/* * CCI cache coherent interconnect driver * * Copyright (C) 2013 ARM Ltd. * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/arm-cci.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <asm/cacheflush.h> #include <asm/irq_regs.h> #include <asm/pmu.h> #include <asm/smp_plat.h> #define DRIVER_NAME "CCI-400" #define DRIVER_NAME_PMU DRIVER_NAME " PMU" #define PMU_NAME "CCI_400" #define CCI_PORT_CTRL 0x0 #define CCI_CTRL_STATUS 0xc #define CCI_ENABLE_SNOOP_REQ 0x1 #define CCI_ENABLE_DVM_REQ 0x2 #define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ) struct cci_nb_ports { unsigned int nb_ace; unsigned int nb_ace_lite; }; enum cci_ace_port_type { ACE_INVALID_PORT = 0x0, ACE_PORT, ACE_LITE_PORT, }; struct cci_ace_port { void __iomem *base; unsigned long phys; enum cci_ace_port_type type; struct device_node *dn; }; static struct cci_ace_port *ports; static unsigned int nb_cci_ports; static void __iomem *cci_ctrl_base; static unsigned long cci_ctrl_phys; #ifdef CONFIG_HW_PERF_EVENTS #define CCI_PMCR 0x0100 #define CCI_PID2 0x0fe8 #define CCI_PMCR_CEN 0x00000001 #define CCI_PMCR_NCNT_MASK 0x0000f800 #define CCI_PMCR_NCNT_SHIFT 11 #define CCI_PID2_REV_MASK 0xf0 #define CCI_PID2_REV_SHIFT 4 /* Port ids */ #define CCI_PORT_S0 0 #define CCI_PORT_S1 1 #define CCI_PORT_S2 2 #define CCI_PORT_S3 3 #define CCI_PORT_S4 4 #define CCI_PORT_M0 5 #define CCI_PORT_M1 6 #define CCI_PORT_M2 7 #define CCI_REV_R0 0 #define CCI_REV_R1 1 #define CCI_REV_R0_P4 4 #define CCI_REV_R1_P2 6 #define CCI_PMU_EVT_SEL 0x000 #define CCI_PMU_CNTR 0x004 #define CCI_PMU_CNTR_CTRL 0x008 #define CCI_PMU_OVRFLW 0x00c #define CCI_PMU_OVRFLW_FLAG 1 #define CCI_PMU_CNTR_BASE(idx) ((idx) * SZ_4K) /* * Instead of an event id to monitor CCI cycles, a dedicated counter is * provided. Use 0xff to represent CCI cycles and hope that no future revisions * make use of this event in hardware. */ enum cci400_perf_events { CCI_PMU_CYCLES = 0xff }; #define CCI_PMU_EVENT_MASK 0xff #define CCI_PMU_EVENT_SOURCE(event) ((event >> 5) & 0x7) #define CCI_PMU_EVENT_CODE(event) (event & 0x1f) #define CCI_PMU_MAX_HW_EVENTS 5 /* CCI PMU has 4 counters + 1 cycle counter */ #define CCI_PMU_CYCLE_CNTR_IDX 0 #define CCI_PMU_CNTR0_IDX 1 #define CCI_PMU_CNTR_LAST(cci_pmu) (CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1) /* * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8 * ports and bits 4:0 are event codes. There are different event codes * associated with each port type. * * Additionally, the range of events associated with the port types changed * between Rev0 and Rev1. * * The constants below define the range of valid codes for each port type for * the different revisions and are used to validate the event to be monitored. */ #define CCI_REV_R0_SLAVE_PORT_MIN_EV 0x00 #define CCI_REV_R0_SLAVE_PORT_MAX_EV 0x13 #define CCI_REV_R0_MASTER_PORT_MIN_EV 0x14 #define CCI_REV_R0_MASTER_PORT_MAX_EV 0x1a #define CCI_REV_R1_SLAVE_PORT_MIN_EV 0x00 #define CCI_REV_R1_SLAVE_PORT_MAX_EV 0x14 #define CCI_REV_R1_MASTER_PORT_MIN_EV 0x00 #define CCI_REV_R1_MASTER_PORT_MAX_EV 0x11 struct pmu_port_event_ranges { u8 slave_min; u8 slave_max; u8 master_min; u8 master_max; }; static struct pmu_port_event_ranges port_event_range[] = { [CCI_REV_R0] = { .slave_min = CCI_REV_R0_SLAVE_PORT_MIN_EV, .slave_max = CCI_REV_R0_SLAVE_PORT_MAX_EV, .master_min = CCI_REV_R0_MASTER_PORT_MIN_EV, .master_max = CCI_REV_R0_MASTER_PORT_MAX_EV, }, [CCI_REV_R1] = { .slave_min = CCI_REV_R1_SLAVE_PORT_MIN_EV, .slave_max = CCI_REV_R1_SLAVE_PORT_MAX_EV, .master_min = CCI_REV_R1_MASTER_PORT_MIN_EV, .master_max = CCI_REV_R1_MASTER_PORT_MAX_EV, }, }; struct cci_pmu_drv_data { void __iomem *base; struct arm_pmu *cci_pmu; int nr_irqs; int irqs[CCI_PMU_MAX_HW_EVENTS]; unsigned long active_irqs; struct perf_event *events[CCI_PMU_MAX_HW_EVENTS]; unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)]; struct