/* * processor_perflib.c - ACPI Processor P-States Library ($Revision: 71 $) * * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de> * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> * - Added processor hotplug support * * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/cpufreq.h> #ifdef CONFIG_X86_ACPI_CPUFREQ_PROC_INTF #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/mutex.h> #include <asm/uaccess.h> #endif #include <acpi/acpi_bus.h> #include <acpi/processor.h> #define ACPI_PROCESSOR_COMPONENT 0x01000000 #define ACPI_PROCESSOR_CLASS "processor" #define ACPI_PROCESSOR_FILE_PERFORMANCE "performance" #define _COMPONENT ACPI_PROCESSOR_COMPONENT ACPI_MODULE_NAME("processor_perflib"); static DEFINE_MUTEX(performance_mutex); /* * _PPC support is implemented as a CPUfreq policy notifier: * This means each time a CPUfreq driver registered also with * the ACPI core is asked to change the speed policy, the maximum * value is adjusted so that it is within the platform limit. * * Also, when a new platform limit value is detected, the CPUfreq * policy is adjusted accordingly. */ #define PPC_REGISTERED 1 #define PPC_IN_USE 2 static int acpi_processor_ppc_status = 0; static int acpi_processor_ppc_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct cpufreq_policy *policy = data; struct acpi_processor *pr; unsigned int ppc = 0; mutex_lock(&performance_mutex); if (event != CPUFREQ_INCOMPATIBLE) goto out; pr = processors[policy->cpu]; if (!pr || !pr->performance) goto out; ppc = (unsigned int)pr->performance_platform_limit; if (ppc >= pr->performance->state_count) goto out; cpufreq_verify_within_limits(policy, 0, pr->performance->states[ppc]. core_frequency * 1000); out: mutex_unlock(&performance_mutex); return 0; } static struct notifier_block acpi_ppc_notifier_block = { .notifier_call = acpi_processor_ppc_notifier, }; static int acpi_processor_get_platform_limit(struct acpi_processor *pr) { acpi_status status = 0; unsigned long ppc = 0; if (!pr) return -EINVAL; /* * _PPC indicates the maximum state currently supported by the platform * (e.g. 0 = states 0..n; 1 = states 1..n; etc. */ status = acpi_evaluate_integer(pr->handle, "_PPC", NULL, &ppc); if (status != AE_NOT_FOUND) acpi_processor_ppc_status |= PPC_IN_USE; if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PPC")); return -ENODEV; } pr->performance_platform_limit = (int)ppc; return 0; } int acpi_processor_ppc_has_changed(struct acpi_processor *pr) { int ret = acpi_processor_get_platform_limit(pr); if (ret < 0) return (ret); else return cpufreq_update_policy(pr->id); } void acpi_processor_ppc_init(void) { if (!cpufreq_register_notifier (&acpi_ppc_notifier_block, CPUFREQ_POLICY_NOTIFIER)) acpi_processor_ppc_status |= PPC_REGISTERED; else printk(KERN_DEBUG "Warning: Processor Platform Limit not supported.\n"); } void acpi_processor_ppc_exit(void) { if (acpi_processor_ppc_status & PPC_REGISTERED) cpufreq_unregister_notifier(&acpi_ppc_notifier_block, CPUFREQ_POLICY_NOTIFIER); acpi_processor_ppc_status &= ~PPC_REGISTERED; } static int acpi_processor_get_performance_control(struct acpi_processor *pr) { int result = 0; acpi_status status = 0; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *pct = NULL; union acpi_object obj = { 0 }; status = acpi_evaluate_object(pr->handle, "_PCT", NULL, &buffer); if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PCT")); return -ENODEV; } pct = (union acpi_object *)buffer.pointer; if (!pct || (pct->type != ACPI_TYPE_PACKAGE) || (pct->package.count != 2)) { printk(KERN_ERR PREFIX "Invalid _PCT data\n"); result = -EFAULT; goto end; } /* * control_register */ obj = pct->package.elements[0]; if ((obj.type != ACPI_TYPE_BUFFER) || (obj.buffer.length < sizeof(struct acpi_pct_register)) || (obj.buffer.pointer == NULL)) { printk(KERN_ERR PREFIX "Invalid _PCT data (control_register)\n"); result = -EFAULT; goto end; } memcpy(&pr->performance->control_register, obj.buffer.pointer, sizeof(struct acpi_pct_register)); /* * status_register */ obj = pct->package.elements[1]; if ((obj.type != ACPI_TYPE_BUFFER) || (obj.buffer.length < sizeof(struct acpi_pct_register)) || (obj.buffer.pointer == NULL)) { printk(KERN_ERR PREFIX "Invalid _PCT data (status_register)\n"); result = -EFAULT; goto end; } memcpy(&pr->performance->status_register, obj.buffer.pointer, sizeof(struct acpi_pct_register)); end: kfree(buffer.pointer); return result; } static int acpi_processor_get_performance_states(struct acpi_processor *pr) { int result = 0; acpi_status status = AE_OK; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_buffer format = { sizeof("NNNNNN"), "NNNNNN" }; struct acpi_buffer state = { 0, NULL }; union acpi_object *pss = NULL; int i; status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PSS")); return -ENODEV; } pss = buffer.pointer; if (!pss || (pss->type != ACPI_TYPE_PACKAGE)) { printk(KERN_ERR PREFIX "Invalid _PSS data\n"); result = -EFAULT; goto end; } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d performance states\n", pss->package.count)); pr->performance->state_count = pss->package.count; pr->performance->states = kmalloc(sizeof(struct acpi_processor_px) * pss->package.count, GFP_KERNEL); if (!pr->performance->states) { result = -ENOMEM; goto end; } for (i = 0; i < pr->performance->state_count; i++) { struct acpi_processor_px *px = &(pr->performance->states[i]); state.length = sizeof(struct acpi_processor_px); state.pointer = px; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Extracting state %d\n", i)); status = acpi_extract_package(&(pss->package.elements[i]), &format, &state); if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "Invalid _PSS data")); result = -EFAULT; kfree(pr->performance->states); goto end; } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "State [%d]: core_frequency[%d] power[%d] transition_latency[%d] bus_master_latency[%d] control[0x%x] status[0x%x]\n", i, (u32) px->core_frequency, (u32) px->power, (u32) px->transition_latency, (u32) px->bus_master_latency, (u32) px->control, (u32) px->status)); if (!px->core_frequency) { printk(KERN_ERR PREFIX "Invalid _PSS data: freq is zero\n"); result = -EFAULT; kfree(pr->performance->states); goto end; } } end: kfree(buffer.pointer); return result; } static int acpi_processor_get_performance_info(struct acpi_processor *pr) { int result = 0; acpi_status status = AE_OK; acpi_handle handle = NULL; if (!pr || !pr->performance || !pr->handle) return -EINVAL; status = acpi_get_handle(pr->handle, "_PCT", &handle); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "ACPI-based processor performance control unavailable\n")); return -ENODEV; } result = acpi_processor_get_performance_control(pr); if (result) return result; result = acpi_processor_get_performance_states(pr); if (result) return result; return 0; } int acpi_processor_notify_smm(struct module *calling_module) { acpi_status status; static int is_done = 0; if (!(acpi_processor_ppc_status & PPC_REGISTERED)) return -EBUSY; if (!try_module_get(calling_module)) return -EINVAL; /* is_done is set to negative if an error occured, * and to postitive if _no_ error occured, but SMM * was already notified. This avoids double notification * which might lead to unexpected results... */ if (is_done > 0) { module_put(calling_module); return 0; } else if (is_done < 0) { module_put(calling_module); return is_done; } is_done = -EIO; /* Can't write pstate_control to smi_command if either value is zero */ if ((!acpi_gbl_FADT.smi_command) || (!acpi_gbl_FADT.pstate_control)) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No SMI port or pstate_control\n")); module_put(calling_module); return 0; } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Writing pstate_control [0x%x] to smi_command [0x%x]\n", acpi_gbl_FADT.pstate_control, acpi_gbl_FADT.smi_command)); status = acpi_os_write_port(acpi_gbl_FADT.smi_command, (u32) acpi_gbl_FADT.pstate_control, 8); if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "Failed to write pstate_control [0x%x] to " "smi_command [0x%x]", acpi_gbl_FADT.pstate_control, acpi_gbl_FADT.smi_command)); module_put(calling_module); return status; } /* Success. If there's no _PPC, we need to fear nothing, so * we can allow the cpufreq driver to be rmmod'ed. */ is_done = 1; if (!