/* * libata-sff.c - helper library for PCI IDE BMDMA * * Maintained by: Jeff Garzik * Please ALWAYS copy linux-ide@vger.kernel.org * on emails. * * Copyright 2003-2006 Red Hat, Inc. All rights reserved. * Copyright 2003-2006 Jeff Garzik * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/DocBook/libata.* * * Hardware documentation available from http://www.t13.org/ and * http://www.sata-io.org/ * */ #include #include #include #include #include "libata.h" const struct ata_port_operations ata_sff_port_ops = { .inherits = &ata_base_port_ops, .qc_prep = ata_sff_qc_prep, .qc_issue = ata_sff_qc_issue, .freeze = ata_sff_freeze, .thaw = ata_sff_thaw, .prereset = ata_sff_prereset, .softreset = ata_sff_softreset, .postreset = ata_sff_postreset, .error_handler = ata_sff_error_handler, .post_internal_cmd = ata_sff_post_internal_cmd, .sff_dev_select = ata_sff_dev_select, .sff_check_status = ata_sff_check_status, .sff_tf_load = ata_sff_tf_load, .sff_tf_read = ata_sff_tf_read, .sff_exec_command = ata_sff_exec_command, .sff_data_xfer = ata_sff_data_xfer, .sff_irq_on = ata_sff_irq_on, .sff_irq_clear = ata_sff_irq_clear, .port_start = ata_sff_port_start, }; const struct ata_port_operations ata_bmdma_port_ops = { .inherits = &ata_sff_port_ops, .mode_filter = ata_bmdma_mode_filter, .bmdma_setup = ata_bmdma_setup, .bmdma_start = ata_bmdma_start, .bmdma_stop = ata_bmdma_stop, .bmdma_status = ata_bmdma_status, }; /** * ata_fill_sg - Fill PCI IDE PRD table * @qc: Metadata associated with taskfile to be transferred * * Fill PCI IDE PRD (scatter-gather) table with segments * associated with the current disk command. * * LOCKING: * spin_lock_irqsave(host lock) * */ static void ata_fill_sg(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scatterlist *sg; unsigned int si, pi; pi = 0; for_each_sg(qc->sg, sg, qc->n_elem, si) { u32 addr, offset; u32 sg_len, len; /* determine if physical DMA addr spans 64K boundary. * Note h/w doesn't support 64-bit, so we unconditionally * truncate dma_addr_t to u32. */ addr = (u32) sg_dma_address(sg); sg_len = sg_dma_len(sg); while (sg_len) { offset = addr & 0xffff; len = sg_len; if ((offset + sg_len) > 0x10000) len = 0x10000 - offset; ap->prd[pi].addr = cpu_to_le32(addr); ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff); VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); pi++; sg_len -= len; addr += len; } } ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); } /** * ata_fill_sg_dumb - Fill PCI IDE PRD table * @qc: Metadata associated with taskfile to be transferred * * Fill PCI IDE PRD (scatter-gather) table with segments * associated with the current disk command. Perform the fill * so that we avoid writing any length 64K records for * controllers that don't follow the spec. * * LOCKING: * spin_lock_irqsave(host lock) * */ static void ata_fill_sg_dumb(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scatterlist *sg; unsigned int si, pi; pi = 0; for_each_sg(qc->sg, sg, qc->n_elem, si) { u32 addr, offset; u32 sg_len, len, blen; /* determine if physical DMA addr spans 64K boundary. * Note h/w doesn't support 64-bit, so we unconditionally * truncate dma_addr_t to u32. */ addr = (u32) sg_dma_address(sg); sg_len = sg_dma_len(sg); while (sg_len) { offset = addr & 0xffff; len = sg_len; if ((offset + sg_len) > 0x10000) len = 0x10000 - offset; blen = len & 0xffff; ap->prd[pi].addr = cpu_to_le32(addr); if (blen == 0) { /* Some PATA chipsets like the CS5530 can't cope with 0x0000 meaning 64K as the spec says */ ap->prd[pi].flags_len = cpu_to_le32(0x8000); blen = 0x8000; ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000); } ap->prd[pi].flags_len = cpu_to_le32(blen); VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); pi++; sg_len -= len; addr += len; } } ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); } /** * ata_sff_qc_prep - Prepare taskfile for submission * @qc: Metadata associated with taskfile to be prepared * * Prepare ATA taskfile for submission. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_sff_qc_prep(struct ata_queued_cmd *qc) { if (!(qc->flags & ATA_QCFLAG_DMAMAP)) return; ata_fill_sg(qc); } /** * ata_sff_dumb_qc_prep - Prepare taskfile for submission * @qc: Metadata associated with taskfile to be prepared * * Prepare ATA taskfile for submission. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc) { if (!(qc->flags & ATA_QCFLAG_DMAMAP)) return; ata_fill_sg_dumb(qc); } /** * ata_sff_check_status - Read device status reg & clear interrupt * @ap: port where the device is * * Reads ATA taskfile status register for currently-selected device * and return its value. This also clears pending interrupts * from this device * * LOCKING: * Inherited from caller. */ u8 ata_sff_check_status(struct ata_port *ap) { return ioread8(ap->ioaddr.status_addr); } /** * ata_sff_altstatus - Read device alternate status reg * @ap: port where the device is * * Reads ATA taskfile alternate status register for * currently-selected device and return its value. * * Note: may NOT be used as the check_altstatus() entry in * ata_port_operations. * * LOCKING: * Inherited from caller. */ u8 ata_sff_altstatus(struct ata_port *ap) { if (ap->ops->sff_check_altstatus) return ap->ops->sff_check_altstatus(ap); return ioread8(ap->ioaddr.altstatus_addr); } /** * ata_sff_busy_sleep - sleep until BSY clears, or timeout * @ap: port containing status register to be polled * @tmout_pat: impatience timeout * @tmout: overall timeout * * Sleep until ATA Status register bit BSY clears, * or a timeout occurs. * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ int ata_sff_busy_sleep(struct ata_port *ap, unsigned long tmout_pat, unsigned long tmout) { unsigned long timer_start, timeout; u8 status; status = ata_sff_busy_wait(ap, ATA_BUSY, 300); timer_start = jiffies; timeout = timer_start + tmout_pat; while (status != 0xff && (status & ATA_BUSY) && time_before(jiffies, timeout)) { msleep(50); status = ata_sff_busy_wait(ap, ATA_BUSY, 3); } if (status != 0xff && (status & ATA_BUSY)) ata_port_printk(ap, KERN_WARNING, "port is slow to respond, please be patient " "(Status 0x%x)\n", status); timeout = timer_start + tmout; while (status != 0xff && (status & ATA_BUSY) && time_before(jiffies, timeout)) { msleep(50); status = ap->ops->sff_check_status(ap); } if (status == 0xff) return -ENODEV; if (status & ATA_BUSY) { ata_port_printk(ap, KERN_ERR, "port failed to respond " "(%lu secs, Status 0x%x)\n", tmout / HZ, status); return -EBUSY; } return 0; } /** * ata_sff_wait_ready - sleep until BSY clears, or timeout * @ap: port containing status register to be polled * @deadline: deadline jiffies for the operation * * Sleep until ATA Status register bit BSY clears, or timeout * occurs. * * LOCKING: * Kernel thread context (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ int ata_sff_wait_ready(struct ata_port *ap, unsigned long deadline) { unsigned long start = jiffies; int warned = 0; while (1) { u8 status = ap->ops->sff_check_status(ap); unsigned long now = jiffies; if (!(status & ATA_BUSY)) return 0; if (!ata_link_online(&ap->link) && status == 0xff) return -ENODEV; if (time_after(now, deadline)) return -EBUSY; if (!warned && time_after(now, start + 5 * HZ) && (deadline - now > 3 * HZ)) { ata_port_printk(ap, KERN_WARNING, "port is slow to respond, please be patient " "(Status 0x%x)\n", status); warned = 1; } msleep(50); } } /** * ata_sff_dev_select - Select device 0/1 on ATA bus * @ap: ATA channel to manipulate * @device: ATA device (numbered from zero) to select * * Use the method defined in the ATA specification to * make either device 0, or device 1, active on the * ATA channel. Works with both PIO and MMIO. * * May be used as the dev_select() entry in ata_port_operations. * * LOCKING: * caller. */ void ata_sff_dev_select(struct ata_port *ap, unsigned int device) { u8 tmp; if (device == 0) tmp = ATA_DEVICE_OBS; else tmp = ATA_DEVICE_OBS | ATA_DEV1; iowrite8(tmp, ap->ioaddr.device_addr); ata_sff_pause(ap); /* needed; also flushes, for mmio */ } /** * ata_dev_select - Select device 0/1 on ATA bus * @ap: ATA channel to manipulate * @device: ATA device (numbered from zero) to select * @wait: non-zero to wait for Status register BSY bit to clear * @can_sleep: non-zero if context allows sleeping * * Use the method defined in the ATA specification to * make either device 0, or