/* * scan.c - support for transforming the ACPI namespace into individual objects */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/acpi.h> #include <acpi/acpi_drivers.h> #include <acpi/acinterp.h> /* for acpi_ex_eisa_id_to_string() */ #define _COMPONENT ACPI_BUS_COMPONENT ACPI_MODULE_NAME("scan") #define STRUCT_TO_INT(s) (*((int*)&s)) extern struct acpi_device *acpi_root; #define ACPI_BUS_CLASS "system_bus" #define ACPI_BUS_HID "ACPI_BUS" #define ACPI_BUS_DRIVER_NAME "ACPI Bus Driver" #define ACPI_BUS_DEVICE_NAME "System Bus" static LIST_HEAD(acpi_device_list); DEFINE_SPINLOCK(acpi_device_lock); LIST_HEAD(acpi_wakeup_device_list); static void acpi_device_release(struct kobject *kobj) { struct acpi_device *dev = container_of(kobj, struct acpi_device, kobj); kfree(dev->pnp.cid_list); kfree(dev); } struct acpi_device_attribute { struct attribute attr; ssize_t(*show) (struct acpi_device *, char *); ssize_t(*store) (struct acpi_device *, const char *, size_t); }; typedef void acpi_device_sysfs_files(struct kobject *, const struct attribute *); static void setup_sys_fs_device_files(struct acpi_device *dev, acpi_device_sysfs_files * func); #define create_sysfs_device_files(dev) \ setup_sys_fs_device_files(dev, (acpi_device_sysfs_files *)&sysfs_create_file) #define remove_sysfs_device_files(dev) \ setup_sys_fs_device_files(dev, (acpi_device_sysfs_files *)&sysfs_remove_file) #define to_acpi_device(n) container_of(n, struct acpi_device, kobj) #define to_handle_attr(n) container_of(n, struct acpi_device_attribute, attr); static ssize_t acpi_device_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct acpi_device *device = to_acpi_device(kobj); struct acpi_device_attribute *attribute = to_handle_attr(attr); return attribute->show ? attribute->show(device, buf) : -EIO; } static ssize_t acpi_device_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t len) { struct acpi_device *device = to_acpi_device(kobj); struct acpi_device_attribute *attribute = to_handle_attr(attr); return attribute->store ? attribute->store(device, buf, len) : -EIO; } static struct sysfs_ops acpi_device_sysfs_ops = { .show = acpi_device_attr_show, .store = acpi_device_attr_store, }; static struct kobj_type ktype_acpi_ns = { .sysfs_ops = &acpi_device_sysfs_ops, .release = acpi_device_release, }; static int namespace_uevent(struct kset *kset, struct kobject *kobj, char **envp, int num_envp, char *buffer, int buffer_size) { struct acpi_device *dev = to_acpi_device(kobj); int i = 0; int len = 0; if (!dev->driver) return 0; if (add_uevent_var(envp, num_envp, &i, buffer, buffer_size, &len, "PHYSDEVDRIVER=%s", dev->driver->name)) return -ENOMEM; envp[i] = NULL; return 0; } static struct kset_uevent_ops namespace_uevent_ops = { .uevent = &namespace_uevent, }; static struct kset acpi_namespace_kset = { .kobj = { .name = "namespace", }, .subsys = &acpi_subsys, .ktype = &ktype_acpi_ns, .uevent_ops = &namespace_uevent_ops, }; static void acpi_device_register(struct acpi_device *device, struct acpi_device *parent) { int err; /* * Linkage * ------- * Link this device to its parent and siblings. */ INIT_LIST_HEAD(&device->children); INIT_LIST_HEAD(&device->node); INIT_LIST_HEAD(&device->g_list); INIT_LIST_HEAD(&device->wakeup_list); spin_lock(&acpi_device_lock); if (device->parent) { list_add_tail(&device->node, &device->parent->children); list_add_tail(&device->g_list, &device->parent->g_list); } else list_add_tail(&device->g_list, &acpi_device_list); if (device->wakeup.flags.valid) list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); spin_unlock(&acpi_device_lock); strlcpy(device->kobj.name, device->pnp.bus_id, KOBJ_NAME_LEN); if (parent) device->kobj.parent = &parent->kobj; device->kobj.ktype = &ktype_acpi_ns; device->kobj.kset = &acpi_namespace_kset; err = kobject_register(&device->kobj); if (err < 0) printk(KERN_WARNING "%s: kobject_register error: %d\n", __FUNCTION__, err); create_sysfs_device_files(device); } static void acpi_device_unregister(struct acpi_device *device, int type) { spin_lock(&acpi_device_lock); if (device->parent) { list_del(&device->node); list_del(&device->g_list); } else list_del(&device->g_list); list_del(&device->wakeup_list); spin_unlock(&acpi_device_lock); acpi_detach_data(device->handle, acpi_bus_data_handler); remove_sysfs_device_files(device); kobject_unregister(&device->kobj); } void