFX "Error clearing flags: %d %d, %x\n", result, len, data[2]); } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || data[1] != IPMI_CLEAR_MSG_FLAGS_CMD) { pr_warn(PFX "Invalid response clearing flags: %x %x\n", data[0], data[1]); } ssif_info->ssif_state = SSIF_NORMAL; ipmi_ssif_unlock_cond(ssif_info, flags); break; case SSIF_GETTING_EVENTS: if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) { /* Error getting event, probably done. */ msg->done(msg); /* Take off the event flag. */ ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; handle_flags(ssif_info, flags); } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || msg->rsp[1] != IPMI_READ_EVENT_MSG_BUFFER_CMD) { pr_warn(PFX "Invalid response getting events: %x %x\n", msg->rsp[0], msg->rsp[1]); msg->done(msg); /* Take off the event flag. */ ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; handle_flags(ssif_info, flags); } else { handle_flags(ssif_info, flags); ssif_inc_stat(ssif_info, events); deliver_recv_msg(ssif_info, msg); } break; case SSIF_GETTING_MESSAGES: if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) { /* Error getting event, probably done. */ msg->done(msg); /* Take off the msg flag. */ ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL; handle_flags(ssif_info, flags); } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || msg->rsp[1] != IPMI_GET_MSG_CMD) { pr_warn(PFX "Invalid response clearing flags: %x %x\n", msg->rsp[0], msg->rsp[1]); msg->done(msg); /* Take off the msg flag. */ ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL; handle_flags(ssif_info, flags); } else { ssif_inc_stat(ssif_info, incoming_messages); handle_flags(ssif_info, flags); deliver_recv_msg(ssif_info, msg); } break; } flags = ipmi_ssif_lock_cond(ssif_info, &oflags); if (SSIF_IDLE(ssif_info) && !ssif_info->stopping) { if (ssif_info->req_events) start_event_fetch(ssif_info, flags); else if (ssif_info->req_flags) start_flag_fetch(ssif_info, flags); else start_next_msg(ssif_info, flags); } else ipmi_ssif_unlock_cond(ssif_info, flags); if (ssif_info->ssif_debug & SSIF_DEBUG_STATE) pr_info(PFX "DONE 2: state = %d.\n", ssif_info->ssif_state); } static void msg_written_handler(struct ssif_info *ssif_info, int result, unsigned char *data, unsigned int len) { int rv; /* We are single-threaded here, so no need for a lock. */ if (result < 0) { ssif_info->retries_left--; if (ssif_info->retries_left > 0) { if (!start_resend(ssif_info)) { ssif_inc_stat(ssif_info, send_retries); return; } /* request failed, just return the error. */ ssif_inc_stat(ssif_info, send_errors); if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) pr_info(PFX "Out of retries in msg_written_handler\n"); msg_done_handler(ssif_info, -EIO, NULL, 0); return; } ssif_inc_stat(ssif_info, send_errors); /* * Got an error on transmit, let the done routine * handle it. */ if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) pr_info("Error in msg_written_handler: %d\n", result); msg_done_handler(ssif_info, result, NULL, 0); return; } if (ssif_info->multi_data) { /* In the middle of a multi-data write. */ int left; ssif_inc_stat(ssif_info, sent_messages_parts); left = ssif_info->multi_len - ssif_info->multi_pos; if (left > 32) left = 32; /* Length byte. */ ssif_info->multi_data[ssif_info->multi_pos] = left; ssif_info->multi_pos += left; if (left < 