pmu_port_event_ranges *port_ranges; struct pmu_hw_events hw_events; }; static struct cci_pmu_drv_data *pmu; static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs) { int i; for (i = 0; i < nr_irqs; i++) if (irq == irqs[i]) return true; return false; } static int probe_cci_revision(void) { int rev; rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK; rev >>= CCI_PID2_REV_SHIFT; if (rev <= CCI_REV_R0_P4) return CCI_REV_R0; else if (rev <= CCI_REV_R1_P2) return CCI_REV_R1; return -ENOENT; } static struct pmu_port_event_ranges *port_range_by_rev(void) { int rev = probe_cci_revision(); if (rev < 0) return NULL; return &port_event_range[rev]; } static int pmu_is_valid_slave_event(u8 ev_code) { return pmu->port_ranges->slave_min <= ev_code && ev_code <= pmu->port_ranges->slave_max; } static int pmu_is_valid_master_event(u8 ev_code) { return pmu->port_ranges->master_min <= ev_code && ev_code <= pmu->port_ranges->master_max; } static int pmu_validate_hw_event(u8 hw_event) { u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event); u8 ev_code = CCI_PMU_EVENT_CODE(hw_event); switch (ev_source) { case CCI_PORT_S0: case CCI_PORT_S1: case CCI_PORT_S2: case CCI_PORT_S3: case CCI_PORT_S4: /* Slave Interface */ if (pmu_is_valid_slave_event(ev_code)) return hw_event; break; case CCI_PORT_M0: case CCI_PORT_M1: case CCI_PORT_M2: /* Master Interface */ if (pmu_is_valid_master_event(ev_code)) return hw_event; break; } return -ENOENT; } static int pmu_is_valid_counter(struct arm_pmu *cci_pmu, int idx) { return CCI_PMU_CYCLE_CNTR_IDX <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu); } static u32 pmu_read_register(int idx, unsigned int offset) { return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset); } static void pmu_write_register(u32 value, int idx, unsigned int offset) { return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset); } static void pmu_disable_counter(int idx) { pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL); } static void pmu_enable_counter(int idx) { pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL); } static void pmu_set_event(int idx, unsigned long event) { event &= CCI_PMU_EVENT_MASK; pmu_write_register(event, idx, CCI_PMU_EVT_SEL); } static u32 pmu_get_max_counters(void) { u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) & CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT; /* add 1 for cycle counter */ return n_cnts + 1; } static struct pmu_hw_events *pmu_get_hw_events(void) { return &pmu->hw_events; } static int pmu_get_event_idx(struct pmu_hw_events *hw, struct perf_event *event) { struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu); struct hw_perf_event *hw_event = &event->hw; unsigned long cci_event = hw_event->config_base & CCI_PMU_EVENT_MASK; int idx; if (cci_event == CCI_PMU_CYCLES) { if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask)) return -EAGAIN; return CCI_PMU_CYCLE_CNTR_IDX; } for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx) if (!test_and_set_bit(idx, hw->used_mask)) return idx; /* No counters available */ return -EAGAIN; } static int pmu_map_event(struct perf_event *event) { int mapping; u8 config = event->attr.config & CCI_PMU_EVENT_MASK; if (event->attr.type < PERF_TYPE_MAX) return -ENOENT; if (config == CCI_PMU_CYCLES) mapping = config; else mapping = pmu_validate_hw_event(config); return mapping; } static int pmu_request_irq(struct arm_pmu *cci_pmu, irq_handler_t handler) { int i; struct platform_device *pmu_device = cci_pmu->plat_device; if (unlikely(!pmu_device)) return -ENODEV; if (pmu->nr_irqs < 1) { dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n"); return -ENODEV; } /* * Register all available CCI PMU interrupts. In the interrupt handler * we iterate over the counters checking for interrupt source (the * overflowing