acpi_bus_data_handler(acpi_handle handle, u32 function, void *context) { /* TBD */ return; } static int acpi_bus_get_power_flags(struct acpi_device *device) { acpi_status status = 0; acpi_handle handle = NULL; u32 i = 0; /* * Power Management Flags */ status = acpi_get_handle(device->handle, "_PSC", &handle); if (ACPI_SUCCESS(status)) device->power.flags.explicit_get = 1; status = acpi_get_handle(device->handle, "_IRC", &handle); if (ACPI_SUCCESS(status)) device->power.flags.inrush_current = 1; /* * Enumerate supported power management states */ for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3; i++) { struct acpi_device_power_state *ps = &device->power.states[i]; char object_name[5] = { '_', 'P', 'R', '0' + i, '\0' }; /* Evaluate "_PRx" to se if power resources are referenced */ acpi_evaluate_reference(device->handle, object_name, NULL, &ps->resources); if (ps->resources.count) { device->power.flags.power_resources = 1; ps->flags.valid = 1; } /* Evaluate "_PSx" to see if we can do explicit sets */ object_name[2] = 'S'; status = acpi_get_handle(device->handle, object_name, &handle); if (ACPI_SUCCESS(status)) { ps->flags.explicit_set = 1; ps->flags.valid = 1; } /* State is valid if we have some power control */ if (ps->resources.count || ps->flags.explicit_set) ps->flags.valid = 1; ps->power = -1; /* Unknown - driver assigned */ ps->latency = -1; /* Unknown - driver assigned */ } /* Set defaults for D0 and D3 states (always valid) */ device->power.states[ACPI_STATE_D0].flags.valid = 1; device->power.states[ACPI_STATE_D0].power = 100; device->power.states[ACPI_STATE_D3].flags.valid = 1; device->power.states[ACPI_STATE_D3].power = 0; /* TBD: System wake support and resource requirements. */ device->power.state = ACPI_STATE_UNKNOWN; return 0; } int acpi_match_ids(struct acpi_device *device, char *ids) { if (device->flags.hardware_id) if (strstr(ids, device->pnp.hardware_id)) return 0; if (device->flags.compatible_ids) { struct acpi_compatible_id_list *cid_list = device->pnp.cid_list; int i; /* compare multiple _CID entries against driver ids */ for (i = 0; i < cid_list->count; i++) { if (strstr(ids, cid_list->id[i].value)) return 0; } } return -ENOENT; } static acpi_status acpi_bus_extract_wakeup_device_power_package(struct acpi_device *device, union acpi_object *package) { int i = 0; union acpi_object *element = NULL; if (!device || !package || (package->package.count < 2)) return AE_BAD_PARAMETER; element = &(package->package.elements[0]); if (!element) return AE_BAD_PARAMETER; if (element->type == ACPI_TYPE_PACKAGE) { if ((element->package.count < 2) || (element->package.elements[0].type != ACPI_TYPE_LOCAL_REFERENCE) || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) return AE_BAD_DATA; device->wakeup.gpe_device = element->package.elements[0].reference.handle; device->wakeup.gpe_number = (u32) element->package.elements[1].integer.value; } else if (element->type == ACPI_TYPE_INTEGER) { device->wakeup.gpe_number = element->integer.value; } else return AE_BAD_DATA; element = &(package->package.elements[1]); if (element->type != ACPI_TYPE_INTEGER) { return AE_BAD_DATA; } device->wakeup.sleep_state = element->integer.value; if ((package->package.count - 2) > ACPI_MAX_HANDLES) { return AE_NO_MEMORY; } device->wakeup.resources.count = package->package.count - 2; for (i = 0; i < device->wakeup.resources.count; i++) { element = &(package->package.elements[i + 2]); if (element->type != ACPI_TYPE_ANY) { return AE_BAD_DATA; } device->wakeup.resources.handles[i] = element->reference.handle; } return AE_OK; } static int acpi_bus_get_wakeup_device_flags(struct acpi_device *device) { acpi_status status = 0; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *package = NULL; /* _PRW */ status = acpi_evaluate_object(device->handle, "_PRW", NULL, &buffer); if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PRW")); goto end; } package = (union acpi_object *)buffer.pointer; status = acpi_bus_extract_wakeup_device_power_package(device, package); if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "Extracting _PRW package")); goto end; } kfree(buffer.pointer); device->wakeup.flags.valid = 1; /* Power button, Lid switch always enable wakeup */ if (!acpi_match_ids(device, "PNP0C0D,PNP0C0C,PNP0C0E")) device->wakeup.flags.run_wake = 1; end: if (ACPI_FAILURE(status)) device->flags.wake_capable = 0; return 0; } /* -------------------------------------------------------------------------- ACPI sysfs device file support -------------------------------------------------------------------------- */ static ssize_t acpi_eject_store(struct acpi_device *device, const char *buf, size_t count); #define ACPI_DEVICE_ATTR(_name,_mode,_show,_store) \ static struct acpi_device_attribute acpi_device_attr_##_name = \ __ATTR(_name, _mode, _show, _store) ACPI_DEVICE_ATTR(eject, 0200, NULL, acpi_eject_store); /** * setup_sys_fs_device_files - sets up the device files under device namespace * @dev: acpi_device object * @func: function pointer to create or destroy the device file */ static void setup_sys_fs_device_files(struct acpi_device *dev, acpi_device_sysfs_files * func) { acpi_status status; acpi_handle temp = NULL; /* * If device has _EJ0, 'eject' file is created that is used to trigger * hot-removal function from userland. */ status = acpi_get_handle(dev->handle, "_EJ0", &temp); if (ACPI_SUCCESS(status)) (*(func)) (&dev->kobj, &acpi_device_attr_eject.attr); } static int acpi_eject_operation(acpi_handle handle, int lockable) { struct acpi_object_list arg_list; union acpi_object arg; acpi_status status = AE_OK; /* * TBD: evaluate _PS3? */ if (lockable) { arg_list.count = 1; arg_list.pointer = &arg; arg.type = ACPI_TYPE_INTEGER; arg.integer.value = 0; acpi_evaluate_object(handle, "_LCK", &arg_list, NULL); } arg_list.count = 1; arg_list.pointer = &arg; arg.type = ACPI_TYPE_INTEGER; arg.integer.value = 1; /* * TBD: _EJD support. */ status = acpi_evaluate_object(handle, "_EJ0", &arg_list, NULL); if (ACPI_FAILURE(status)) { return (-ENODEV); } return (0); } static ssize_t acpi_eject_store(struct acpi_device *device, const char *buf, size_t count) { int result; int ret = count; int islockable; acpi_status status; acpi_handle handle; acpi_object_type type = 0; if ((!count) || (buf[0] != '1')) { return -EINVAL; } #ifndef FORCE_EJECT if (device->driver == NULL) { ret = -ENODEV; goto err; } #endif status = acpi_get_type(device->handle, &type); if (ACPI_FAILURE(status) || (!device->flags.ejectable)) { ret = -ENODEV; goto err; } islockable = device->flags.lockable; handle = device->handle; result = acpi_bus_trim(device, 1); if (!result) result = acpi_eject_operation(handle, islockable); if (result) { ret = -EBUSY; } err: return ret; } /* -------------------------------------------------------------------------- Performance Management -------------------------------------------------------------------------- */ static int acpi_bus_get_perf_flags(struct acpi_device *device) { device->performance.state = ACPI_STATE_UNKNOWN; return 0; } /* -------------------------------------------------------------------------- Driver Management -------------------------------------------------------------------------- */ static LIST_HEAD(acpi_bus_drivers); /** * acpi_bus_match - match device IDs to driver's supported IDs * @device: the device that we are trying to match to a driver * @driver: driver whose device id table is being checked * * Checks the device's hardware (_HID) or compatible (_CID) ids to see if it * matches the specified driver's criteria. */ static int acpi_bus_match(struct acpi_device *device, struct acpi_driver *driver) { if (driver && driver->ops.match) return driver->ops.match(device, driver); return acpi_match_ids(device, driver->ids); } /** * acpi_bus_driver_init - add a device to a driver * @device: the device to add and initialize * @driver: driver for the device * * Used to initialize a device via its device driver. Called whenever a * driver is bound to a device. Invokes the driver's add() and start() ops. */ static int acpi_bus_driver_init(struct acpi_device *device, struct acpi_driver *driver) { int result = 0; if (!device || !driver) return -EINVAL; if (!driver->ops.add) return -ENOSYS; result = driver->ops.add(device); if (result) { device->driver = NULL; acpi_driver_data(device) = NULL; return result; } device->driver = driver; /* * TBD - Configuration Management: Assign resources to device based * upon possible configuration and currently allocated resources. */ ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Driver successfully bound to device\n")); return 0; } static int acpi_start_single_object(struct acpi_device *device) { int result = 0; struct acpi_driver *driver; if (!