32) /* * Write is finished. Note that we must end * with a write of less than 32 bytes to * complete the transaction, even if it is * zero bytes. */ ssif_info->multi_data = NULL; rv = ssif_i2c_send(ssif_info, msg_written_handler, I2C_SMBUS_WRITE, SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE, ssif_info->multi_data + ssif_info->multi_pos, I2C_SMBUS_BLOCK_DATA); if (rv < 0) { /* request failed, just return the error. */ ssif_inc_stat(ssif_info, send_errors); if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) pr_info("Error from i2c_non_blocking_op(3)\n"); msg_done_handler(ssif_info, -EIO, NULL, 0); } } else { ssif_inc_stat(ssif_info, sent_messages); ssif_inc_stat(ssif_info, sent_messages_parts); /* Wait a jiffie then request the next message */ ssif_info->retries_left = SSIF_RECV_RETRIES; ssif_info->rtc_us_timer = SSIF_MSG_PART_USEC; mod_timer(&ssif_info->retry_timer, jiffies + SSIF_MSG_PART_JIFFIES); return; } } static int start_resend(struct ssif_info *ssif_info) { int rv; int command; if (ssif_info->data_len > 32) { command = SSIF_IPMI_MULTI_PART_REQUEST_START; ssif_info->multi_data = ssif_info->data; ssif_info->multi_len = ssif_info->data_len; /* * Subtle thing, this is 32, not 33, because we will * overwrite the thing at position 32 (which was just * transmitted) with the new length. */ ssif_info->multi_pos = 32; ssif_info->data[0] = 32; } else { ssif_info->multi_data = NULL; command = SSIF_IPMI_REQUEST; ssif_info->data[0] = ssif_info->data_len; } rv = ssif_i2c_send(ssif_info, msg_written_handler, I2C_SMBUS_WRITE, command, ssif_info->data, I2C_SMBUS_BLOCK_DATA); if (rv && (ssif_info->ssif_debug & SSIF_DEBUG_MSG)) pr_info("Error from i2c_non_blocking_op(4)\n"); return rv; } static int start_send(struct ssif_info *ssif_info, unsigned char *data, unsigned int len) { if (len > IPMI_MAX_MSG_LENGTH) return -E2BIG; if (len > ssif_info->max_xmit_msg_size) return -E2BIG; ssif_info->retries_left = SSIF_SEND_RETRIES; memcpy(ssif_info->data+1, data, len); ssif_info->data_len = len; return start_resend(ssif_info); } /* Must be called with the message lock held. */ static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags) { struct ipmi_smi_msg *msg; unsigned long oflags; restart: if (!SSIF_IDLE(ssif_info)) { ipmi_ssif_unlock_cond(ssif_info, flags); return; } if (!ssif_info->waiting_msg) { ssif_info->curr_msg = NULL; ipmi_ssif_unlock_cond(ssif_info, flags); } else { int rv; ssif_info->curr_msg = ssif_info->waiting_msg; ssif_info->waiting_msg = NULL; ipmi_ssif_unlock_cond(ssif_info, flags); rv = start_send(ssif_info, ssif_info->curr_msg->data, ssif_info->curr_msg->data_size); if (rv) { msg = ssif_info->curr_msg; ssif_info->curr_msg = NULL; return_hosed_msg(ssif_info, msg); flags = ipmi_ssif_lock_cond(ssif_info, &oflags); goto restart; } } } static void sender(void *send_info, struct ipmi_smi_msg *msg) { struct ssif_info *ssif_info = (struct ssif_info *) send_info; unsigned long oflags, *flags; BUG_ON(ssif_info->waiting_msg); ssif_info->waiting_msg = msg; flags = ipmi_ssif_lock_cond(ssif_info, &oflags); start_next_msg(ssif_info, flags); if (ssif_info->ssif_debug & SSIF_DEBUG_TIMING) { struct timeval t; do_gettimeofday(&t); pr_info("**Enqueue %02x %02x: %ld.