counter) and clear it. * * This should allow handling of non-unique interrupt for the counters. */ for (i = 0; i < pmu->nr_irqs; i++) { int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED, "arm-cci-pmu", cci_pmu); if (err) { dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n", pmu->irqs[i]); return err; } set_bit(i, &pmu->active_irqs); } return 0; } static irqreturn_t pmu_handle_irq(int irq_num, void *dev) { unsigned long flags; struct arm_pmu *cci_pmu = (struct arm_pmu *)dev; struct pmu_hw_events *events = cci_pmu->get_hw_events(); struct perf_sample_data data; struct pt_regs *regs; int idx, handled = IRQ_NONE; raw_spin_lock_irqsave(&events->pmu_lock, flags); regs = get_irq_regs(); /* * Iterate over counters and update the corresponding perf events. * This should work regardless of whether we have per-counter overflow * interrupt or a combined overflow interrupt. */ for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) { struct perf_event *event = events->events[idx]; struct hw_perf_event *hw_counter; if (!event) continue; hw_counter = &event->hw; /* Did this counter overflow? */ if (!pmu_read_register(idx, CCI_PMU_OVRFLW) & CCI_PMU_OVRFLW_FLAG) continue; pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW); handled = IRQ_HANDLED; armpmu_event_update(event); perf_sample_data_init(&data, 0, hw_counter->last_period); if (!armpmu_event_set_period(event)) continue; if (perf_event_overflow(event, &data, regs)) cci_pmu->disable(event); } raw_spin_unlock_irqrestore(&events->pmu_lock, flags); return IRQ_RETVAL(handled); } static void pmu_free_irq(struct arm_pmu *cci_pmu) { int i; for (i = 0; i < pmu->nr_irqs; i++) { if (!test_and_clear_bit(i, &pmu->active_irqs)) continue; free_irq(pmu->irqs[i], cci_pmu); } } static void pmu_enable_event(struct perf_event *event) { unsigned long flags; struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu); struct pmu_hw_events *events = cci_pmu->get_hw_events(); struct hw_perf_event *hw_counter = &event->hw; int idx = hw_counter->idx; if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); return; } raw_spin_lock_irqsave(&events->pmu_lock, flags); /* Configure the event to count, unless you are counting cycles */ if (idx != CCI_PMU_CYCLE_CNTR_IDX) pmu_set_event(idx, hw_counter->config_base); pmu_enable_counter(idx); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static void pmu_disable_event(struct perf_event *event) { struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu); struct hw_perf_event *hw_counter = &event->hw; int idx = hw_counter->idx; if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); return; } pmu_disable_counter(idx); } static void pmu_start(struct arm_pmu *cci_pmu) { u32 val; unsigned long flags; struct pmu_hw_events *events = cci_pmu->get_hw_events(); raw_spin_lock_irqsave(&events->pmu_lock, flags); /* Enable all the PMU counters. */ val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN; writel(val, cci_ctrl_base + CCI_PMCR); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static void pmu_stop(struct arm_pmu *cci_pmu) { u32 val; unsigned long flags; struct pmu_hw_events *events = cci_pmu->get_hw_events(); raw_spin_lock_irqsave(&events->pmu_lock, flags); /* Disable all the PMU counters. */ val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN; writel(val, cci_ctrl_base + CCI_PMCR); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static u32 pmu_read_counter(struct perf_event *event) { struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu); struct hw_perf_event *hw_counter = &event->hw; int idx = hw_counter->idx; u32 value; if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); return 0; } value = pmu_read_register(idx, CCI_PMU_CNTR); return value; } static void pmu_write_counter(struct perf_event *event, u32 value) { struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu); struct