(driver = device->driver)) return 0; if (driver->ops.start) { result = driver->ops.start(device); if (result && driver->ops.remove) driver->ops.remove(device, ACPI_BUS_REMOVAL_NORMAL); } return result; } static void acpi_driver_attach(struct acpi_driver *drv) { struct list_head *node, *next; spin_lock(&acpi_device_lock); list_for_each_safe(node, next, &acpi_device_list) { struct acpi_device *dev = container_of(node, struct acpi_device, g_list); if (dev->driver || !dev->status.present) continue; spin_unlock(&acpi_device_lock); if (!acpi_bus_match(dev, drv)) { if (!acpi_bus_driver_init(dev, drv)) { acpi_start_single_object(dev); atomic_inc(&drv->references); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found driver [%s] for device [%s]\n", drv->name, dev->pnp.bus_id)); } } spin_lock(&acpi_device_lock); } spin_unlock(&acpi_device_lock); } static void acpi_driver_detach(struct acpi_driver *drv) { struct list_head *node, *next; spin_lock(&acpi_device_lock); list_for_each_safe(node, next, &acpi_device_list) { struct acpi_device *dev = container_of(node, struct acpi_device, g_list); if (dev->driver == drv) { spin_unlock(&acpi_device_lock); if (drv->ops.remove) drv->ops.remove(dev, ACPI_BUS_REMOVAL_NORMAL); spin_lock(&acpi_device_lock); dev->driver = NULL; dev->driver_data = NULL; atomic_dec(&drv->references); } } spin_unlock(&acpi_device_lock); } /** * acpi_bus_register_driver - register a driver with the ACPI bus * @driver: driver being registered * * Registers a driver with the ACPI bus. Searches the namespace for all * devices that match the driver's criteria and binds. Returns zero for * success or a negative error status for failure. */ int acpi_bus_register_driver(struct acpi_driver *driver) { if (acpi_disabled) return -ENODEV; spin_lock(&acpi_device_lock); list_add_tail(&driver->node, &acpi_bus_drivers); spin_unlock(&acpi_device_lock); acpi_driver_attach(driver); return 0; } EXPORT_SYMBOL(acpi_bus_register_driver); /** * acpi_bus_unregister_driver - unregisters a driver with the APIC bus * @driver: driver to unregister * * Unregisters a driver with the ACPI bus. Searches the namespace for all * devices that match the driver's criteria and unbinds. */ void acpi_bus_unregister_driver(struct acpi_driver *driver) { acpi_driver_detach(driver); if (!atomic_read(&driver->references)) { spin_lock(&acpi_device_lock); list_del_init(&driver->node); spin_unlock(&acpi_device_lock); } return; } EXPORT_SYMBOL(acpi_bus_unregister_driver); /** * acpi_bus_find_driver - check if there is a driver installed for the device * @device: device that we are trying to find a supporting driver for * * Parses the list of registered drivers looking for a driver applicable for * the specified device. */ static int acpi_bus_find_driver(struct acpi_device *device) { int result = 0; struct list_head *node, *next; spin_lock(&acpi_device_lock); list_for_each_safe(node, next, &acpi_bus_drivers) { struct acpi_driver *driver = container_of(node, struct acpi_driver, node); atomic_inc(&driver->references); spin_unlock(&acpi_device_lock); if (!acpi_bus_match(device, driver)) { result = acpi_bus_driver_init(device, driver); if (!result) goto Done; } atomic_dec(&driver->references); spin_lock(&acpi_device_lock); } spin_unlock(&acpi_device_lock); Done: return result; } /* -------------------------------------------------------------------------- Device Enumeration -------------------------------------------------------------------------- */ acpi_status acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) { acpi_status status; acpi_handle tmp; struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; union acpi_object *obj; status = acpi_get_handle(handle, "_EJD", &tmp); if (ACPI_FAILURE(status)) return status; status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); if (ACPI_SUCCESS(status)) { obj = buffer.pointer; status = acpi_get_handle(NULL, obj->string.pointer, ejd); kfree(buffer.pointer); } return status; } EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); static int acpi_bus_get_flags(struct acpi_device *device) { acpi_status status = AE_OK; acpi_handle temp = NULL; /* Presence of _STA indicates 'dynamic_status' */ status = acpi_get_handle(device->handle, "_STA", &temp); if (ACPI_SUCCESS(status)) device->flags.dynamic_status = 1; /* Presence of _CID indicates 'compatible_ids' */ status = acpi_get_handle(device->handle, "_CID", &temp); if (ACPI_SUCCESS(status)) device->flags.compatible_ids = 1; /* Presence of _RMV indicates 'removable' */ status = acpi_get_handle(device->handle, "_RMV", &temp); if (ACPI_SUCCESS(status)) device->flags.removable = 1; /* Presence of _EJD|_EJ0 indicates 'ejectable' */ status = acpi_get_handle(device->handle, "_EJD", &temp); if (ACPI_SUCCESS(status)) device->flags.ejectable = 1; else { status = acpi_get_handle(device->handle, "_EJ0", &temp); if (ACPI_SUCCESS(status)) device->flags.ejectable = 1; } /* Presence of _LCK indicates 'lockable' */ status = acpi_get_handle(device->handle, "_LCK", &temp); if (ACPI_SUCCESS(status)) device->flags.lockable = 1; /* Presence of _PS0|_PR0 indicates 'power manageable' */ status = acpi_get_handle(device->handle, "_PS0", &temp); if (ACPI_FAILURE(status)) status = acpi_get_handle(device->handle, "_PR0", &temp); if (ACPI_SUCCESS(status)) device->flags.power_manageable = 1; /* Presence of _PRW indicates wake capable */ status = acpi_get_handle(device->handle, "_PRW", &temp); if (ACPI_SUCCESS(status)) device->flags.wake_capable = 1; /* TBD: Peformance management */ return 0; } static void acpi_device_get_busid(struct acpi_device *device, acpi_handle handle, int type) { char bus_id[5] = { '?', 0 }; struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; int i = 0; /* * Bus ID * ------ * The device's Bus ID is simply the object name. * TBD: Shouldn't this value be unique (within the ACPI namespace)? */ switch (type) { case ACPI_BUS_TYPE_SYSTEM: strcpy(device->pnp.bus_id, "ACPI"); break; case ACPI_BUS_TYPE_POWER_BUTTON: strcpy(device->pnp.bus_id, "PWRF"); break; case ACPI_BUS_TYPE_SLEEP_BUTTON: strcpy(device->pnp.bus_id, "SLPF"); break; default: acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); /* Clean up trailing underscores (if any) */ for (i = 3; i > 1; i--) { if (bus_id[i] == '_') bus_id[i] = '\0'; else break; } strcpy(device->pnp.bus_id, bus_id); break; } } static void acpi_device_set_id(struct acpi_device *device, struct acpi_device *parent, acpi_handle handle, int type) { struct acpi_device_info *info; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; char *hid = NULL; char *uid = NULL; struct acpi_compatible_id_list *cid_list = NULL; acpi_status status; switch (type) { case ACPI_BUS_TYPE_DEVICE: status = acpi_get_object_info(handle, &buffer); if (ACPI_FAILURE(status)) { printk("%s: Error reading device info\n", __FUNCTION__); return; } info = buffer.pointer; if (info->valid & ACPI_VALID_HID) hid = info->hardware_id.value; if (info->valid & ACPI_VALID_UID) uid = info->unique_id.value; if (info->valid & ACPI_VALID_CID) cid_list = &info->compatibility_id; if (info->valid & ACPI_VALID_ADR) { device->pnp.bus_address = info->address; device->flags.bus_address = 1; } break; case ACPI_BUS_TYPE_POWER: hid = ACPI_POWER_HID; break; case ACPI_BUS_TYPE_PROCESSOR: hid = ACPI_PROCESSOR_HID; break; case ACPI_BUS_TYPE_SYSTEM: hid = ACPI_SYSTEM_HID; break; case ACPI_BUS_TYPE_THERMAL: hid = ACPI_THERMAL_HID; break; case ACPI_BUS_TYPE_POWER_BUTTON: hid = ACPI_BUTTON_HID_POWERF; break; case ACPI_BUS_TYPE_SLEEP_BUTTON: hid = ACPI_BUTTON_HID_SLEEPF; break; } /* * \_SB * ---- * Fix for the system root bus device -- the only root-level device. */ if (((acpi_handle)parent == ACPI_ROOT_OBJECT) && (type == ACPI_BUS_TYPE_DEVICE)) { hid = ACPI_BUS_HID; strcpy(device->pnp.device_name, ACPI_BUS_DEVICE_NAME); strcpy(device->pnp.device_class, ACPI_BUS_CLASS); } if (hid) { strcpy(device->pnp.hardware_id, hid); device->flags.hardware_id = 1; } if (uid) { strcpy(device->pnp.unique_id, uid); device->flags.unique_id = 1; } if (cid_list) { device->pnp.cid_list = kmalloc(cid_list->size, GFP_KERNEL); if (device->pnp.cid_list) memcpy(device->pnp.cid_list, cid_list, cid_list->size); else printk(KERN_ERR "Memory allocation error\n"); } kfree(buffer.pointer); } static int acpi_device_set_context(struct acpi_device *device, int type) { acpi_status status = AE_OK; int result = 0; /* * Context * ------- * Attach this 'struct acpi_device' to the ACPI object. This makes * resolutions from handle->device very efficient. Note that we need * to be careful with fixed-feature devices as they all attach to the * root object. */ if (type != ACPI_BUS_TYPE_POWER_BUTTON && type != ACPI_BUS_TYPE_SLEEP_BUTTON) { status = acpi_attach_data(device->handle, acpi_bus_data_handler, device); if (ACPI_FAILURE(status)) { printk("Error attaching device data\n"); result = -ENODEV; } } return result; } static void acpi_device_get_debug_info(struct acpi_device *device, acpi_handle handle, int type) { #ifdef CONFIG_ACPI_DEBUG_OUTPUT char *type_string = NULL; char name[80] = { '?', '\0' }; struct acpi_buffer buffer = { sizeof(name), name }; switch (type) { case ACPI_BUS_TYPE_DEVICE: type_string = "Device"; acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer); break; case ACPI_BUS_TYPE_POWER: type_string = "Power Resource"; acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer); break; case ACPI_BUS_TYPE_PROCESSOR: type_string = "Processor"; acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer); break; case ACPI_BUS_TYPE_SYSTEM: type_string = "System"; acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer); break; case ACPI_BUS_TYPE_THERMAL: type_string = "Thermal Zone"; acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer); break; case ACPI_BUS_TYPE_POWER_BUTTON: type_string = "Power Button"; sprintf(name, "PWRB"); break; case ACPI_BUS_TYPE_SLEEP_BUTTON: type_string = "Sleep Button"; sprintf(name, "SLPB"); break; } printk(KERN_DEBUG "Found %s %s [%p]\n", type_string, name, handle); #endif /*CONFIG_ACPI_DEBUG_OUTPUT */ } static int acpi_bus_remove(struct acpi_device *dev, int rmdevice) { int result = 0; struct acpi_driver *driver; if (!dev) return -EINVAL; driver = dev->driver; if ((driver) && (driver->ops.remove)) { if (driver->ops.stop) { result = driver->ops.stop(dev, ACPI_BUS_REMOVAL_EJECT); if (result) return result; } result = dev->driver->ops.remove(dev, ACPI_BUS_REMOVAL_EJECT); if (result) { return result; } atomic_dec(&dev->driver->references); dev->driver = NULL; acpi_driver_data(dev) = NULL; } if (!rmdevice) return 0; if (dev->flags.bus_address) { if ((dev->parent) && (dev->parent->ops.unbind)) dev->parent->ops.unbind(dev); } acpi_device_unregister(dev, ACPI_BUS_REMOVAL_EJECT); return 0; } static int acpi_add_single_object(struct acpi_device **child, struct acpi_device *parent, acpi_handle handle, int type) { int result = 0; struct acpi_device *device = NULL; if (!child) return -EINVAL; device = kmalloc(sizeof(struct acpi_device), GFP_KERNEL); if (!device) { printk(KERN_ERR PREFIX "Memory allocation error\n"); return -ENOMEM; } memset(device, 0, sizeof(struct acpi_device)); device->handle = handle; device->parent = parent; acpi_device_get_busid(device, handle, type); /* * Flags * ----- * Get prior to calling acpi_bus_get_status() so we know whether * or not _STA is present. Note that we only look for object * handles -- cannot evaluate objects until we know the device is * present and properly initialized. */ result = acpi_bus_get_flags(device); if (result) goto end; /* * Status * ------ * See if the device is present. We always assume that non-Device * and non-Processor objects (e.g. thermal zones, power resources, * etc.) are present, functioning, etc. (at least when parent object * is present). Note that _STA has a different meaning for some * objects (e.g. power resources) so we need to be careful how we use * it. */ switch (type) { case ACPI_BUS_TYPE_PROCESSOR: case ACPI_BUS_TYPE_DEVICE: result = acpi_bus_get_status(device); if (ACPI_FAILURE(result) || !device->status.present) { result = -ENOENT; goto end; } break; default: STRUCT_TO_INT(device->status) = 0x0F; break; } /* * Initialize Device * ----------------- * TBD: Synch with Core's enumeration/initialization process. */ /* * Hardware ID, Unique ID, & Bus Address * ------------------------------------- */ acpi_device_set_id(device, parent, handle, type); /* * Power Management * ---------------- */ if (device->flags.power_manageable) { result = acpi_bus_get_power_flags(device); if (result) goto end; } /* * Wakeup device management *----------------------- */ if (device->flags.wake_capable) { result = acpi_bus_get_wakeup_device_flags(device); if (result) goto end; } /* * Performance Management * ---------------------- */ if (device->flags.performance_manageable) { result = acpi_bus_get_perf_flags(device); if (result) goto end; } if ((result = acpi_device_set_context(device, type))) goto end; acpi_device_get_debug_info(device, handle, type); acpi_device_register(device, parent); /* * Bind _ADR-Based Devices * ----------------------- * If there's a a bus address (_ADR) then we utilize the parent's * 'bind' function (if exists) to bind the ACPI- and natively- * enumerated device representations. */ if (device->flags.bus_address) { if (device->parent && device->parent->ops.bind) device->parent->ops.bind(device); } /* * Locate & Attach Driver * ---------------------- * If there's a hardware id (_HID) or compatible ids (_CID) we check * to see if there's a driver installed for this kind of device. Note * that drivers can install before or after a device is enumerated. * * TBD: Assumes LDM provides driver hot-plug capability. */ acpi_bus_find_driver(device); end: if (!result) *child = device; else { kfree(device->pnp.cid_list); kfree(device); } return result; } static int acpi_bus_scan(struct acpi_device *start, struct acpi_bus_ops *ops) { acpi_status status = AE_OK; struct acpi_device *parent = NULL; struct acpi_device *child = NULL; acpi_handle phandle = NULL; acpi_handle chandle = NULL; acpi_object_type type = 0; u32 level = 1; if (!start) return -EINVAL; parent = start; phandle = start->handle; /* * Parse through the ACPI namespace, identify all 'devices', and * create a new 'struct acpi_device' for each. */ while ((level > 0) && parent) { status = acpi_get_next_object(ACPI_TYPE_ANY, phandle, chandle, &chandle); /* * If this scope is exhausted then move our way back up. */ if (ACPI_FAILURE(status)) { level--; chandle = phandle; acpi_get_parent(phandle, &phandle); if (parent->parent) parent = parent->parent; continue; } status = acpi_get_type(chandle, &type); if (ACPI_FAILURE(status)) continue; /* * If this is a scope object then parse it (depth-first). */ if (type == ACPI_TYPE_LOCAL_SCOPE) { level++; phandle = chandle; chandle = NULL; continue; } /* * We're only interested in objects that we consider 'devices'. */ switch (type) { case ACPI_TYPE_DEVICE: type = ACPI_BUS_TYPE_DEVICE; break; case ACPI_TYPE_PROCESSOR: type = ACPI_BUS_TYPE_PROCESSOR; break; case ACPI_TYPE_THERMAL: type = ACPI_BUS_TYPE_THERMAL; break; case ACPI_TYPE_POWER: type = ACPI_BUS_TYPE_POWER; break; default: continue; } if (ops->acpi_op_add) status = acpi_add_single_object(&child, parent, chandle, type); else status = acpi_bus_get_device(chandle, &child); if (ACPI_FAILURE(status)) continue; if (ops->acpi_op_start) { status = acpi_start_single_object(child); if (ACPI_FAILURE(status)) continue; } /* * If the device is present, enabled, and functioning then * parse its scope (depth-first). Note that we need to * represent absent devices to facilitate PnP notifications * -- but only the subtree head (not all of its children, * which will be enumerated when the parent is inserted). * * TBD: Need notifications and other detection mechanisms * in place before we can fully implement this. */ if (child->status.present) { status = acpi_get_next_object(ACPI_TYPE_ANY, chandle, NULL, NULL); if (ACPI_SUCCESS(status)) { level++; phandle = chandle; chandle = NULL; parent = child; } } } return 0; } int acpi_bus_add(struct acpi_device **child, struct acpi_device *parent, acpi_handle handle, int type) { int result; struct acpi_bus_ops ops; result = acpi_add_single_object(child, parent, handle, type); if (!result) { memset(&ops, 0, sizeof(ops)); ops.acpi_op_add = 1; result = acpi_bus_scan(*child, &ops); } return result; } EXPORT_SYMBOL(acpi_bus_add); int acpi_bus_start(struct acpi_device *device) { int result; struct acpi_bus_ops ops; if (!device) return -EINVAL; result = acpi_start_single_object(device); if (!result) { memset(&ops, 0, sizeof(ops)); ops.acpi_op_start = 1; result = acpi_bus_scan(device, &ops); } return result; } EXPORT_SYMBOL(acpi_bus_start); int acpi_bus_trim(struct acpi_device *start, int rmdevice) { acpi_status status; struct acpi_device *parent, *child; acpi_handle phandle, chandle; acpi_object_type type; u32 level = 1; int err = 0; parent = start; phandle = start->handle; child = chandle = NULL; while ((level > 0) && parent && (!err)) { status = acpi_get_next_object(ACPI_TYPE_ANY, phandle, chandle, &chandle); /* * If this scope is exhausted then move our way back up. */ if (ACPI_FAILURE(status)) { level--; chandle = phandle; acpi_get_parent(phandle, &phandle); child = parent; parent = parent->parent; if (level == 0) err = acpi_bus_remove(child, rmdevice); else