%6.6ld\n", msg->data[0], msg->data[1], (long) t.tv_sec, (long) t.tv_usec); } } static int get_smi_info(void *send_info, struct ipmi_smi_info *data) { struct ssif_info *ssif_info = send_info; data->addr_src = ssif_info->addr_source; data->dev = &ssif_info->client->dev; data->addr_info = ssif_info->addr_info; get_device(data->dev); return 0; } /* * Instead of having our own timer to periodically check the message * flags, we let the message handler drive us. */ static void request_events(void *send_info) { struct ssif_info *ssif_info = (struct ssif_info *) send_info; unsigned long oflags, *flags; if (!ssif_info->has_event_buffer) return; flags = ipmi_ssif_lock_cond(ssif_info, &oflags); /* * Request flags first, not events, because the lower layer * doesn't have a way to send an attention. But make sure * event checking still happens. */ ssif_info->req_events = true; if (SSIF_IDLE(ssif_info)) start_flag_fetch(ssif_info, flags); else { ssif_info->req_flags = true; ipmi_ssif_unlock_cond(ssif_info, flags); } } static int inc_usecount(void *send_info) { struct ssif_info *ssif_info = send_info; if (!i2c_get_adapter(ssif_info->client->adapter->nr)) return -ENODEV; i2c_use_client(ssif_info->client); return 0; } static void dec_usecount(void *send_info) { struct ssif_info *ssif_info = send_info; i2c_release_client(ssif_info->client); i2c_put_adapter(ssif_info->client->adapter); } static int ssif_start_processing(void *send_info, ipmi_smi_t intf) { struct ssif_info *ssif_info = send_info; ssif_info->intf = intf; return 0; } #define MAX_SSIF_BMCS 4 static unsigned short addr[MAX_SSIF_BMCS]; static int num_addrs; module_param_array(addr, ushort, &num_addrs, 0); MODULE_PARM_DESC(addr, "The addresses to scan for IPMI BMCs on the SSIFs."); static char *adapter_name[MAX_SSIF_BMCS]; static int num_adapter_names; module_param_array(adapter_name, charp, &num_adapter_names, 0); MODULE_PARM_DESC(adapter_name, "The string name of the I2C device that has the BMC. By default all devices are scanned."); static int slave_addrs[MAX_SSIF_BMCS]; static int num_slave_addrs; module_param_array(slave_addrs, int, &num_slave_addrs, 0); MODULE_PARM_DESC(slave_addrs, "The default IPMB slave address for the controller."); /* * Bit 0 enables message debugging, bit 1 enables state debugging, and * bit 2 enables timing debugging. This is an array indexed by * interface number" */ static int dbg[MAX_SSIF_BMCS]; static int num_dbg; module_param_array(dbg, int, &num_dbg, 0); MODULE_PARM_DESC(dbg, "Turn on debugging."); static bool ssif_dbg_probe; module_param_named(dbg_probe, ssif_dbg_probe, bool, 0); MODULE_PARM_DESC(dbg_probe, "Enable debugging of probing of adapters."); static int use_thread; module_param(use_thread, int, 0); MODULE_PARM_DESC(use_thread, "Use the thread interface."); static bool ssif_tryacpi = 1; module_param_named(tryacpi, ssif_tryacpi, bool, 0); MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the default scan of the interfaces identified via ACPI"); static bool ssif_trydmi = 1; module_param_named(trydmi, ssif_trydmi, bool, 0); MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the default scan of the interfaces identified via DMI (SMBIOS)"); static DEFINE_MUTEX(ssif_infos_mutex); static LIST_HEAD(ssif_infos); static int ssif_remove(struct i2c_client *client) { struct ssif_info *ssif_info = i2c_get_clientdata(client); int rv; if (!ssif_info) return 0; /* * After this point, we won't deliver anything asychronously * to the