hw_perf_event *hw_counter = &event->hw; int idx = hw_counter->idx; if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); else pmu_write_register(value, idx, CCI_PMU_CNTR); } static int cci_pmu_init(struct arm_pmu *cci_pmu, struct platform_device *pdev) { *cci_pmu = (struct arm_pmu){ .name = PMU_NAME, .max_period = (1LLU << 32) - 1, .get_hw_events = pmu_get_hw_events, .get_event_idx = pmu_get_event_idx, .map_event = pmu_map_event, .request_irq = pmu_request_irq, .handle_irq = pmu_handle_irq, .free_irq = pmu_free_irq, .enable = pmu_enable_event, .disable = pmu_disable_event, .start = pmu_start, .stop = pmu_stop, .read_counter = pmu_read_counter, .write_counter = pmu_write_counter, }; cci_pmu->plat_device = pdev; cci_pmu->num_events = pmu_get_max_counters(); return armpmu_register(cci_pmu, -1); } static const struct of_device_id arm_cci_pmu_matches[] = { { .compatible = "arm,cci-400-pmu", }, {}, }; static int cci_pmu_probe(struct platform_device *pdev) { struct resource *res; int i, ret, irq; pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL); if (!pmu) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); pmu->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(pmu->base)) return -ENOMEM; /* * CCI PMU has 5 overflow signals - one per counter; but some may be tied * together to a common interrupt. */ pmu->nr_irqs = 0; for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) { irq = platform_get_irq(pdev, i); if (irq < 0) break; if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs)) continue; pmu->irqs[pmu->nr_irqs++] = irq; } /* * Ensure that the device tree has as many interrupts as the number * of counters. */ if (i < CCI_PMU_MAX_HW_EVENTS) { dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n", i, CCI_PMU_MAX_HW_EVENTS); return -EINVAL; } pmu->port_ranges = port_range_by_rev(); if (!pmu->port_ranges) { dev_warn(&pdev->dev, "CCI PMU version not supported\n"); return -EINVAL; } pmu->cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*(pmu->cci_pmu)), GFP_KERNEL); if (!pmu->cci_pmu) return -ENOMEM; pmu->hw_events.events = pmu->events; pmu->hw_events.used_mask = pmu->used_mask; raw_spin_lock_init(&pmu->hw_events.pmu_lock); ret = cci_pmu_init(pmu->cci_pmu, pdev); if (ret) return ret; return 0; } static int cci_platform_probe(struct platform_device *pdev) { if (!cci_probed()) return -ENODEV; return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev); } #endif /* CONFIG_HW_PERF_EVENTS */ struct cpu_port { u64 mpidr; u32 port; }; /* * Use the port MSB as valid flag, shift can be made dynamic * by computing number of bits required for port indexes. * Code disabling CCI cpu ports runs with D-cache invalidated * and SCTLR bit clear so data accesses must be kept to a minimum * to improve performance; for now shift is left static to * avoid one more data access while disabling the CCI port. */ #define PORT_VALID_SHIFT 31 #define PORT_VALID (0x1 << PORT_VALID_SHIFT) static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr) { port->port = PORT_VALID | index; port->mpidr = mpidr; } static inline bool cpu_port_is_valid(struct cpu_port *port) { return !!(port->port & PORT_VALID); } static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr) { return port->mpidr == (mpidr & MPIDR_HWID_BITMASK); } static struct cpu_port cpu_port[NR_CPUS]; /** * __cci_ace_get_port - Function to retrieve the port index connected to * a cpu or device. * * @dn: device node of the device to look-up * @type: port type * * Return value: * - CCI port index if success * - -ENODEV if failure */ static int __cci_ace_get_port(struct device_node *dn, int type) { int i; bool ace_match; struct device_node *cci_portn; cci_portn = of_parse_phandle(dn, "cci-control-port", 0); for (i = 0; i < nb_cci_ports; i++) { ace_match = ports[i].type == type; if (ace_match && cci_portn == ports[i].dn) return i; } return -ENODEV; } int cci_ace_get_port(struct device_node *dn) { return __cci_ace_get_port(dn, ACE_LITE_PORT); } EXPORT_SYMBOL_GPL(cci_ace_get_port); static void cci_ace_init_ports(void) { int port, cpu; struct device_node *cpun; /* * Port index look-up speeds up the function disabling ports by CPU, * since the logical to port index mapping is done once and does * not change after system boot. * The stashed index array is initialized for all possible CPUs * at probe time. */ for_each_possible_cpu(cpu) { /* too early to use cpu->of_node */ cpun = of_get_cpu_node(cpu, NULL); if (WARN(!cpun, "Missing cpu device node\n")) continue; port = __cci_ace_get_port(cpun, ACE_PORT); if (port < 0) continue; init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu)); } for_each_possible_cpu(cpu) { WARN(!cpu_port_is_valid(&cpu_port[cpu]), "CPU %u does not have an associated CCI port\n", cpu); } } /* * Functions to enable/disable a CCI interconnect slave port * * They are called by low-level power management code to disable slave * interfaces snoops and DVM broadcast. * Since they may execute with cache data allocation disabled and * after the caches have been cleaned and invalidated the functions provide * no explicit locking since they may run with D-cache disabled, so normal * cacheable kernel locks based on ldrex/strex may not work. * Locking has to be provided by BSP implementations to ensure proper * operations. */ /** * cci_port_control() - function to control a CCI port * * @port: index of the port to setup * @enable: if true enables the port, if false disables it */ static void notrace cci_port_control(unsigned int port, bool enable) { void __iomem *base = ports[port].base; writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL); /* * This function is called from power down procedures * and must not execute any instruction that might * cause the processor to be put in a quiescent state * (eg wfi). Hence, cpu_relax() can not be added to this * read loop to optimize power, since it might hide possibly * disruptive operations. */ while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1) ; } /** * cci_disable_port_by_cpu() - function to disable a CCI port by CPU * reference * * @mpidr: mpidr of the CPU whose CCI port should be disabled * * Disabling a CCI port for a CPU implies disabling the CCI port * controlling that CPU cluster. Code disabling CPU CCI ports * must make sure that the CPU running the code is the last active CPU * in the cluster ie all other CPUs are quiescent in a low power state. * * Return: * 0 on success * -ENODEV on port look-up failure */ int notrace cci_disable_port_by_cpu(u64 mpidr) { int cpu; bool is_valid; for (cpu = 0; cpu < nr_cpu_ids; cpu++) { is_valid = cpu_port_is_valid(&cpu_port[cpu]); if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) { cci_port_control(cpu_port[cpu].port, false); return 0; } } return -ENODEV; } EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu); /** * cci_enable_port_for_self() - enable a CCI port for calling CPU * * Enabling a CCI port for the calling CPU implies enabling the CCI * port controlling that CPU's cluster. Caller must make sure that the * CPU running the code is the first active CPU in the cluster and all * other CPUs are quiescent in a low power state or waiting for this CPU * to complete the CCI initialization. * * Because this is called when the MMU is still off and with no stack, * the code must be position independent and ideally rely on callee * clobbered registers only. To achieve this we must code this function * entirely in assembler. * * On success this returns with the proper CCI port enabled. In case of * any failure this never returns as the inability to enable the CCI is * fatal and there is no possible recovery at this stage. */ asmlinkage void __naked cci_enable_port_for_self(void) { asm volatile ("\n" " .arch armv7-a\n" " mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n" " and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n" " adr r1, 5f \n" " ldr r2, [r1] \n" " add r1, r1, r2 @ &cpu_port \n" " add ip, r1, %[sizeof_cpu_port] \n" /* Loop over the cpu_port array looking for a matching MPIDR */ "1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n" " cmp r2, r0 @ compare MPIDR \n" " bne 2f \n" /* Found a match, now test port validity */ " ldr r3, [r1, %[offsetof_cpu_port_port]] \n" " tst r3, #"__stringify(PORT_VALID)" \n" " bne 3f \n" /* no match, loop with the next cpu_port entry */ "2: add r1, r1, %[sizeof_struct_cpu_port] \n" " cmp r1, ip @ done? \n" " blo 1b \n" /* CCI port not found -- cheaply try to stall this CPU */ "cci_port_not_found: \n" " wfi \n" " wfe \n" " b cci_port_not_found \n" /* Use matched port index to look up the corresponding ports entry */ "3: bic r3, r3, #"__stringify(PORT_VALID)" \n" " adr r0, 6f \n" " ldmia r0, {r1, r2} \n" " sub r1, r1, r0 @ virt - phys \n" " ldr r0, [r0, r2] @ *(&ports) \n" " mov r2, %[sizeof_struct_ace_port] \n" " mla r0, r2, r3, r0 @ &ports[index] \n" " sub r0, r0, r1 @ virt_to_phys() \n" /* Enable the CCI port */ " ldr r0, [r0, %[offsetof_port_phys]] \n" " mov r3, %[cci_enable_req]\n" " str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n" /* poll the status reg for completion */ " adr r1, 7f \n" " ldr r0, [r1] \n" " ldr r0, [r0, r1] @ cci_ctrl_base \n" "4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n" " tst r1, %[cci_control_status_bits] \n" " bne 4b \n" " mov r0, #0 \n" " bx lr \n" " .align 2 \n" "5: .word cpu_port - . \n" "6: .word . \n" " .word ports - 6b \n" "7: .word cci_ctrl_phys - . \n" : : [sizeof_cpu_port] "i" (sizeof(cpu_port)), [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ), [cci_control_status_bits] "i" cpu_to_le32(1), #ifndef __ARMEB__ [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)), #else [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4), #endif [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)), [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)), [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)), [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) ); unreachable(); } /** * __cci_control_port_by_device() - function to control a CCI port by device * reference * * @dn: device node pointer of the device whose CCI port should be * controlled * @enable: if true enables the port, if false disables it * * Return: * 0 on success * -ENODEV on port look-up failure */ int notrace __cci_control_port_by_device(struct device_node *dn, bool enable) { int port; if (!dn) return -ENODEV; port = __cci_ace_get_port(dn, ACE_LITE_PORT); if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n", dn->full_name)) return -ENODEV; cci_port_control(port, enable); return 0; } EXPORT_SYMBOL_GPL(__cci_control_port_by_device); /** * __cci_control_port_by_index() - function to control a CCI port by port index * * @port: port index previously retrieved with cci_ace_get_port() * @enable: if true enables the port, if false disables it * * Return: * 0 on success * -ENODEV on port index out of range * -EPERM if operation carried out on an ACE PORT */ int notrace __cci_control_port_by_index(u32 port, bool enable) { if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT) return -ENODEV; /* * CCI control for ports connected to CPUS is extremely fragile * and must be made to go through a specific and controlled * interface (ie cci_disable_port_by_cpu(); control by general purpose * indexing is therefore disabled for ACE ports. */ if (ports[port].type == ACE_PORT) return -EPERM; cci_port_control(port, enable); return 0; } EXPORT_SYMBOL_GPL(__cci_control_port_by_index); static const struct cci_nb_ports cci400_ports = { .nb_ace = 2, .nb_ace_lite = 3 }; static const struct of_device_id arm_cci_matches[] = { {.compatible = "arm,cci-400", .data = &cci400_ports }, {}, }; static const struct of_device_id arm_cci_ctrl_if_matches[] = { {.compatible = "arm,cci-400-ctrl-if", }, {}, }; static int cci_probe(void) { struct cci_nb_ports const *cci_config; int ret, i, nb_ace = 0, nb_ace_lite = 0; struct device_node *np, *cp; struct resource res; const char *match_str; bool is_ace; np = of_find_matching_node(NULL, arm_cci_matches); if (!np) return -ENODEV; cci_config = of_match_node(arm_cci_matches, np)->data; if (!cci_config) return -ENODEV; nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite; ports = kcalloc(sizeof(*ports), nb_cci_ports, GFP_KERNEL); if (!ports) return -ENOMEM; ret = of_address_to_resource(np, 0, &res); if (!ret) { cci_ctrl_base = ioremap(res.start, resource_size(&res)); cci_ctrl_phys = res.start; } if (ret || !cci_ctrl_base) { WARN(1, "unable to ioremap CCI ctrl\n"); ret = -ENXIO; goto memalloc_err; } for_each_child_of_node(np, cp) { if (!of_match_node(arm_cci_ctrl_if_matches, cp)) continue; i = nb_ace + nb_ace_lite; if (i >= nb_cci_ports) break; if (of_property_read_string(cp, "interface-type", &match_str)) { WARN(1, "node %s missing interface-type property\n", cp->full_name); continue; } is_ace = strcmp(match_str, "ace") == 0; if (!is_ace && strcmp(match_str, "ace-lite")) { WARN(1, "node %s containing invalid interface-type property, skipping it\n", cp->full_name); continue; } ret = of_address_to_resource(cp, 0, &res); if (!ret) { ports[i].base = ioremap(res.start, resource_size(&res)); ports[i].phys = res.start; } if (ret || !ports[i].base) { WARN(1, "unable to ioremap CCI port %d\n", i); continue; } if (is_ace) { if (WARN_ON(nb_ace >= cci_config->nb_ace)) continue; ports[i].type = ACE_PORT; ++nb_ace; } else { if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite)) continue; ports[i].type = ACE_LITE_PORT; ++nb_ace_lite; } ports[i].dn = cp; } /* initialize a stashed array of ACE ports to speed-up look-up */ cci_ace_init_ports(); /* * Multi-cluster systems may need this data when non-coherent, during * cluster power-up/power-down. Make sure it reaches main memory. */ sync_cache_w(&cci_ctrl_base); sync_cache_w(&cci_ctrl_phys); sync_cache_w(&ports); sync_cache_w(&cpu_port); __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports); pr_info("ARM CCI driver probed\n"); return 0; memalloc_err: kfree(ports); return ret; } static int cci_init_status = -EAGAIN; static DEFINE_MUTEX(cci_probing); static int cci_init(void) { if (cci_init_status != -EAGAIN) return cci_init_status; mutex_lock(&cci_probing); if (cci_init_status == -EAGAIN) cci_init_status = cci_probe(); mutex_unlock(&cci_probing); return cci_init_status; } #ifdef CONFIG_HW_PERF_EVENTS static struct platform_driver cci_pmu_driver = { .driver = { .name = DRIVER_NAME_PMU, .of_match_table = arm_cci_pmu_matches, }, .probe = cci_pmu_probe, }; static struct platform_driver cci_platform_driver = { .driver = { .name = DRIVER_NAME, .of_match_table = arm_cci_matches, }, .probe = cci_platform_probe, }; static int __init cci_platform_init(void) { int ret; ret = platform_driver_register(&cci_pmu_driver); if (ret) return ret; return platform_driver_register(&cci_platform_driver); } #else static int __init cci_platform_init(void) { return 0; } #endif /* * To sort out early init calls ordering a helper function is provided to * check if the CCI driver has beed initialized. Function check if the driver * has been initialized, if not it calls the init function that probes * the driver and updates the return value. */ bool cci_probed(void) { return cci_init() == 0; } EXPORT_SYMBOL_GPL(cci_probed); early_initcall(cci_init); core_initcall(cci_platform_init); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ARM CCI support");