err = acpi_bus_remove(child, 1); continue; } status = acpi_get_type(chandle, &type); if (ACPI_FAILURE(status)) { continue; } /* * If there is a device corresponding to chandle then * parse it (depth-first). */ if (acpi_bus_get_device(chandle, &child) == 0) { level++; phandle = chandle; chandle = NULL; parent = child; } continue; } return err; } EXPORT_SYMBOL_GPL(acpi_bus_trim); static int acpi_bus_scan_fixed(struct acpi_device *root) { int result = 0; struct acpi_device *device = NULL; if (!root) return -ENODEV; /* * Enumerate all fixed-feature devices. */ if (acpi_fadt.pwr_button == 0) { result = acpi_add_single_object(&device, acpi_root, NULL, ACPI_BUS_TYPE_POWER_BUTTON); if (!result) result = acpi_start_single_object(device); } if (acpi_fadt.sleep_button == 0) { result = acpi_add_single_object(&device, acpi_root, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON); if (!result) result = acpi_start_single_object(device); } return result; } static inline struct acpi_device * to_acpi_dev(struct device * dev) { return container_of(dev, struct acpi_device, dev); } static int root_suspend(struct acpi_device * acpi_dev, pm_message_t state) { struct acpi_device * dev, * next; int result; spin_lock(&acpi_device_lock); list_for_each_entry_safe_reverse(dev, next, &acpi_device_list, g_list) { if (dev->driver && dev->driver->ops.suspend) { spin_unlock(&acpi_device_lock); result = dev->driver->ops.suspend(dev, 0); if (result) { printk(KERN_ERR PREFIX "[%s - %s] Suspend failed: %d\n", acpi_device_name(dev), acpi_device_bid(dev), result); } spin_lock(&acpi_device_lock); } } spin_unlock(&acpi_device_lock); return 0; } static int acpi_device_suspend(struct device * dev, pm_message_t state) { struct acpi_device * acpi_dev = to_acpi_dev(dev); /* * For now, we should only register 1 generic device - * the ACPI root device - and from there, we walk the * tree of ACPI devices to suspend each one using the * ACPI driver methods. */ if (acpi_dev->handle == ACPI_ROOT_OBJECT) root_suspend(acpi_dev, state); return 0; } static int root_resume(struct acpi_device * acpi_dev) { struct acpi_device * dev, * next; int result; spin_lock(&acpi_device_lock); list_for_each_entry_safe(dev, next, &acpi_device_list, g_list) { if (dev->driver && dev->driver->ops.resume) { spin_unlock(&acpi_device_lock); result = dev->driver->ops.resume(dev, 0); if (result) { printk(KERN_ERR PREFIX "[%s - %s] resume failed: %d\n", acpi_device_name(dev), acpi_device_bid(dev), result); } spin_lock(&acpi_device_lock); } } spin_unlock(&acpi_device_lock); return 0; } static int acpi_device_resume(struct device * dev) { struct acpi_device * acpi_dev = to_acpi_dev(dev); /* * For now, we should only register 1 generic device - * the ACPI root device - and from there, we walk the * tree of ACPI devices to resume each one using the * ACPI driver methods. */ if (acpi_dev->handle == ACPI_ROOT_OBJECT) root_resume(acpi_dev); return 0; } static struct bus_type acpi_bus_type = { .name = "acpi", .suspend = acpi_device_suspend, .resume = acpi_device_resume, }; static int __init acpi_scan_init(void) { int result; struct acpi_bus_ops ops; if (acpi_disabled) return 0; result = kset_register(&acpi_namespace_kset); if (result < 0) printk(KERN_ERR PREFIX "kset_register error: %d\n", result); result = bus_register(&acpi_bus_type); if (result) { /* We don't want to quit even if we failed to add suspend/resume */ printk(KERN_ERR PREFIX "Could not register bus type\n"); } /* * Create the root device in the bus's device tree */ result = acpi_add_single_object(&acpi_root, NULL, ACPI_ROOT_OBJECT, ACPI_BUS_TYPE_SYSTEM); if (result) goto Done; result = acpi_start_single_object(acpi_root); if (result) goto Done; acpi_root->dev.bus = &acpi_bus_type; snprintf(acpi_root->dev.bus_id, BUS_ID_SIZE, "%s", acpi_bus_type.name); result = device_register(&acpi_root->dev); if (result) { /* We don't want to quit even if we failed to add suspend/resume */ printk(KERN_ERR PREFIX "Could not register device\n"); } /* * Enumerate devices in the ACPI namespace. */ result = acpi_bus_scan_fixed(acpi_root); if (!result) { memset(&ops, 0, sizeof(ops)); ops.acpi_op_add = 1; ops.acpi_op_start = 1; result = acpi_bus_scan(acpi_root, &ops); } if (result) acpi_device_unregister(acpi_root, ACPI_BUS_REMOVAL_NORMAL); Done: return result; } subsys_initcall(acpi_scan_init);