/* * Copyright (C)2006 USAGI/WIDE Project * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: * Kazunori Miyazawa <miyazawa@linux-ipv6.org> */ #include <linux/crypto.h> #include <linux/err.h> #include <linux/hardirq.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <linux/scatterlist.h> #include "internal.h" static u_int32_t ks[12] = {0x01010101, 0x01010101, 0x01010101, 0x01010101, 0x02020202, 0x02020202, 0x02020202, 0x02020202, 0x03030303, 0x03030303, 0x03030303, 0x03030303}; /* * +------------------------ * | <parent tfm> * +------------------------ * | crypto_xcbc_ctx * +------------------------ * | odds (block size) * +------------------------ * | prev (block size) * +------------------------ * | key (block size) * +------------------------ * | consts (block size * 3) * +------------------------ */ struct crypto_xcbc_ctx { struct crypto_cipher *child; u8 *odds; u8 *prev; u8 *key; u8 *consts; void (*xor)(u8 *a, const u8 *b, unsigned int bs); unsigned int keylen; unsigned int len; }; static void xor_128(u8 *a, const u8 *b, unsigned int bs) { ((u32 *)a)[0] ^= ((u32 *)b)[0]; ((u32 *)a)[1] ^= ((u32 *)b)[1]; ((u32 *)a)[2] ^= ((u32 *)b)[2]; ((u32 *)a)[3] ^= ((u32 *)b)[3]; } static int _crypto_xcbc_digest_setkey(struct crypto_hash *parent, struct crypto_xcbc_ctx *ctx) { int bs = crypto_hash_blocksize(parent); int err = 0; u8 key1[bs]; if ((err = crypto_cipher_setkey(ctx->child, ctx->key, ctx->keylen))) return err; crypto_cipher_encrypt_one(ctx->child, key1, ctx->consts); return crypto_cipher_setkey(ctx->child, key1, bs); } static int crypto_xcbc_digest_setkey(struct crypto_hash *parent, const u8 *inkey, unsigned int keylen) { struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(parent); if (keylen != crypto_cipher_blocksize(ctx->child)) return -EINVAL; ctx->keylen = keylen; memcpy(ctx->key, inkey, keylen); ctx->consts = (u8*)ks; return _crypto_xcbc_digest_setkey(parent, ctx); } static int crypto_xcbc_digest_init(struct hash_desc *pdesc) { struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(pdesc->tfm); int bs = crypto_hash_blocksize(pdesc->tfm); ctx->len = 0; memset(ctx->odds, 0, bs); memset(ctx->prev, 0, bs); return 0; } static int crypto_xcbc_digest_update2(struct hash_desc *pdesc, struct scatterlist *sg, unsigned int nbytes) { struct crypto_hash *parent = pdesc->tfm; struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(parent); struct crypto_cipher *tfm = ctx->child; int bs = crypto_hash_blocksize(parent); unsigned int i = 0; do { struct page *pg = sg_page(&sg[i]); unsigned int offset = sg[i].offset; unsigned int slen = sg[i].length; while (slen > 0) { unsigned int len = min(slen, ((unsigned int)(PAGE_SIZE)) - offset); char *p = crypto_kmap(pg, 0) + offset; /* checking the data can fill the block */ if ((ctx->len + len) <= bs) { memcpy(ctx->odds + ctx->len, p, len); ctx->len += len; slen -= len; /* checking the rest of the page */ if (len + offset >= PAGE_SIZE) { offset = 0; pg++; } else offset += len; crypto_kunmap(p, 0); crypto_yield(pdesc->flags); continue; } /* filling odds with new data and encrypting it */ memcpy(ctx->odds + ctx->len, p, bs - ctx->len); len -= bs - ctx->len; p += bs - ctx->len; ctx->xor(ctx->prev, ctx->odds, bs); crypto_cipher_encrypt_one(tfm, ctx->prev, ctx->prev); /* clearing the length */ ctx->len = 0; /* encrypting the rest of data */ while (len > bs) { ctx->xor(ctx->prev, p, bs); crypto_cipher_encrypt_one(tfm, ctx->prev, ctx->prev); p += bs; len -= bs; } /* keeping the