message handler. We can unregister ourself. */ rv = ipmi_unregister_smi(ssif_info->intf); if (rv) { pr_err(PFX "Unable to unregister device: errno=%d\n", rv); return rv; } ssif_info->intf = NULL; /* make sure the driver is not looking for flags any more. */ while (ssif_info->ssif_state != SSIF_NORMAL) schedule_timeout(1); ssif_info->stopping = true; del_timer_sync(&ssif_info->retry_timer); if (ssif_info->thread) { complete(&ssif_info->wake_thread); kthread_stop(ssif_info->thread); } /* * No message can be outstanding now, we have removed the * upper layer and it permitted us to do so. */ kfree(ssif_info); return 0; } static int do_cmd(struct i2c_client *client, int len, unsigned char *msg, int *resp_len, unsigned char *resp) { int retry_cnt; int ret; retry_cnt = SSIF_SEND_RETRIES; retry1: ret = i2c_smbus_write_block_data(client, SSIF_IPMI_REQUEST, len, msg); if (ret) { retry_cnt--; if (retry_cnt > 0) goto retry1; return -ENODEV; } ret = -ENODEV; retry_cnt = SSIF_RECV_RETRIES; while (retry_cnt > 0) { ret = i2c_smbus_read_block_data(client, SSIF_IPMI_RESPONSE, resp); if (ret > 0) break; msleep(SSIF_MSG_MSEC); retry_cnt--; if (retry_cnt <= 0) break; } if (ret > 0) { /* Validate that the response is correct. */ if (ret < 3 || (resp[0] != (msg[0] | (1 << 2))) || (resp[1] != msg[1])) ret = -EINVAL; else { *resp_len = ret; ret = 0; } } return ret; } static int ssif_detect(struct i2c_client *client, struct i2c_board_info *info) { unsigned char *resp; unsigned char msg[3]; int rv; int len; resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); if (!resp) return -ENOMEM; /* Do a Get Device ID command, since it is required. */ msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_DEVICE_ID_CMD; rv = do_cmd(client, 2, msg, &len, resp); if (rv) rv = -ENODEV; else strlcpy(info->type, DEVICE_NAME, I2C_NAME_SIZE); kfree(resp); return rv; } static int smi_type_proc_show(struct seq_file *m, void *v) { seq_puts(m, "ssif\n"); return 0; } static int smi_type_proc_open(struct inode *inode, struct file *file) { return single_open(file, smi_type_proc_show, inode->i_private); } static const struct file_operations smi_type_proc_ops = { .open = smi_type_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int smi_stats_proc_show(struct seq_file *m, void *v) { struct ssif_info *ssif_info = m->private; seq_printf(m, "sent_messages: %u\n", ssif_get_stat(ssif_info, sent_messages)); seq_printf(m, "sent_messages_parts: %u\n", ssif_get_stat(ssif_info, sent_messages_parts)); seq_printf(m, "send_retries: %u\n", ssif_get_stat(ssif_info, send_retries)); seq_printf(m, "send_errors: %u\n", ssif_get_stat(ssif_info, send_errors)); seq_printf(m, "received_messages: %u\n", ssif_get_stat(ssif_info, received_messages)); seq_printf(m, "received_message_parts: %u\n", ssif_get_stat(ssif_info, received_message_parts)); seq_printf(m, "receive_retries: %u\n", ssif_get_stat(ssif_info, receive_retries)); seq_printf(m, "receive_errors: %u\n", ssif_get_stat(ssif_info, receive_errors)); seq_printf(m, "flag_fetches: %u\n", ssif_get_stat(ssif_info, flag_fetches)); seq_printf(m, "hosed: %u\n", ssif_get_stat(ssif_info, hosed)); seq_printf(m, "events: %u\n", ssif_get_stat(ssif_info, events)); seq_printf(m, "watchdog_pretimeouts: %u\n", ssif_get_stat(ssif_info, watchdog_pretimeouts)); return 0; } static int smi_stats_proc_open(struct inode *inode, struct file *file) { return single_open(file, smi_stats_proc_show, PDE_DATA(inode)); } static const struct file_operations smi_stats_proc_ops = { .open = smi_stats_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int strcmp_nospace(char *s1, char *s2) { while (*s1 && *s2) { while (isspace(*s1)) s1++; while (isspace(*s2)) s2++; if (*s1 > *s2) return 1; if (*s1 < *s2) return -1; s1++; s2++; } return 0; } static struct ssif_addr_info *ssif_info_find(unsigned short addr, char *adapter_name, bool match_null_name) { struct ssif_addr_info *info, *found = NULL; restart: list_for_each_entry(info, &ssif_infos, link) { if (info->binfo.addr == addr) { if (info->adapter_name || adapter_name) { if (!info->adapter_name != !adapter_name) { /* One is NULL and one is not */ continue; } if (adapter_name && strcmp_nospace(info->adapter_name, adapter_name)) /* Names do not match */ continue; } found = info; break; } } if (!found && match_null_name) { /* Try to get an exact match first, then try with a NULL name */ adapter_name = NULL; match_null_name = false; goto restart; } return found; } static bool check_acpi(struct ssif_info *ssif_info, struct device *dev) { #ifdef CONFIG_ACPI acpi_handle acpi_handle; acpi_handle = ACPI_HANDLE(dev); if (acpi_handle) { ssif_info->addr_source = SI_ACPI; ssif_info->addr_info.acpi_info.acpi_handle = acpi_handle; return true; } #endif return false; } static int ssif_probe(struct i2c_client *client, const struct i2c_device_id *id) { unsigned char msg[3]; unsigned char *resp; struct ssif_info *ssif_info; int rv = 0; int len; int i; u8 slave_addr = 0; struct ssif_addr_info *addr_info = NULL; resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); if (!resp) return -ENOMEM; ssif_info = kzalloc(sizeof(*ssif_info), GFP_KERNEL); if (!ssif_info) { kfree(resp); return -ENOMEM; } if (!check_acpi(ssif_info, &client->dev)) { addr_info = ssif_info_find(client->addr, client->adapter->name, true); if (!addr_info) { /* Must have come in through sysfs. */ ssif_info->addr_source = SI_HOTMOD; } else { ssif_info->addr_source = addr_info->addr_src; ssif_info->ssif_debug = addr_info->debug; ssif_info->addr_info = addr_info->addr_info; slave_addr = addr_info->slave_addr; } } pr_info(PFX "Trying %s-specified SSIF interface at i2c address 0x%x, adapter %s, slave address 0x%x\n", ipmi_addr_src_to_str(ssif_info->addr_source), client->addr, client->adapter->name, slave_addr); /* * Do a Get Device ID command, since it comes back with some * useful info. */ msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_DEVICE_ID_CMD; rv = do_cmd(client, 2, msg, &len, resp); if (rv) goto out; rv = ipmi_demangle_device_id(resp, len, &ssif_info->device_id); if (rv) goto out; ssif_info->client = client; i2c_set_clientdata(client, ssif_info); /* Now check for system interface capabilities */ msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD; msg[2] = 0; /* SSIF */ rv = do_cmd(client, 3, msg, &len, resp); if (!rv && (len >= 3) && (resp[2] == 0)) { if (len < 7) { if (ssif_dbg_probe) pr_info(PFX "SSIF info too short: %d\n", len); goto no_support; } /* Got a good SSIF response, handle it. */ ssif_info->max_xmit_msg_size = resp[5]; ssif_info->max_recv_msg_size = resp[6]; ssif_info->multi_support = (resp[4] >> 6) & 0x3; ssif_info->supports_pec = (resp[4] >> 3) & 0x1; /* Sanitize the data */ switch (ssif_info->multi_support) { case SSIF_NO_MULTI: if (ssif_info->max_xmit_msg_size > 32) ssif_info->max_xmit_msg_size = 32; if (ssif_info->max_recv_msg_size > 32) ssif_info->max_recv_msg_size = 32; break; case SSIF_MULTI_2_PART: if (ssif_info->max_xmit_msg_size > 64) ssif_info->max_xmit_msg_size = 64; if (ssif_info->max_recv_msg_size > 62) ssif_info->max_recv_msg_size = 62; break; case SSIF_MULTI_n_PART: break; default: /* Data is not sane, just give up. */ goto no_support; } } else { no_support: /* Assume no multi-part or PEC support */ pr_info(PFX "Error fetching SSIF: %d %d %2.2x, your system probably doesn't support this command so using defaults\n", rv, len, resp[2]); ssif_info->max_xmit_msg_size = 32; ssif_info->max_recv_msg_size = 32; ssif_info->multi_support = SSIF_NO_MULTI; ssif_info->supports_pec = 0; } /* Make sure the NMI timeout is cleared. */ msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; msg[2] = WDT_PRE_TIMEOUT_INT; rv = do_cmd(client, 3, msg, &len, resp); if (rv || (len < 3) || (resp[2] != 0)) pr_warn(PFX "Unable to clear message flags: %d %d %2.2x\n", rv, len, resp[2]); /* Attempt to enable the event buffer. */ msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; rv = do_cmd(client, 2, msg, &len, resp); if (rv || (len < 4) || (resp[2] != 0)) { pr_warn(PFX "Error getting global enables: %d %d %2.2x\n", rv, len, resp[2]); rv = 0; /* Not fatal */ goto found; } if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { ssif_info->has_event_buffer = true; /* buffer is already enabled, nothing to do. */ goto found; } msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; rv = do_cmd(client, 3, msg, &len, resp); if (rv || (len < 2)) { pr_warn(PFX "Error getting global enables: %d %d %2.2x\n", rv, len, resp[2]); rv = 0; /* Not fatal */ goto found; } if (resp[2] == 0) /* A successful return means the event buffer is supported. */ ssif_info->has_event_buffer = true; found: ssif_info->intf_num = atomic_inc_return(&next_intf); if (ssif_dbg_probe) { pr_info("ssif_probe: i2c_probe found device at i2c address %x\n", client->addr); } spin_lock_init(&ssif_info->lock); ssif_info->ssif_state = SSIF_NORMAL; init_timer(&ssif_info->retry_timer); ssif_info->retry_timer.data = (unsigned long) ssif_info; ssif_info->retry_timer.function = retry_timeout; for (i = 0; i < SSIF_NUM_STATS; i++) atomic_set(&ssif_info->stats[i], 0); if (ssif_info->supports_pec) ssif_info->client->flags |= I2C_CLIENT_PEC; ssif_info->handlers.owner = THIS_MODULE; ssif_info->handlers.start_processing = ssif_start_processing; ssif_info->handlers.get_smi_info = get_smi_info; ssif_info->handlers.sender = sender; ssif_info->handlers.request_events = request_events; ssif_info->handlers.inc_usecount = inc_usecount; ssif_info->handlers.dec_usecount = dec_usecount; { unsigned int thread_num; thread_num = ((ssif_info->client->adapter->nr << 8) | ssif_info->client->addr); init_completion(&ssif_info->wake_thread); ssif_info->thread = kthread_run(ipmi_ssif_thread, ssif_info, "kssif%4.4x", thread_num); if (IS_ERR(ssif_info->thread)) { rv = PTR_ERR(ssif_info->thread); dev_notice(&ssif_info->client->dev, "Could not start kernel thread: error %d\n", rv); goto out; } } rv = ipmi_register_smi(&ssif_info->handlers, ssif_info, &ssif_info->device_id, &ssif_info->client->dev, slave_addr); if (rv) { pr_err(PFX "Unable to