(acpi_processor_ppc_status & PPC_IN_USE)) module_put(calling_module); return 0; } EXPORT_SYMBOL(acpi_processor_notify_smm); #ifdef CONFIG_X86_ACPI_CPUFREQ_PROC_INTF /* /proc/acpi/processor/../performance interface (DEPRECATED) */ static int acpi_processor_perf_open_fs(struct inode *inode, struct file *file); static struct file_operations acpi_processor_perf_fops = { .open = acpi_processor_perf_open_fs, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int acpi_processor_perf_seq_show(struct seq_file *seq, void *offset) { struct acpi_processor *pr = seq->private; int i; if (!pr) goto end; if (!pr->performance) { seq_puts(seq, "<not supported>\n"); goto end; } seq_printf(seq, "state count: %d\n" "active state: P%d\n", pr->performance->state_count, pr->performance->state); seq_puts(seq, "states:\n"); for (i = 0; i < pr->performance->state_count; i++) seq_printf(seq, " %cP%d: %d MHz, %d mW, %d uS\n", (i == pr->performance->state ? '*' : ' '), i, (u32) pr->performance->states[i].core_frequency, (u32) pr->performance->states[i].power, (u32) pr->performance->states[i].transition_latency); end: return 0; } static int acpi_processor_perf_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_processor_perf_seq_show, PDE(inode)->data); } static void acpi_cpufreq_add_file(struct acpi_processor *pr) { struct proc_dir_entry *entry = NULL; struct acpi_device *device = NULL; if (acpi_bus_get_device(pr->handle, &device)) return; /* add file 'performance' [R/W] */ entry = create_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE, S_IFREG | S_IRUGO, acpi_device_dir(device)); if (entry){ entry->proc_fops = &acpi_processor_perf_fops; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } return; } static void acpi_cpufreq_remove_file(struct acpi_processor *pr) { struct acpi_device *device = NULL; if (acpi_bus_get_device(pr->handle, &device)) return; /* remove file 'performance' */ remove_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE, acpi_device_dir(device)); return; } #else static void acpi_cpufreq_add_file(struct acpi_processor *pr) { return; } static void acpi_cpufreq_remove_file(struct acpi_processor *pr) { return; } #endif /* CONFIG_X86_ACPI_CPUFREQ_PROC_INTF */ static int acpi_processor_get_psd(struct acpi_processor *pr) { int result = 0; acpi_status status = AE_OK; struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; struct acpi_buffer state = {0, NULL}; union acpi_object *psd = NULL; struct acpi_psd_package *pdomain; status = acpi_evaluate_object(pr->handle, "_PSD", NULL, &buffer); if (ACPI_FAILURE(status)) { return -ENODEV; } psd = buffer.pointer; if (!psd || (psd->type != ACPI_TYPE_PACKAGE)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSD data\n")); result = -EFAULT; goto end; } if (psd->package.count != 1) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSD data\n")); result = -EFAULT; goto end; } pdomain = &(pr->performance->domain_info); state.length = sizeof(struct acpi_psd_package); state.pointer = pdomain; status = acpi_extract_package(&(psd->package.elements[0]), &format, &state); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSD data\n")); result = -EFAULT; goto end; } if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unknown _PSD:num_entries\n")); result = -EFAULT; goto end; } if (pdomain->revision != ACPI_PSD_REV0_REVISION) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unknown _PSD:revision\n")); result = -EFAULT; goto end; } end: kfree(buffer.pointer); return result; } int acpi_processor_preregister_performance( struct acpi_processor_performance **performance) { int count, count_target; int retval = 0; unsigned int i, j; cpumask_t covered_cpus; struct acpi_processor *pr; struct acpi_psd_package *pdomain; struct acpi_processor *match_pr; struct acpi_psd_package *match_pdomain; mutex_lock(&performance_mutex); retval = 0; /* Call _PSD for all CPUs */ for_each_possible_cpu(i) { pr = processors[i]; if (!pr) { /* Look only at processors in ACPI namespace */ continue; } if (pr->performance) { retval = -EBUSY; continue; } if (!performance || !performance[i]) { retval = -EINVAL; continue; } pr->performance = performance[i]; cpu_set(i, pr->performance->shared_cpu_map); if (acpi_processor_get_psd(pr)) { retval = -EINVAL; continue; } } if (retval) goto err_ret; /* * Now that we have _PSD data from all CPUs, lets setup P-state * domain info. */ for_each_possible_cpu(i) { pr = processors[i]; if (!pr) continue; /* Basic validity check for domain info */ pdomain = &(pr->performance->domain_info); if ((pdomain->revision != ACPI_PSD_REV0_REVISION) || (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES)) { retval = -EINVAL; goto err_ret; } if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { retval = -EINVAL; goto err_ret; } } cpus_clear(covered_cpus); for_each_possible_cpu(i) { pr = processors[i]; if (!pr) continue; if (cpu_isset(i, covered_cpus)) continue; pdomain = &(pr->performance->domain_info); cpu_set(i, pr->performance->shared_cpu_map); cpu_set(i, covered_cpus); if (pdomain->num_processors <= 1) continue; /* Validate the Domain info */ count_target = pdomain->num_processors; count = 1; if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL; else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) pr->performance->shared_type = CPUFREQ_SHARED_TYPE_HW; else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ANY; for_each_possible_cpu(j) { if (i == j) continue; match_pr = processors[j]; if (!match_pr) continue; match_pdomain = &(match_pr->performance->domain_info); if (match_pdomain->domain != pdomain->domain) continue; /* Here i and j are in the same domain */ if (match_pdomain->num_processors != count_target) { retval = -EINVAL; goto err_ret; } if (pdomain->coord_type != match_pdomain->coord_type) { retval = -EINVAL; goto err_ret; } cpu_set(j, covered_cpus); cpu_set(j, pr->performance->shared_cpu_map); count++; } for_each_possible_cpu(j) { if (i == j) continue; match_pr = processors[j]; if (!match_pr) continue; match_pdomain = &(match_pr->performance->domain_info); if (match_pdomain->domain != pdomain->domain) continue; match_pr->performance->shared_type = pr->performance->shared_type; match_pr->performance->shared_cpu_map = pr->performance->shared_cpu_map; } } err_ret: for_each_possible_cpu(i) { pr = processors[i]; if (!pr || !pr->performance) continue; /* Assume no coordination on any error parsing domain info */ if (retval) { cpus_clear(pr->performance->shared_cpu_map); cpu_set(i, pr->performance->shared_cpu_map); pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL; } pr->performance = NULL; /* Will be set for real in register */ } mutex_unlock(&performance_mutex); return retval; } EXPORT_SYMBOL(acpi_processor_preregister_performance); int acpi_processor_register_performance(struct acpi_processor_performance *performance, unsigned int cpu) { struct acpi_processor *pr; if (!(acpi_processor_ppc_status & PPC_REGISTERED)) return -EINVAL; mutex_lock(&performance_mutex); pr = processors[cpu]; if (!pr) { mutex_unlock(&performance_mutex); return -ENODEV; } if (pr->performance) { mutex_unlock(&performance_mutex); return -EBUSY; } WARN_ON(!performance); pr->performance = performance; if (acpi_processor_get_performance_info(pr)) { pr->performance = NULL; mutex_unlock(&performance_mutex); return -EIO; } acpi_cpufreq_add_file(pr); mutex_unlock(&performance_mutex); return 0; } EXPORT_SYMBOL(acpi_processor_register_performance); void acpi_processor_unregister_performance(struct acpi_processor_performance *performance, unsigned int cpu) { struct acpi_processor *pr; mutex_lock(&performance_mutex); pr = processors[cpu]; if (!pr) { mutex_unlock(&performance_mutex); return; } if (pr->performance) kfree(pr->performance->states); pr->performance = NULL; acpi_cpufreq_remove_file(pr); mutex_unlock(&performance_mutex); return; } EXPORT_SYMBOL(acpi_processor_unregister_performance);