device 1, active on the * ATA channel. * * This is a high-level version of ata_sff_dev_select(), which * additionally provides the services of inserting the proper * pauses and status polling, where needed. * * LOCKING: * caller. */ void ata_dev_select(struct ata_port *ap, unsigned int device, unsigned int wait, unsigned int can_sleep) { if (ata_msg_probe(ap)) ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " "device %u, wait %u\n", device, wait); if (wait) ata_wait_idle(ap); ap->ops->sff_dev_select(ap, device); if (wait) { if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) msleep(150); ata_wait_idle(ap); } } /** * ata_sff_irq_on - Enable interrupts on a port. * @ap: Port on which interrupts are enabled. * * Enable interrupts on a legacy IDE device using MMIO or PIO, * wait for idle, clear any pending interrupts. * * LOCKING: * Inherited from caller. */ u8 ata_sff_irq_on(struct ata_port *ap) { struct ata_ioports *ioaddr = &ap->ioaddr; u8 tmp; ap->ctl &= ~ATA_NIEN; ap->last_ctl = ap->ctl; if (ioaddr->ctl_addr) iowrite8(ap->ctl, ioaddr->ctl_addr); tmp = ata_wait_idle(ap); ap->ops->sff_irq_clear(ap); return tmp; } /** * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt. * @ap: Port associated with this ATA transaction. * * Clear interrupt and error flags in DMA status register. * * May be used as the irq_clear() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_sff_irq_clear(struct ata_port *ap) { void __iomem *mmio = ap->ioaddr.bmdma_addr; if (!mmio) return; iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); } /** * ata_sff_tf_load - send taskfile registers to host controller * @ap: Port to which output is sent * @tf: ATA taskfile register set * * Outputs ATA taskfile to standard ATA host controller. * * LOCKING: * Inherited from caller. */ void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; if (tf->ctl != ap->last_ctl) { if (ioaddr->ctl_addr) iowrite8(tf->ctl, ioaddr->ctl_addr); ap->last_ctl = tf->ctl; ata_wait_idle(ap); } if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { WARN_ON(!ioaddr->ctl_addr); iowrite8(tf->hob_feature, ioaddr->feature_addr); iowrite8(tf->hob_nsect, ioaddr->nsect_addr); iowrite8(tf->hob_lbal, ioaddr->lbal_addr); iowrite8(tf->hob_lbam, ioaddr->lbam_addr); iowrite8(tf->hob_lbah, ioaddr->lbah_addr); VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, tf->hob_lbah); } if (is_addr) { iowrite8(tf->feature, ioaddr->feature_addr); iowrite8(tf->nsect, ioaddr->nsect_addr); iowrite8(tf->lbal, ioaddr->lbal_addr); iowrite8(tf->lbam, ioaddr->lbam_addr); iowrite8(tf->lbah, ioaddr->lbah_addr); VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", tf->feature, tf->nsect, tf->lbal, tf->lbam, tf->lbah); } if (tf->flags & ATA_TFLAG_DEVICE) { iowrite8(tf->device, ioaddr->device_addr); VPRINTK("device 0x%X\n", tf->device); } ata_wait_idle(ap); } /** * ata_sff_tf_read - input device's ATA taskfile shadow registers * @ap: Port from which input is read * @tf: ATA taskfile register set for storing input * * Reads ATA taskfile registers for currently-selected device * into @tf. Assumes the device has a fully SFF compliant task file * layout and behaviour. If you device does not (eg has a different * status method) then you will need to provide a replacement tf_read * * LOCKING: * Inherited from caller. */ void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; tf->command = ata_sff_check_status(ap); tf->feature = ioread8(ioaddr->error_addr); tf->nsect = ioread8(ioaddr->nsect_addr); tf->lbal = ioread8(ioaddr->lbal_addr); tf->lbam = ioread8(ioaddr->lbam_addr); tf->lbah = ioread8(ioaddr->lbah_addr); tf->device = ioread8(ioaddr->device_addr); if (tf->flags & ATA_TFLAG_LBA48) { if (likely(ioaddr->ctl_addr)) { iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); tf->hob_feature = ioread8(ioaddr->error_addr); tf->hob_nsect = ioread8(ioaddr->nsect_addr); tf->hob_lbal = ioread8(ioaddr->lbal_addr); tf->hob_lbam = ioread8(ioaddr->lbam_addr); tf->hob_lbah = ioread8(ioaddr->lbah_addr); iowrite8(tf->ctl, ioaddr->ctl_addr); ap->last_ctl = tf->ctl; } else WARN_ON(1); } } /** * ata_sff_exec_command - issue ATA command to host controller * @ap: port to which command is being issued * @tf: ATA taskfile register set * * Issues ATA command, with proper synchronization with interrupt * handler / other threads. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) { DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); iowrite8(tf->command, ap->ioaddr.command_addr); ata_sff_pause(ap); } /** * ata_tf_to_host - issue ATA taskfile to host controller * @ap: port to which command is being issued * @tf: ATA taskfile register set * * Issues ATA taskfile register set to ATA host controller, * with proper synchronization with interrupt handler and * other threads. * * LOCKING: * spin_lock_irqsave(host lock) */ static inline void ata_tf_to_host(struct ata_port *ap, const struct ata_taskfile *tf) { ap->ops->sff_tf_load(ap, tf); ap->ops->sff_exec_command(ap, tf); } /** * ata_sff_data_xfer - Transfer data by PIO * @dev: device to target * @buf: data buffer * @buflen: buffer length * @rw: read/write * * Transfer data from/to the device data register by PIO. * * LOCKING: * Inherited from caller. * * RETURNS: * Bytes consumed. */ unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, unsigned int buflen, int rw) { struct ata_port *ap = dev->link->ap; void __iomem *data_addr = ap->ioaddr.data_addr; unsigned int words = buflen >> 1; /* Transfer multiple of 2 bytes */ if (rw == READ) ioread16_rep(data_addr, buf, words); else iowrite16_rep(data_addr, buf, words); /* Transfer trailing 1 byte, if any. */ if (unlikely(buflen & 0x01)) { __le16 align_buf[1] = { 0 }; unsigned char *trailing_buf = buf + buflen - 1; if (rw == READ) { align_buf[0] = cpu_to_le16(ioread16(data_addr)); memcpy(trailing_buf, align_buf, 1); } else { memcpy(align_buf, trailing_buf, 1); iowrite16(le16_to_cpu(align_buf[0]), data_addr); } words++; } return words << 1; } /** * ata_sff_data_xfer_noirq - Transfer data by PIO * @dev: device to target * @buf: data buffer * @buflen: buffer length * @rw: read/write * * Transfer data from/to the device data register by PIO. Do the * transfer with interrupts disabled. * * LOCKING: * Inherited from caller. * * RETURNS: * Bytes consumed. */ unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, unsigned int buflen, int rw) { unsigned long flags; unsigned int consumed; local_irq_save(flags); consumed = ata_sff_data_xfer(dev, buf, buflen, rw); local_irq_restore(flags); return consumed; } /** * ata_pio_sector - Transfer a sector of data. * @qc: Command on going * * Transfer qc->sect_size bytes of data from/to the ATA device. * * LOCKING: * Inherited from caller. */ static void ata_pio_sector(struct ata_queued_cmd *qc) { int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); struct ata_port *ap = qc->ap; struct page *page; unsigned int offset; unsigned char *buf; if (qc->curbytes == qc->nbytes - qc->sect_size) ap->hsm_task_state = HSM_ST_LAST; page = sg_page(qc->cursg); offset = qc->cursg->offset + qc->cursg_ofs; /* get the current page and offset */ page = nth_page(page, (offset >> PAGE_SHIFT)); offset %= PAGE_SIZE; DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); if (PageHighMem(page)) { unsigned long flags; /* FIXME: use a bounce buffer */ local_irq_save(flags); buf = kmap_atomic(page, KM_IRQ0); /* do the actual data transfer */ ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); kunmap_atomic(buf, KM_IRQ0); local_irq_restore(flags); } else { buf = page_address(page); ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, do_write); } qc->curbytes += qc->sect_size; qc->cursg_ofs += qc->sect_size; if (qc->cursg_ofs == qc->cursg->length) { qc->cursg = sg_next(qc->cursg); qc->cursg_ofs = 0; } } /** * ata_pio_sectors - Transfer one or many sectors. * @qc: Command on going * * Transfer one or many sectors of data from/to the * ATA device for the DRQ request. * * LOCKING: * Inherited from caller. */ static void ata_pio_sectors(struct ata_queued_cmd *qc) { if (is_multi_taskfile(&qc->tf)) { /* READ/WRITE MULTIPLE */ unsigned int nsect; WARN_ON(qc->dev->multi_count == 0); nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, qc->dev->multi_count); while (nsect--) ata_pio_sector(qc); } else ata_pio_sector(qc); ata_sff_altstatus(qc->ap); /* flush */ } /** * atapi_send_cdb - Write CDB bytes to hardware * @ap: Port to which ATAPI device is attached. * @qc: Taskfile currently active * * When device has indicated its readiness to accept * a CDB, this function is called. Send the CDB. * * LOCKING: * caller. */ static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) { /* send SCSI cdb */ DPRINTK("send cdb\n"); WARN_ON(qc->dev->cdb_len < 12); ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); ata_sff_altstatus(ap); /* flush */ switch (qc->tf.protocol) { case ATAPI_PROT_PIO: ap->hsm_task_state = HSM_ST; break; case ATAPI_PROT_NODATA: ap->hsm_task_state = HSM_ST_LAST; break; case ATAPI_PROT_DMA: ap->hsm_task_state = HSM_ST_LAST; /* initiate bmdma */ ap->ops->bmdma_start(qc); break; } } /** * __atapi_pio_bytes - Transfer data from/to the ATAPI device. * @qc: Command on going * @bytes: number of bytes * * Transfer Transfer data from/to the ATAPI device. * * LOCKING: * Inherited from caller. * */ static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) { int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; struct ata_port *ap = qc->ap; struct ata_device *dev = qc->dev; struct ata_eh_info *ehi = &dev->link->eh_info; struct scatterlist *sg; struct page *page; unsigned char *buf; unsigned int offset, count, consumed; next_sg: sg = qc->cursg; if (unlikely(!sg)) { ata_ehi_push_desc(ehi, "unexpected or too much trailing data " "buf=%u cur=%u bytes=%u", qc->nbytes, qc->curbytes, bytes); return -1; } page = sg_page(sg); offset = sg->offset + qc->cursg_ofs; /* get the current page and offset */ page = nth_page(page, (offset >> PAGE_SHIFT)); offset %= PAGE_SIZE; /* don't overrun current sg */ count = min(sg->length - qc->cursg_ofs, bytes); /* don't cross page boundaries */ count = min(count, (unsigned int)PAGE_SIZE - offset); DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); if (PageHighMem(page)) { unsigned long flags; /* FIXME: use bounce buffer */ local_irq_save(flags); buf = kmap_atomic(page, KM_IRQ0); /* do the actual data transfer */ consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw); kunmap_atomic(buf, KM_IRQ0); local_irq_restore(flags); } else { buf = page_address(page); consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw); } bytes -= min(bytes, consumed); qc->curbytes += count; qc->cursg_ofs += count; if (qc->cursg_ofs == sg->length) { qc->cursg = sg_next(qc->cursg); qc->cursg_ofs = 0; } /* consumed can be larger than count only for the last transfer */ WARN_ON(qc->cursg && count != consumed); if (bytes) goto next_sg; return 0; } /** * atapi_pio_bytes - Transfer data from/to the ATAPI device. * @qc: Command on going * * Transfer Transfer data from/to the ATAPI device. * * LOCKING: * Inherited from caller. */ static void atapi_pio_bytes(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct ata_device *dev = qc->dev; struct ata_eh_info *ehi = &dev->link->eh_info; unsigned int ireason, bc_lo, bc_hi, bytes; int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; /* Abuse qc->result_tf for temp storage of intermediate TF * here to save some kernel stack usage. * For normal completion, qc->result_tf is not relevant. For * error, qc->result_tf is later overwritten by ata_qc_complete(). * So, the correctness of qc->result_tf is not affected. */ ap->ops->sff_tf_read(ap, &qc->result_tf); ireason = qc->result_tf.nsect; bc_lo = qc->result_tf.lbam; bc_hi = qc->result_tf.lbah; bytes = (bc_hi << 8) | bc_lo; /* shall be cleared to zero, indicating xfer of data */ if (unlikely(ireason & (1 << 0))) goto atapi_check; /* make sure transfer direction matches expected */ i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; if (unlikely(do_write != i_write)) goto atapi_check; if (unlikely(!bytes)) goto atapi_check; VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); if (unlikely(__atapi_pio_bytes(qc, bytes))) goto err_out; ata_sff_altstatus(ap); /* flush */ return; atapi_check: ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", ireason, bytes); err_out: qc->err_mask |= AC_ERR_HSM; ap->hsm_task_state = HSM_ST_ERR; } /** * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. * @ap: the target ata_port * @qc: qc on going * * RETURNS: * 1 if ok in workqueue, 0 otherwise. */ static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) { if (qc->tf.flags & ATA_TFLAG_POLLING) return 1; if (ap->hsm_task_state == HSM_ST_FIRST) { if (qc->tf.protocol == ATA_PROT_PIO && (qc->tf.flags & ATA_TFLAG_WRITE)) return 1; if (ata_is_atapi(qc->tf.protocol) && !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) return 1; } return 0; } /** * ata_hsm_qc_complete - finish a qc running on standard HSM * @qc: Command to complete * @in_wq: 1 if called from workqueue, 0 otherwise * * Finish @qc which is running on standard HSM. * * LOCKING: * If @in_wq is zero, spin_lock_irqsave(host lock). * Otherwise, none on entry and grabs host lock. */ static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) { struct ata_port *ap = qc->ap; unsigned long flags; if (ap->ops->error_handler) { if (in_wq) { spin_lock_irqsave(ap->lock, flags); /* EH might have kicked in while host lock is * released. */ qc = ata_qc_from_tag(ap, qc->tag); if (qc) { if (likely(!(qc->err_mask & AC_ERR_HSM))) { ap->ops->sff_irq_on(ap); ata_qc_complete(qc); } else ata_port_freeze(ap); } spin_unlock_irqrestore(ap->lock, flags); } else { if (likely(!(qc->err_mask & AC_ERR_HSM))) ata_qc_complete(qc); else ata_port_freeze(ap); } } else { if (in_wq) { spin_lock_irqsave(ap->lock, flags); ap->ops->sff_irq_on(ap); ata_qc_complete(qc); spin_unlock_irqrestore(ap->lock, flags); } else ata_qc_complete(qc); } } /** * ata_sff_hsm_move - move the HSM to the next state. * @ap: the target ata_port * @qc: qc on going * @status: current device status * @in_wq: 1 if called from workqueue, 0 otherwise * * RETURNS: * 1 when poll next status needed, 0 otherwise. */ int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, u8 status, int in_wq) { unsigned long flags = 0; int poll_next; WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); /* Make sure ata_sff_qc_issue() does not throw things * like DMA polling into the workqueue. Notice that * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). */ WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); fsm_start: DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); switch (ap->hsm_task_state) { case HSM_ST_FIRST: /* Send first data block or PACKET CDB */ /* If polling, we will stay in the work queue after * sending the data. Otherwise, interrupt handler * takes over after sending the data. */ poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); /* check device status */ if (unlikely((status & ATA_DRQ) == 0)) { /* handle BSY=0, DRQ=0 as error */ if (likely(status & (ATA_ERR | ATA_DF))) /* device stops HSM for abort/error */ qc->err_mask |= AC_ERR_DEV; else /* HSM violation. Let EH handle this */ qc->err_mask |= AC_ERR_HSM; ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } /* Device should not ask for data transfer (DRQ=1) * when it finds something wrong. * We ignore DRQ here and stop the HSM by * changing hsm_task_state to HSM_ST_ERR and * let the EH abort the command or reset the device. */ if (unlikely(status & (ATA_ERR | ATA_DF))) { /* Some ATAPI tape drives forget to clear the ERR bit * when doing the next command (mostly request sense). * We ignore ERR here to workaround and proceed sending * the CDB. */ if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device error, " "dev_stat 0x%X\n", status); qc->err_mask |= AC_ERR_HSM; ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } } /* Send the CDB (atapi) or the first data block (ata pio out). * During the state transition, interrupt handler shouldn't * be invoked before the data transfer is complete and * hsm_task_state is changed. Hence, the following locking. */ if (in_wq) spin_lock_irqsave(ap->lock, flags); if (qc->tf.protocol == ATA_PROT_PIO) { /* PIO data out protocol. * send first data block. */ /* ata_pio_sectors() might change the state * to HSM_ST_LAST. so, the state is changed here * before ata_pio_sectors(). */ ap->hsm_task_state = HSM_ST; ata_pio_sectors(qc); } else /* send CDB */ atapi_send_cdb(ap, qc); if (in_wq) spin_unlock_irqrestore(ap->lock, flags); /* if polling, ata_pio_task() handles the rest. * otherwise, interrupt handler takes over from here. */ break; case HSM_ST: /* complete command or read/write the data register */ if (qc->tf.protocol == ATAPI_PROT_PIO) { /* ATAPI PIO protocol */ if ((status & ATA_DRQ) == 0) { /* No more data to transfer or device error. * Device error will be tagged in HSM_ST_LAST. */ ap->hsm_task_state = HSM_ST_LAST; goto fsm_start; } /* Device should not ask for data transfer (DRQ=1) * when it finds something wrong. * We ignore DRQ here and stop the HSM by * changing hsm_task_state to HSM_ST_ERR and * let the EH abort the command or reset the device. */ if (unlikely(status & (ATA_ERR | ATA_DF))) { ata_port_printk(ap, KERN_WARNING, "DRQ=1 with " "device error, dev_stat 0x%X\n", status); qc->err_mask |= AC_ERR_HSM; ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } atapi_pio_bytes(qc); if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) /* bad ireason reported by device */ goto fsm_start; } else { /* ATA PIO protocol */ if (unlikely((status & ATA_DRQ) == 0)) { /* handle BSY=0, DRQ=0 as error */ if (likely(status & (ATA_ERR | ATA_DF))) /* device stops HSM for abort/error */ qc->err_mask |= AC_ERR_DEV; else /* HSM violation. Let EH handle this. * Phantom devices also trigger this * condition. Mark hint. */ qc->err_mask |= AC_ERR_HSM | AC_ERR_NODEV_HINT; ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } /* For PIO reads, some devices may ask for * data transfer (DRQ=1) alone with ERR=1. * We respect DRQ here and transfer one * block of junk data before changing the * hsm_task_state to HSM_ST_ERR. * * For PIO writes, ERR=1 DRQ=1 doesn't make * sense since the data block has been * transferred to the device. */ if (unlikely(status & (ATA_ERR | ATA_DF))) { /* data might be corrputed */ qc->err_mask |= AC_ERR_DEV; if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { ata_pio_sectors(qc); status = ata_wait_idle(ap); } if (status & (ATA_BUSY | ATA_DRQ)) qc->err_mask |= AC_ERR_HSM; /* ata_pio_sectors() might change the * state to HSM_ST_LAST. so, the state * is changed after ata_pio_sectors(). */ ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } ata_pio_sectors(qc); if (ap->hsm_task_state == HSM_ST_LAST && (!(qc->tf.flags & ATA_TFLAG_WRITE))) { /* all data read */ status = ata_wait_idle(ap); goto fsm_start; } } poll_next = 1; break; case HSM_ST_LAST: if (unlikely(!ata_ok(status))) { qc->err_mask |= __ac_err_mask(status); ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } /* no more data to transfer */ DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", ap->print_id, qc->dev->devno, status); WARN_ON(qc->err_mask); ap->hsm_task_state = HSM_ST_IDLE; /* complete taskfile transaction */ ata_hsm_qc_complete(qc, in_wq); poll_next = 0; break; case HSM_ST_ERR: /* make sure qc->err_mask is available to * know what's wrong and recover */ WARN_ON(qc->err_mask == 0); ap->hsm_task_state = HSM_ST_IDLE; /* complete taskfile transaction */ ata_hsm_qc_complete(qc, in_wq); poll_next = 0; break; default: poll_next = 0; BUG(); } return poll_next; } void ata_pio_task(struct work_struct *work) { struct ata_port *ap = container_of(work, struct ata_port, port_task.work); struct ata_queued_cmd *qc = ap->port_task_data; u8 status; int poll_next; fsm_start: WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); /* * This is purely heuristic. This is a fast path. * Sometimes when we enter, BSY will be cleared in * a chk-status or two. If not, the drive is probably seeking * or something. Snooze for a couple msecs, then * chk-status again. If still busy, queue delayed work. */ status = ata_sff_busy_wait(ap, ATA_BUSY, 5); if (status & ATA_BUSY) { msleep(2); status = ata_sff_busy_wait(ap, ATA_BUSY, 10); if (status & ATA_BUSY) { ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE); return; } } /* move the HSM */ poll_next = ata_sff_hsm_move(ap, qc, status, 1); /* another command or interrupt handler * may be running at this point. */ if (poll_next) goto fsm_start; } /** * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner * @qc: command to issue to device * * Using various libata functions and hooks, this function * starts an ATA command. ATA commands are grouped into * classes called "protocols", and issuing each type of protocol * is slightly different. * * May be used as the qc_issue() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, AC_ERR_* mask on failure */ unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; /* Use polling pio if the LLD doesn't handle * interrupt driven pio and atapi CDB interrupt. */ if (ap->flags & ATA_FLAG_PIO_POLLING) { switch (qc->tf.protocol) { case ATA_PROT_PIO: case ATA_PROT_NODATA: case ATAPI_PROT_PIO: case ATAPI_PROT_NODATA: qc->tf.flags |= ATA_TFLAG_POLLING; break; case ATAPI_PROT_DMA: if (qc->dev->flags & ATA_DFLAG_CDB_INTR) /* see ata_dma_blacklisted() */ BUG(); break; default: break; } } /* select the device */ ata_dev_select(ap, qc->dev->devno, 1, 0); /* start the command */ switch (qc->tf.protocol) { case ATA_PROT_NODATA: if (qc->tf.flags & ATA_TFLAG_POLLING) ata_qc_set_polling(qc); ata_tf_to_host(ap, &qc->tf); ap->hsm_task_state = HSM_ST_LAST; if (qc->tf.flags & ATA_TFLAG_POLLING) ata_pio_queue_task(ap, qc, 0); break; case ATA_PROT_DMA: WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ ap->ops->bmdma_setup(qc); /* set up bmdma */ ap->ops->bmdma_start(qc); /* initiate bmdma */ ap->hsm_task_state = HSM_ST_LAST; break; case ATA_PROT_PIO: if (qc->tf.flags & ATA_TFLAG_POLLING) ata_qc_set_polling(qc); ata_tf_to_host(ap, &qc->tf); if (qc->tf.flags & ATA_TFLAG_WRITE) { /* PIO data out protocol */ ap->hsm_task_state = HSM_ST_FIRST; ata_pio_queue_task(ap, qc, 0); /* always send first data block using * the ata_pio_task() codepath. */ } else { /* PIO data in protocol */ ap->hsm_task_state = HSM_ST; if (qc->tf.flags & ATA_TFLAG_POLLING) ata_pio_queue_task(ap, qc, 0); /* if polling, ata_pio_task() handles the rest. * otherwise, interrupt handler takes over from here. */ } break; case ATAPI_PROT_PIO: case ATAPI_PROT_NODATA: if (qc->tf.flags & ATA_TFLAG_POLLING) ata_qc_set_polling(qc); ata_tf_to_host(ap, &qc->tf); ap->hsm_task_state = HSM_ST_FIRST; /* send cdb by polling if no cdb interrupt */ if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || (qc->tf.flags & ATA_TFLAG_POLLING)) ata_pio_queue_task(ap, qc, 0); break; case ATAPI_PROT_DMA: WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ ap->ops->bmdma_setup(qc); /* set up bmdma */ ap->hsm_task_state = HSM_ST_FIRST; /* send cdb by polling if no cdb interrupt */ if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ata_pio_queue_task(ap, qc, 0); break; default: WARN_ON(1); return AC_ERR_SYSTEM; } return 0; } /** * ata_sff_host_intr - Handle host interrupt for given (port, task) * @ap: Port on which interrupt arrived (possibly...) * @qc: Taskfile currently active in engine * * Handle host interrupt for given queued command. Currently, * only DMA interrupts are handled. All other commands are * handled via polling with interrupts disabled (nIEN bit). * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * One if interrupt was handled, zero if not (shared irq). */ inline unsigned int ata_sff_host_intr(struct ata_port *ap, struct ata_queued_cmd *qc) { struct ata_eh_info *ehi = &ap->link.eh_info; u8 status, host_stat = 0; VPRINTK("ata%u: protocol %d task_state %d\n", ap->print_id, qc->tf.protocol, ap->hsm_task_state); /* Check whether we are expecting interrupt in this state */ switch (ap->hsm_task_state) { case HSM_ST_FIRST: /* Some pre-ATAPI-4 devices assert INTRQ * at this state when ready to receive CDB. */ /* Check the ATA_DFLAG_CDB_INTR flag is enough here. * The flag was turned on only for atapi devices. No * need to check ata_is_atapi(qc->tf.protocol) again. */ if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) goto idle_irq; break; case HSM_ST_LAST: if (qc->tf.protocol == ATA_PROT_DMA || qc->tf.protocol == ATAPI_PROT_DMA) { /* check status of DMA engine */ host_stat = ap->ops->bmdma_status(ap); VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); /* if it's not our irq... */ if (!