register device: error %d\n", rv); goto out; } rv = ipmi_smi_add_proc_entry(ssif_info->intf, "type", &smi_type_proc_ops, ssif_info); if (rv) { pr_err(PFX "Unable to create proc entry: %d\n", rv); goto out_err_unreg; } rv = ipmi_smi_add_proc_entry(ssif_info->intf, "ssif_stats", &smi_stats_proc_ops, ssif_info); if (rv) { pr_err(PFX "Unable to create proc entry: %d\n", rv); goto out_err_unreg; } out: if (rv) kfree(ssif_info); kfree(resp); return rv; out_err_unreg: ipmi_unregister_smi(ssif_info->intf); goto out; } static int ssif_adapter_handler(struct device *adev, void *opaque) { struct ssif_addr_info *addr_info = opaque; if (adev->type != &i2c_adapter_type) return 0; i2c_new_device(to_i2c_adapter(adev), &addr_info->binfo); if (!addr_info->adapter_name) return 1; /* Only try the first I2C adapter by default. */ return 0; } static int new_ssif_client(int addr, char *adapter_name, int debug, int slave_addr, enum ipmi_addr_src addr_src) { struct ssif_addr_info *addr_info; int rv = 0; mutex_lock(&ssif_infos_mutex); if (ssif_info_find(addr, adapter_name, false)) { rv = -EEXIST; goto out_unlock; } addr_info = kzalloc(sizeof(*addr_info), GFP_KERNEL); if (!addr_info) { rv = -ENOMEM; goto out_unlock; } if (adapter_name) { addr_info->adapter_name = kstrdup(adapter_name, GFP_KERNEL); if (!addr_info->adapter_name) { kfree(addr_info); rv = -ENOMEM; goto out_unlock; } } strncpy(addr_info->binfo.type, DEVICE_NAME, sizeof(addr_info->binfo.type)); addr_info->binfo.addr = addr; addr_info->binfo.platform_data = addr_info; addr_info->debug = debug; addr_info->slave_addr = slave_addr; addr_info->addr_src = addr_src; list_add_tail(&addr_info->link, &ssif_infos); if (initialized) i2c_for_each_dev(addr_info, ssif_adapter_handler); /* Otherwise address list will get it */ out_unlock: mutex_unlock(&ssif_infos_mutex); return rv; } static void free_ssif_clients(void) { struct ssif_addr_info *info, *tmp; mutex_lock(&ssif_infos_mutex); list_for_each_entry_safe(info, tmp, &ssif_infos, link) { list_del(&info->link); kfree(info->adapter_name); kfree(info); } mutex_unlock(&ssif_infos_mutex); } static unsigned short *ssif_address_list(void) { struct ssif_addr_info *info; unsigned int count = 0, i; unsigned short *address_list; list_for_each_entry(info, &ssif_infos, link) count++; address_list = kzalloc(sizeof(*address_list) * (count + 1), GFP_KERNEL); if (!address_list) return NULL; i = 0; list_for_each_entry(info, &ssif_infos, link) { unsigned short addr = info->binfo.addr; int j; for (j = 0; j < i; j++) { if (address_list[j] == addr) goto skip_addr; } address_list[i] = addr; skip_addr: i++; } address_list[i] = I2C_CLIENT_END; return address_list; } #ifdef CONFIG_ACPI static struct acpi_device_id ssif_acpi_match[] = { { "IPI0001", 0 }, { }, }; MODULE_DEVICE_TABLE(acpi, ssif_acpi_match); /* * Once we get an ACPI failure, we don't try any more, because we go * through the tables sequentially. Once we don't find a table, there * are no more. */ static int acpi_failure; /* * Defined in the IPMI 2.0 spec. */ struct SPMITable { s8 Signature[4]; u32 Length; u8 Revision; u8 Checksum; s8 OEMID[6]; s8 OEMTableID[8]; s8 OEMRevision[4]; s8 CreatorID[4]; s8 CreatorRevision[4]; u8 InterfaceType; u8 IPMIlegacy; s16 SpecificationRevision; /* * Bit 0 - SCI interrupt supported * Bit 1 - I/O APIC/SAPIC */ u8 InterruptType; /* * If bit 0 