(host_stat & ATA_DMA_INTR)) goto idle_irq; /* before we do anything else, clear DMA-Start bit */ ap->ops->bmdma_stop(qc); if (unlikely(host_stat & ATA_DMA_ERR)) { /* error when transfering data to/from memory */ qc->err_mask |= AC_ERR_HOST_BUS; ap->hsm_task_state = HSM_ST_ERR; } } break; case HSM_ST: break; default: goto idle_irq; } /* check altstatus */ status = ata_sff_altstatus(ap); if (status & ATA_BUSY) goto idle_irq; /* check main status, clearing INTRQ */ status = ap->ops->sff_check_status(ap); if (unlikely(status & ATA_BUSY)) goto idle_irq; /* ack bmdma irq events */ ap->ops->sff_irq_clear(ap); ata_sff_hsm_move(ap, qc, status, 0); if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || qc->tf.protocol == ATAPI_PROT_DMA)) ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); return 1; /* irq handled */ idle_irq: ap->stats.idle_irq++; #ifdef ATA_IRQ_TRAP if ((ap->stats.idle_irq % 1000) == 0) { ap->ops->sff_check_status(ap); ap->ops->sff_irq_clear(ap); ata_port_printk(ap, KERN_WARNING, "irq trap\n"); return 1; } #endif return 0; /* irq not handled */ } /** * ata_sff_interrupt - Default ATA host interrupt handler * @irq: irq line (unused) * @dev_instance: pointer to our ata_host information structure * * Default interrupt handler for PCI IDE devices. Calls * ata_sff_host_intr() for each port that is not disabled. * * LOCKING: * Obtains host lock during operation. * * RETURNS: * IRQ_NONE or IRQ_HANDLED. */ irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) { struct ata_host *host = dev_instance; unsigned int i; unsigned int handled = 0; unsigned long flags; /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ spin_lock_irqsave(&host->lock, flags); for (i = 0; i < host->n_ports; i++) { struct ata_port *ap; ap = host->ports[i]; if (ap && !(ap->flags & ATA_FLAG_DISABLED)) { struct ata_queued_cmd *qc; qc = ata_qc_from_tag(ap, ap->link.active_tag); if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && (qc->flags & ATA_QCFLAG_ACTIVE)) handled |= ata_sff_host_intr(ap, qc); } } spin_unlock_irqrestore(&host->lock, flags); return IRQ_RETVAL(handled); } /** * ata_sff_freeze - Freeze SFF controller port * @ap: port to freeze * * Freeze BMDMA controller port. * * LOCKING: * Inherited from caller. */ void ata_sff_freeze(struct ata_port *ap) { struct ata_ioports *ioaddr = &ap->ioaddr; ap->ctl |= ATA_NIEN; ap->last_ctl = ap->ctl; if (ioaddr->ctl_addr) iowrite8(ap->ctl, ioaddr->ctl_addr); /* Under certain circumstances, some controllers raise IRQ on * ATA_NIEN manipulation. Also, many controllers fail to mask * previously pending IRQ on ATA_NIEN assertion. Clear it. */ ap->ops->sff_check_status(ap); ap->ops->sff_irq_clear(ap); } /** * ata_sff_thaw - Thaw SFF controller port * @ap: port to thaw * * Thaw SFF controller port. * * LOCKING: * Inherited from caller. */ void ata_sff_thaw(struct ata_port *ap) { /* clear & re-enable interrupts */ ap->ops->sff_check_status(ap); ap->ops->sff_irq_clear(ap); ap->ops->sff_irq_on(ap); } /** * ata_sff_prereset - prepare SFF link for reset * @link: SFF link to be reset * @deadline: deadline jiffies for the operation * * SFF link @link is about to be reset. Initialize it. It first * calls ata_std_prereset() and wait for !BSY if the port is * being softreset. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise. */ int ata_sff_prereset(struct ata_link *link, unsigned long deadline) { struct ata_port *ap = link->ap; struct ata_eh_context *ehc = &link->eh_context; int rc; rc = ata_std_prereset(link, deadline); if (rc) return rc; /* if we're about to do hardreset, nothing more to do */ if (ehc->i.action & ATA_EH_HARDRESET) return 0; /* wait for !BSY if we don't know that no device is attached */ if (!ata_link_offline(link)) { rc = ata_sff_wait_ready(ap, deadline); if (rc && rc != -ENODEV) { ata_link_printk(link, KERN_WARNING, "device not ready " "(errno=%d), forcing hardreset\n", rc); ehc->i.action |= ATA_EH_HARDRESET; } } return 0; } /** * ata_devchk - PATA device presence detection * @ap: ATA channel to examine * @device: Device to examine (starting at zero) * * This technique was originally described in * Hale Landis's ATADRVR (www.ata-atapi.com), and * later found its way into the ATA/ATAPI spec. * * Write a pattern to the ATA shadow registers, * and if a device is present, it will respond by * correctly storing and echoing back the * ATA shadow register contents. * * LOCKING: * caller. */ static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) { struct ata_ioports *ioaddr = &ap->ioaddr; u8 nsect, lbal; ap->ops->sff_dev_select(ap, device); iowrite8(0x55, ioaddr->nsect_addr); iowrite8(0xaa, ioaddr->lbal_addr); iowrite8(0xaa, ioaddr->nsect_addr); iowrite8(0x55, ioaddr->lbal_addr); iowrite8(0x55, ioaddr->nsect_addr); iowrite8(0xaa, ioaddr->lbal_addr); nsect = ioread8(ioaddr->nsect_addr); lbal = ioread8(ioaddr->lbal_addr); if ((nsect == 0x55) && (lbal == 0xaa)) return 1; /* we found a device */ return 0; /* nothing found */ } /** * ata_sff_dev_classify - Parse returned ATA device signature * @dev: ATA device to classify (starting at zero) * @present: device seems present * @r_err: Value of error register on completion * * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, * an ATA/ATAPI-defined set of values is placed in the ATA * shadow registers, indicating the results of device detection * and diagnostics. * * Select the ATA device, and read the values from the ATA shadow * registers. Then parse according to the Error register value, * and the spec-defined values examined by ata_dev_classify(). * * LOCKING: * caller. * * RETURNS: * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. */ unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, u8 *r_err) { struct ata_port *ap = dev->link->ap; struct ata_taskfile tf; unsigned int class; u8 err; ap->ops->sff_dev_select(ap, dev->devno); memset(&tf, 0, sizeof(tf)); ap->ops->sff_tf_read(ap, &tf); err = tf.feature; if (r_err) *r_err = err; /* see if device passed diags: continue and warn later */ if (err == 0) /* diagnostic fail : do nothing _YET_ */ dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; else if (err == 1) /* do nothing */ ; else if ((dev->devno == 0) && (err == 0x81)) /* do nothing */ ; else return ATA_DEV_NONE; /* determine if device is ATA or ATAPI */ class = ata_dev_classify(&tf); if (class == ATA_DEV_UNKNOWN) { /* If the device failed diagnostic, it's likely to * have reported incorrect device signature too. * Assume ATA device if the device seems present but * device signature is invalid with diagnostic * failure. */ if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) class = ATA_DEV_ATA; else class = ATA_DEV_NONE; } else if ((class == ATA_DEV_ATA) && (ap->ops->sff_check_status(ap) == 0)) class = ATA_DEV_NONE; return class; } static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask, unsigned long deadline) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int dev0 = devmask & (1 << 0); unsigned int dev1 = devmask & (1 << 1); int rc, ret = 0; /* if device 0 was found in ata_devchk, wait for its * BSY bit to clear */ if (dev0) { rc = ata_sff_wait_ready(ap, deadline); if (rc) { if (rc != -ENODEV) return rc; ret = rc; } } /* if device 1 was found in ata_devchk, wait for register * access briefly, then wait for BSY to clear. */ if (dev1) { int i; ap->ops->sff_dev_select(ap, 1); /* Wait for register access. Some ATAPI devices fail * to set nsect/lbal after reset, so don't waste too * much time on it. We're gonna wait for !BSY anyway. */ for (i = 0; i < 2; i++) { u8 nsect, lbal; nsect = ioread8(ioaddr->nsect_addr); lbal = ioread8(ioaddr->lbal_addr); if ((nsect == 1) && (lbal == 1)) break; msleep(50); /* give drive a breather */ } rc = ata_sff_wait_ready(ap, deadline); if (rc) { if (rc != -ENODEV) return rc; ret = rc; } } /* is all this really necessary? */ ap->ops->sff_dev_select(ap, 0); if (dev1) ap->ops->sff_dev_select(ap, 1); if (dev0) ap->ops->sff_dev_select(ap, 0); return ret; } /** * ata_sff_wait_after_reset - wait before checking status after reset * @ap: port containing status register to be polled * @deadline: deadline jiffies for the operation * * After reset, we need to pause a while before reading status. * Also, certain combination of controller and device report 0xff * for some duration (e.g. until SATA PHY is up and running) * which is interpreted as empty port in ATA world. This * function also waits for such devices to get out of 0xff * status. * * LOCKING: * Kernel thread context (may sleep). */ void ata_sff_wait_after_reset(struct ata_port *ap, unsigned long deadline) { unsigned long until = jiffies + ATA_TMOUT_FF_WAIT; if (time_before(until, deadline)) deadline = until; /* Spec mandates ">= 2ms" before checking status. We wait * 150ms, because that was the magic delay used for ATAPI * devices in Hale Landis's ATADRVR, for the period of time * between when the ATA command register is written, and then * status is checked. Because waiting for "a while" before * checking status is fine, post SRST, we perform this magic * delay here as well. * * Old drivers/ide uses the 2mS rule and then waits for ready. */ msleep(150); /* Wait for 0xff to clear. Some SATA devices take a long time * to clear 0xff after reset. For example, HHD424020F7SV00 * iVDR needs >= 800ms while. Quantum GoVault needs even more * than that. * * Note that some PATA controllers (pata_ali) explode if * status register is read more than once when there's no * device attached. */ if (ap->flags & ATA_FLAG_SATA) { while (1) { u8 status = ap->ops->sff_check_status(ap); if (status != 0xff || time_after(jiffies, deadline)) return; msleep(50); } } } static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, unsigned long deadline) { struct ata_ioports *ioaddr = &ap->ioaddr; DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); /* software reset. causes dev0 to be selected */ iowrite8(ap->ctl, ioaddr->ctl_addr); udelay(20); /* FIXME: flush */ iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); udelay(20); /* FIXME: flush */ iowrite8(ap->ctl, ioaddr->ctl_addr); /* wait a while before checking status */ ata_sff_wait_after_reset(ap, deadline); /* Before we perform post reset processing we want to see if * the bus shows 0xFF because the odd clown forgets the D7 * pulldown resistor. */ if (ap->ops->sff_check_status(ap) == 0xFF) return -ENODEV; return ata_bus_post_reset(ap, devmask, deadline); } /** * ata_sff_softreset - reset host port via ATA SRST * @link: ATA link to reset * @classes: resulting classes of attached devices * @deadline: deadline jiffies for the operation * * Reset host port using ATA SRST. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise. */ int ata_sff_softreset(struct ata_link *link, unsigned int *classes, unsigned long deadline) { struct ata_port *ap = link->ap; unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; unsigned int devmask = 0; int rc; u8 err; DPRINTK("ENTER\n"); if (ata_link_offline(link)) { classes[0] = ATA_DEV_NONE; goto out; } /* determine if device 0/1 are present */ if (ata_devchk(ap, 0)) devmask |= (1 << 0); if (slave_possible && ata_devchk(ap, 1)) devmask |= (1 << 1); /* select device 0 again */ ap->ops->sff_dev_select(ap, 0); /* issue bus reset */ DPRINTK("about to softreset, devmask=%x\n", devmask); rc = ata_bus_softreset(ap, devmask, deadline); /* if link is occupied, -ENODEV too is an error */ if (rc && (rc != -ENODEV || sata_scr_valid(link))) { ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); return rc; } /* determine by signature whether we have ATA or ATAPI devices */ classes[0] = ata_sff_dev_classify(&link->device[0], devmask & (1 << 0), &err); if (slave_possible && err != 0x81) classes[1] = ata_sff_dev_classify(&link->device[1], devmask & (1 << 1), &err); out: DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); return 0; } /** * sata_sff_hardreset - reset host port via SATA phy reset * @link: link to reset * @class: resulting class of attached device * @deadline: deadline jiffies for the operation * * SATA phy-reset host port using DET bits of SControl register, * wait for !BSY and classify the attached device. * * LOCKING: * Kernel thread context (may sleep) * * RETURNS: * 0 on success, -errno otherwise. */ int sata_sff_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline) { struct ata_port *ap = link->ap; const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); int rc; DPRINTK("ENTER\n"); /* do hardreset */ rc = sata_link_hardreset(link, timing, deadline); if (rc) { ata_link_printk(link, KERN_ERR, "COMRESET failed (errno=%d)\n", rc); return rc; } /* TODO: phy layer with polling, timeouts, etc. */ if (ata_link_offline(link)) { *class = ATA_DEV_NONE; DPRINTK("EXIT, link offline\n"); return 0; } /* wait a while before checking status */ ata_sff_wait_after_reset(ap, deadline); /* If PMP is supported, we have to do follow-up SRST. Note * that some PMPs don't send D2H Reg FIS after hardreset at * all if the first port is empty. Wait for it just for a * second and request follow-up SRST. */ if (ap->flags & ATA_FLAG_PMP) { ata_sff_wait_ready(ap, jiffies + HZ); return -EAGAIN; } rc = ata_sff_wait_ready(ap, deadline); /* link occupied, -ENODEV too is an error */ if (rc) { ata_link_printk(link, KERN_ERR, "COMRESET failed (errno=%d)\n", rc); return rc; } ap->ops->sff_dev_select(ap, 0); /* probably unnecessary */ *class = ata_sff_dev_classify(link->device, 1, NULL); DPRINTK("EXIT, class=%u\n", *class); return 0; } /** * ata_sff_postreset - SFF postreset callback * @link: the target SFF ata_link * @classes: classes of attached devices * * This function is invoked after a successful reset. It first * calls ata_std_postreset() and performs SFF specific postreset * processing. * * LOCKING: * Kernel thread context (may sleep) */ void ata_sff_postreset(struct ata_link *link, unsigned int *classes) { struct ata_port *ap = link->ap; ata_std_postreset(link, classes); /* is double-select really necessary? */ if (classes[0] != ATA_DEV_NONE) ap->ops->sff_dev_select(ap, 1); if (classes[1] != ATA_DEV_NONE) ap->ops->sff_dev_select(ap, 0); /* bail out if no device is present */ if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { DPRINTK("EXIT, no device\n"); return; } /* set up device control */ if (ap->ioaddr.ctl_addr) iowrite8(ap->ctl, ap->ioaddr.ctl_addr); } /** * ata_sff_error_handler - Stock error handler for BMDMA controller * @ap: port to handle error for * * Stock error handler for SFF controller. It can handle both * PATA and SATA controllers. Many controllers should be able to * use this EH as-is or with some added handling before and * after. * * LOCKING: * Kernel thread context (may sleep) */ void ata_sff_error_handler(struct ata_port *ap) { ata_reset_fn_t softreset = ap->ops->softreset; ata_reset_fn_t hardreset = ap->ops->hardreset; struct ata_queued_cmd *qc; unsigned long flags; int thaw = 0; qc = __ata_qc_from_tag(ap, ap->link.active_tag); if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) qc = NULL; /* reset PIO HSM and stop DMA engine */ spin_lock_irqsave(ap->lock, flags); ap->hsm_task_state = HSM_ST_IDLE; if (ap->ioaddr.bmdma_addr && qc && (qc->tf.protocol == ATA_PROT_DMA || qc->tf.protocol == ATAPI_PROT_DMA)) { u8 host_stat; host_stat = ap->ops->bmdma_status(ap); /* BMDMA controllers indicate host bus error by * setting DMA_ERR bit and timing out. As it wasn't * really a timeout event, adjust error mask and * cancel frozen state. */ if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { qc->err_mask = AC_ERR_HOST_BUS; thaw = 1; } ap->ops->bmdma_stop(qc); } ata_sff_altstatus(ap); ap->ops->sff_check_status(ap); ap->ops->sff_irq_clear(ap); spin_unlock_irqrestore(ap->lock, flags); if (thaw) ata_eh_thaw_port(ap); /* PIO and DMA engines have been stopped, perform recovery */ /* ata_sff_softreset and sata_sff_hardreset are inherited to * all SFF drivers from ata_sff_port_ops. Ignore softreset if * ctl isn't accessible. Ignore hardreset if SCR access isn't * available. */ if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) softreset = NULL; if (hardreset == sata_sff_hardreset && !sata_scr_valid(&ap->link)) hardreset = NULL; ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, ap->ops->postreset); } /** * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller * @qc: internal command to clean up * * LOCKING: * Kernel thread context (may sleep) */ void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc) { if (qc->ap->ioaddr.bmdma_addr) ata_bmdma_stop(qc); } /** * ata_sff_port_start - Set port up for dma. * @ap: Port to initialize * * Called just after data structures for each port are * initialized. Allocates space for PRD table if the device * is DMA capable SFF. * * May be used as the port_start() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ int ata_sff_port_start(struct ata_port *ap) { if (ap->ioaddr.bmdma_addr) return ata_port_start(ap); return 0; } /** * ata_sff_std_ports - initialize ioaddr with standard port offsets. * @ioaddr: IO address structure to be initialized * * Utility function which initializes data_addr, error_addr, * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, * device_addr, status_addr, and command_addr to standard offsets * relative to cmd_addr. * * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. */ void ata_sff_std_ports(struct ata_ioports *ioaddr) { ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; } unsigned long ata_bmdma_mode_filter(struct ata_device *adev, unsigned long xfer_mask) { /* Filter out DMA modes if the device has been configured by the BIOS as PIO only */ if (adev->link->ap->ioaddr.bmdma_addr == NULL) xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); return xfer_mask; } /** * ata_bmdma_setup - Set up PCI IDE BMDMA transaction * @qc: Info associated with this ATA transaction. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_bmdma_setup(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); u8 dmactl; /* load PRD table addr. */ mb(); /* make sure PRD table writes are visible to controller */ iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); /* specify data direction, triple-check start bit is clear */ dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); if (!rw) dmactl |= ATA_DMA_WR; iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); /* issue r/w command */ ap->ops->sff_exec_command(ap, &qc->tf); } /** * ata_bmdma_start - Start a PCI IDE BMDMA transaction * @qc: Info associated with this ATA transaction. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_bmdma_start(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; u8 dmactl; /* start host DMA transaction */ dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); /* Strictly, one may wish to issue an ioread8() here, to * flush the mmio write. However, control also passes * to the hardware at this point, and it will interrupt * us when we are to resume control. So, in effect, * we don't care when the mmio write flushes. * Further, a read of the DMA status register _immediately_ * following the write may not be what certain flaky hardware * is expected, so I think it is best to not add a readb() * without first all the MMIO ATA cards/mobos. * Or maybe I'm just being paranoid. * * FIXME: The posting of this write means I/O starts are * unneccessarily delayed for MMIO */ } /** * ata_bmdma_stop - Stop PCI IDE BMDMA transfer * @qc: Command we are ending DMA for * * Clears the ATA_DMA_START flag in the dma control register * * May be used as the bmdma_stop() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_bmdma_stop(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; void __iomem *mmio = ap->ioaddr.bmdma_addr; /* clear start/stop bit */ iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, mmio + ATA_DMA_CMD); /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ ata_sff_altstatus(ap); /* dummy read */ } /** * ata_bmdma_status - Read PCI IDE BMDMA status * @ap: Port associated with this ATA transaction. * * Read and return BMDMA status register. * * May be used as the bmdma_status() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) */ u8 ata_bmdma_status(struct ata_port *ap) { return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); } /** * ata_bus_reset - reset host port and associated ATA channel * @ap: port to reset * * This is typically the first time we actually start issuing * commands to the ATA channel. We wait for BSY to clear, then * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its * result. Determine what devices, if any, are on the channel * by looking at the device 0/1 error register. Look at the signature * stored in each device's taskfile registers, to determine if * the device is ATA or ATAPI. * * LOCKING: * PCI/etc. bus probe sem. * Obtains host lock. * * SIDE EFFECTS: * Sets ATA_FLAG_DISABLED if bus reset fails. * * DEPRECATED: * This function is only for drivers which still use old EH and * will be removed soon. */ void ata_bus_reset(struct ata_port *ap) { struct ata_device *device = ap->link.device; struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; u8 err; unsigned int dev0, dev1 = 0, devmask = 0; int rc; DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); /* determine if device 0/1 are present */ if (ap->flags & ATA_FLAG_SATA_RESET) dev0 = 1; else { dev0 = ata_devchk(ap, 0); if (slave_possible) dev1 = ata_devchk(ap, 1); } if (dev0) devmask |= (1 << 0); if (dev1) devmask |= (1 << 1); /* select device 0 again */ ap->ops->sff_dev_select(ap, 0); /* issue bus reset */ if (ap->flags & ATA_FLAG_SRST) { rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ); if (rc && rc != -ENODEV) goto err_out; } /* * determine by signature whether we have ATA or ATAPI devices */ device[0].class = ata_sff_dev_classify(&device[0], dev0, &err); if ((slave_possible) && (err != 0x81)) device[1].class = ata_sff_dev_classify(&device[1], dev1, &err); /* is double-select really necessary? */ if (device[1].class != ATA_DEV_NONE) ap->ops->sff_dev_select(ap, 1); if (device[0].class != ATA_DEV_NONE) ap->ops->sff_dev_select(ap, 0); /* if no devices were detected, disable this port */ if ((device[0].class == ATA_DEV_NONE) && (device[1].class == ATA_DEV_NONE)) goto err_out; if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { /* set up device control for ATA_FLAG_SATA_RESET */ iowrite8(ap->ctl, ioaddr->ctl_addr); } DPRINTK("EXIT\n"); return; err_out: ata_port_printk(ap, KERN_ERR, "disabling port\n"); ata_port_disable(ap); DPRINTK("EXIT\n"); } #ifdef CONFIG_PCI /** * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex * @pdev: PCI device * * Some PCI ATA devices report simplex mode but in fact can be told to * enter non simplex mode. This implements the necessary logic to * perform the task on such devices. Calling it on other devices will * have -undefined- behaviour. */ int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) { unsigned long bmdma = pci_resource_start(pdev, 4); u8 simplex; if (bmdma == 0) return -ENOENT; simplex = inb(bmdma + 0x02); outb(simplex & 0x60, bmdma + 0x02); simplex = inb(bmdma + 0x02); if (simplex & 0x80) return -EOPNOTSUPP; return 0; } /** * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host * @host: target ATA host * * Acquire PCI BMDMA resources and initialize @host accordingly. * * LOCKING: * Inherited from calling layer (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ int ata_pci_bmdma_init(struct ata_host *host) { struct device *gdev = host->dev; struct pci_dev *pdev = to_pci_dev(gdev); int i, rc; /* No BAR4 allocation: No DMA */ if (pci_resource_start(pdev, 4) == 0) return 0; /* TODO: If we get no DMA mask we should fall back to PIO */ rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); if (rc) return rc; rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); if (rc) return rc; /* request and iomap DMA region */ rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); if (rc) { dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n"); return -ENOMEM; } host->iomap = pcim_iomap_table(pdev); for (i = 0; i < 2; i++) { struct ata_port *ap = host->ports[i]; void __iomem *bmdma = host->iomap[4] + 8 * i; if (ata_port_is_dummy(ap)) continue; ap->ioaddr.bmdma_addr = bmdma; if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && (ioread8(bmdma + 2) & 0x80)) host->flags |= ATA_HOST_SIMPLEX; ata_port_desc(ap, "bmdma 0x%llx", (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); } return 0; } static int ata_resources_present(struct pci_dev *pdev, int port) { int i; /* Check the PCI resources for this channel are enabled */ port = port * 2; for (i = 0; i < 2; i ++) { if (pci_resource_start(pdev, port + i) == 0 || pci_resource_len(pdev, port + i) == 0) return 0; } return 1; } /** * ata_pci_sff_init_host - acquire native PCI ATA resources and init host * @host: target ATA host * * Acquire native PCI ATA resources for @host and initialize the * first two ports of @host accordingly. Ports marked dummy are * skipped and allocation failure makes the port dummy. * * Note that native PCI resources are valid even for legacy hosts * as we fix up pdev resources array early in boot, so this * function can be used for both native and legacy SFF hosts. * * LOCKING: * Inherited from calling layer (may sleep). * * RETURNS: * 0 if at least one port is initialized, -ENODEV if no port is * available. */ int ata_pci_sff_init_host(struct ata_host *host) { struct device *gdev = host->dev; struct pci_dev *pdev = to_pci_dev(gdev); unsigned int mask = 0; int i, rc; /* request, iomap BARs and init port addresses accordingly */ for (i = 0; i < 2; i++) { struct ata_port *ap = host->ports[i]; int base = i * 2; void __iomem * const *iomap; if (ata_port_is_dummy(ap)) continue; /* Discard disabled ports. Some controllers show * their unused channels this way. Disabled ports are * made dummy. */ if (!ata_resources_present(pdev, i)) { ap->ops = &ata_dummy_port_ops; continue; } rc = pcim_iomap_regions(pdev, 0x3 << base, dev_driver_string(gdev)); if (rc) { dev_printk(KERN_WARNING, gdev, "failed to request/iomap BARs for port %d " "(errno=%d)\n", i, rc); if (rc == -EBUSY) pcim_pin_device(pdev); ap->ops = &ata_dummy_port_ops; continue; } host->iomap = iomap = pcim_iomap_table(pdev); ap->ioaddr.cmd_addr = iomap[base]; ap->ioaddr.altstatus_addr = ap->ioaddr.ctl_addr = (void __iomem *) ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); ata_sff_std_ports(&ap->ioaddr); ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", (unsigned long long)pci_resource_start(pdev, base), (unsigned long long)pci_resource_start(pdev, base + 1)); mask |= 1 << i; } if (!mask) { dev_printk(KERN_ERR, gdev, "no available native port\n"); return -ENODEV; } return 0; } /** * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host * @pdev: target PCI device * @ppi: array of port_info, must be enough for two ports * @r_host: out argument for the initialized ATA host * * Helper to allocate ATA host for @pdev, acquire all native PCI * resources and initialize it accordingly in one go. * * LOCKING: * Inherited from calling layer (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ int ata_pci_sff_prepare_host(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct ata_host **r_host) { struct ata_host *host; int rc; if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) return -ENOMEM; host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); if (!host) { dev_printk(KERN_ERR, &pdev->dev, "failed to allocate ATA host\n"); rc = -ENOMEM; goto err_out; } rc = ata_pci_sff_init_host(host); if (rc) goto err_out; /* init DMA related stuff */ rc = ata_pci_bmdma_init(host); if (rc) goto err_bmdma; devres_remove_group(&pdev->dev, NULL); *r_host = host; return 0; err_bmdma: /* This is necessary because PCI and iomap resources are * merged and releasing the top group won't release the * acquired resources if some of those have been acquired * before entering this function. */ pcim_iounmap_regions(pdev, 0xf); err_out: devres_release_group(&pdev->dev, NULL); return rc; } /** * ata_pci_sff_activate_host - start SFF host, request IRQ and register it * @host: target SFF ATA host * @irq_handler: irq_handler used when requesting IRQ(s) * @sht: scsi_host_template to use when registering the host * * This is the counterpart of ata_host_activate() for SFF ATA * hosts. This separate helper is necessary because SFF hosts * use two separate interrupts in legacy mode. * * LOCKING: * Inherited from calling layer (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ int ata_pci_sff_activate_host(struct ata_host *host, irq_handler_t irq_handler, struct scsi_host_template *sht) { struct device *dev = host->dev; struct pci_dev *pdev = to_pci_dev(dev); const char *drv_name = dev_driver_string(host->dev); int legacy_mode = 0, rc; rc = ata_host_start(host); if (rc) return rc; if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { u8 tmp8, mask; /* TODO: What if one channel is in native mode ... */ pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); mask = (1 << 2) | (1 << 0); if ((tmp8 & mask) != mask) legacy_mode = 1; #if defined(CONFIG_NO_ATA_LEGACY) /* Some platforms with PCI limits cannot address compat port space. In that case we punt if their firmware has left a device in compatibility mode */ if (legacy_mode) { printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); return -EOPNOTSUPP; } #endif } if (!devres_open_group(dev, NULL, GFP_KERNEL)) return -ENOMEM; if (!legacy_mode && pdev->irq) { rc = devm_request_irq(dev, pdev->irq, irq_handler, IRQF_SHARED, drv_name, host); if (rc) goto out; ata_port_desc(host->ports[0], "irq %d", pdev->irq); ata_port_desc(host->ports[1], "irq %d", pdev->irq); } else if (legacy_mode) { if (!ata_port_is_dummy(host->ports[0])) { rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), irq_handler, IRQF_SHARED, drv_name, host); if (rc) goto out; ata_port_desc(host->ports[0], "irq %d", ATA_PRIMARY_IRQ(pdev)); } if (!ata_port_is_dummy(host->ports[1])) { rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), irq_handler, IRQF_SHARED, drv_name, host); if (rc) goto out; ata_port_desc(host->ports[1], "irq %d", ATA_SECONDARY_IRQ(pdev)); } } rc = ata_host_register(host, sht); out: if (rc == 0) devres_remove_group(dev, NULL); else devres_release_group(dev, NULL); return rc; } /** * ata_pci_sff_init_one - Initialize/register PCI IDE host controller * @pdev: Controller to be initialized * @ppi: array of port_info, must be enough for two ports * @sht: scsi_host_template to use when registering the host * @host_priv: host private_data * * This is a helper function which can be called from a driver's * xxx_init_one() probe function if the hardware uses traditional * IDE taskfile registers. * * This function calls pci_enable_device(), reserves its register * regions, sets the dma mask, enables bus master mode, and calls * ata_device_add() * * ASSUMPTION: * Nobody makes a single channel controller that appears solely as * the secondary legacy port on PCI. * * LOCKING: * Inherited from PCI layer (may sleep). * * RETURNS: * Zero on success, negative on errno-based value on error. */ int ata_pci_sff_init_one(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct scsi_host_template *sht, void *host_priv) { struct device *dev = &pdev->dev; const struct ata_port_info *pi = NULL; struct ata_host *host = NULL; int i, rc; DPRINTK("ENTER\n"); /* look up the first valid port_info */ for (i = 0; i < 2 && ppi[i]; i++) { if (ppi[i]->port_ops != &ata_dummy_port_ops) { pi = ppi[i]; break; } } if (!pi) { dev_printk(KERN_ERR, &pdev->dev, "no valid port_info specified\n"); return -EINVAL; } if (!devres_open_group(dev, NULL, GFP_KERNEL)) return -ENOMEM; rc = pcim_enable_device(pdev); if (rc) goto out; /* prepare and activate SFF host */ rc = ata_pci_sff_prepare_host(pdev, ppi, &host); if (rc) goto out; host->private_data = host_priv; pci_set_master(pdev); rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); out: if (rc == 0) devres_remove_group(&pdev->dev, NULL); else devres_release_group(&pdev->dev, NULL); return rc; } #endif /* CONFIG_PCI */ EXPORT_SYMBOL_GPL(ata_sff_port_ops); EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); EXPORT_SYMBOL_GPL(ata_sff_qc_prep); EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep); EXPORT_SYMBOL_GPL(ata_sff_dev_select); EXPORT_SYMBOL_GPL(ata_sff_check_status); EXPORT_SYMBOL_GPL(ata_sff_altstatus); EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); EXPORT_SYMBOL_GPL(ata_sff_wait_ready); EXPORT_SYMBOL_GPL(ata_sff_tf_load); EXPORT_SYMBOL_GPL(ata_sff_tf_read); EXPORT_SYMBOL_GPL(ata_sff_exec_command); EXPORT_SYMBOL_GPL(ata_sff_data_xfer); EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); EXPORT_SYMBOL_GPL(ata_sff_irq_on); EXPORT_SYMBOL_GPL(ata_sff_irq_clear); EXPORT_SYMBOL_GPL(ata_sff_hsm_move); EXPORT_SYMBOL_GPL(ata_sff_qc_issue); EXPORT_SYMBOL_GPL(ata_sff_host_intr); EXPORT_SYMBOL_GPL(ata_sff_interrupt); EXPORT_SYMBOL_GPL(ata_sff_freeze); EXPORT_SYMBOL_GPL(ata_sff_thaw); EXPORT_SYMBOL_GPL(ata_sff_prereset); EXPORT_SYMBOL_GPL(ata_sff_dev_classify); EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); EXPORT_SYMBOL_GPL(ata_sff_softreset); EXPORT_SYMBOL_GPL(sata_sff_hardreset); EXPORT_SYMBOL_GPL(ata_sff_postreset); EXPORT_SYMBOL_GPL(ata_sff_error_handler); EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd); EXPORT_SYMBOL_GPL(ata_sff_port_start); EXPORT_SYMBOL_GPL(ata_sff_std_ports); EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter); EXPORT_SYMBOL_GPL(ata_bmdma_setup); EXPORT_SYMBOL_GPL(ata_bmdma_start); EXPORT_SYMBOL_GPL(ata_bmdma_stop); EXPORT_SYMBOL_GPL(ata_bmdma_status); EXPORT_SYMBOL_GPL(ata_bus_reset); #ifdef CONFIG_PCI EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); #endif /* CONFIG_PCI */