of InterruptType is set, then this is the SCI * interrupt in the GPEx_STS register. */ u8 GPE; s16 Reserved; /* * If bit 1 of InterruptType is set, then this is the I/O * APIC/SAPIC interrupt. */ u32 GlobalSystemInterrupt; /* The actual register address. */ struct acpi_generic_address addr; u8 UID[4]; s8 spmi_id[1]; /* A '\0' terminated array starts here. */ }; static int try_init_spmi(struct SPMITable *spmi) { unsigned short myaddr; if (num_addrs >= MAX_SSIF_BMCS) return -1; if (spmi->IPMIlegacy != 1) { pr_warn("IPMI: Bad SPMI legacy: %d\n", spmi->IPMIlegacy); return -ENODEV; } if (spmi->InterfaceType != 4) return -ENODEV; if (spmi->addr.space_id != ACPI_ADR_SPACE_SMBUS) { pr_warn(PFX "Invalid ACPI SSIF I/O Address type: %d\n", spmi->addr.space_id); return -EIO; } myaddr = spmi->addr.address >> 1; return new_ssif_client(myaddr, NULL, 0, 0, SI_SPMI); } static void spmi_find_bmc(void) { acpi_status status; struct SPMITable *spmi; int i; if (acpi_disabled) return; if (acpi_failure) return; for (i = 0; ; i++) { status = acpi_get_table(ACPI_SIG_SPMI, i+1, (struct acpi_table_header **)&spmi); if (status != AE_OK) return; try_init_spmi(spmi); } } #else static void spmi_find_bmc(void) { } #endif #ifdef CONFIG_DMI static int decode_dmi(const struct dmi_device *dmi_dev) { struct dmi_header *dm = dmi_dev->device_data; u8 *data = (u8 *) dm; u8 len = dm->length; unsigned short myaddr; int slave_addr; if (num_addrs >= MAX_SSIF_BMCS) return -1; if (len < 9) return -1; if (data[0x04] != 4) /* Not SSIF */ return -1; if ((data[8] >> 1) == 0) { /* * Some broken systems put the I2C address in * the slave address field. We try to * accommodate them here. */ myaddr = data[6] >> 1; slave_addr = 0; } else { myaddr = data[8] >> 1; slave_addr = data[6]; } return new_ssif_client(myaddr, NULL, 0, 0, SI_SMBIOS); } static void dmi_iterator(void) { const struct dmi_device *dev = NULL; while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) decode_dmi(dev); } #else static void dmi_iterator(void) { } #endif static const struct i2c_device_id ssif_id[] = { { DEVICE_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, ssif_id); static struct i2c_driver ssif_i2c_driver = { .class = I2C_CLASS_HWMON, .driver = { .owner = THIS_MODULE, .name = DEVICE_NAME }, .probe = ssif_probe, .remove = ssif_remove, .id_table = ssif_id, .detect = ssif_detect }; static int init_ipmi_ssif(void) { int i; int rv; if (initialized) return 0; pr_info("IPMI SSIF Interface driver\n"); /* build list for i2c from addr list */ for (i = 0; i < num_addrs; i++) { rv = new_ssif_client(addr[i], adapter_name[i], dbg[i], slave_addrs[i], SI_HARDCODED); if (rv) pr_err(PFX "Couldn't add hardcoded device at addr 0x%x\n", addr[i]); } if (ssif_tryacpi) ssif_i2c_driver.driver.acpi_match_table = ACPI_PTR(ssif_acpi_match); if (ssif_trydmi) dmi_iterator(); if (ssif_tryacpi) spmi_find_bmc(); ssif_i2c_driver.address_list = ssif_address_list(); rv = i2c_add_driver(&ssif_i2c_driver); if (!rv) initialized = true; return rv; } module_init(init_ipmi_ssif); static void cleanup_ipmi_ssif(void) { if (!initialized) return; initialized = false; i2c_del_driver(&ssif_i2c_driver); free_ssif_clients(); } module_exit(cleanup_ipmi_ssif); MODULE_AUTHOR("Todd C Davis , Corey Minyard "); MODULE_DESCRIPTION("IPMI driver for management controllers on a SMBus"); MODULE_LICENSE("GPL");