surplus of blocksize */ if (len) { memcpy(ctx->odds, p, len); ctx->len = len; } crypto_kunmap(p, 0); crypto_yield(pdesc->flags); slen -= min(slen, ((unsigned int)(PAGE_SIZE)) - offset); offset = 0; pg++; } nbytes-=sg[i].length; i++; } while (nbytes>0); return 0; } static int crypto_xcbc_digest_update(struct hash_desc *pdesc, struct scatterlist *sg, unsigned int nbytes) { if (WARN_ON_ONCE(in_irq())) return -EDEADLK; return crypto_xcbc_digest_update2(pdesc, sg, nbytes); } static int crypto_xcbc_digest_final(struct hash_desc *pdesc, u8 *out) { struct crypto_hash *parent = pdesc->tfm; struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(parent); struct crypto_cipher *tfm = ctx->child; int bs = crypto_hash_blocksize(parent); int err = 0; if (ctx->len == bs) { u8 key2[bs]; if ((err = crypto_cipher_setkey(tfm, ctx->key, ctx->keylen)) != 0) return err; crypto_cipher_encrypt_one(tfm, key2, (u8 *)(ctx->consts + bs)); ctx->xor(ctx->prev, ctx->odds, bs); ctx->xor(ctx->prev, key2, bs); _crypto_xcbc_digest_setkey(parent, ctx); crypto_cipher_encrypt_one(tfm, out, ctx->prev); } else { u8 key3[bs]; unsigned int rlen; u8 *p = ctx->odds + ctx->len; *p = 0x80; p++; rlen = bs - ctx->len -1; if (rlen) memset(p, 0, rlen); if ((err = crypto_cipher_setkey(tfm, ctx->key, ctx->keylen)) != 0) return err; crypto_cipher_encrypt_one(tfm, key3, (u8 *)(ctx->consts + bs * 2)); ctx->xor(ctx->prev, ctx->odds, bs); ctx->xor(ctx->prev, key3, bs); _crypto_xcbc_digest_setkey(parent, ctx); crypto_cipher_encrypt_one(tfm, out, ctx->prev); } return 0; } static int crypto_xcbc_digest(struct hash_desc *pdesc, struct scatterlist *sg, unsigned int nbytes, u8 *out) { if (WARN_ON_ONCE(in_irq())) return -EDEADLK; crypto_xcbc_digest_init(pdesc); crypto_xcbc_digest_update2(pdesc, sg, nbytes); return crypto_xcbc_digest_final(pdesc, out); } static int xcbc_init_tfm(struct crypto_tfm *tfm) { struct crypto_cipher *cipher; struct crypto_instance *inst = (void *)tfm->__crt_alg; struct crypto_spawn *spawn = crypto_instance_ctx(inst); struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(__crypto_hash_cast(tfm)); int bs = crypto_hash_blocksize(__crypto_hash_cast(tfm)); cipher = crypto_spawn_cipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); switch(bs) { case 16: ctx->xor = xor_128; break; default: return -EINVAL; } ctx->child = cipher; ctx->odds = (u8*)(ctx+1); ctx->prev = ctx->odds + bs; ctx->key = ctx->prev + bs; return 0; }; static void xcbc_exit_tfm(struct crypto_tfm *tfm) { struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(__crypto_hash_cast(tfm)); crypto_free_cipher(ctx->child); } static struct crypto_instance *xcbc_alloc(struct rtattr **tb) { struct crypto_instance *inst; struct crypto_alg *alg; int err; err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_HASH); if (err) return ERR_PTR(err); alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, CRYPTO_ALG_TYPE_MASK); if (IS_ERR(alg)) return ERR_PTR(PTR_ERR(alg)); switch(alg->cra_blocksize) { case 16: break; default: return ERR_PTR(PTR_ERR(alg)); } inst = crypto_alloc_instance("xcbc", alg); if (IS_ERR(inst)) goto out_put_alg; inst->alg.cra_flags = CRYPTO_ALG_TYPE_HASH; inst->alg.cra_priority = alg->cra_priority; inst->alg.cra_blocksize = alg->cra_blocksize; inst->alg.cra_alignmask = alg->cra_alignmask; inst->alg.cra_type = &crypto_hash_type; inst->alg.cra_hash.digestsize = (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_HASH ? alg->cra_hash.digestsize : alg->cra_blocksize; inst->alg.cra_ctxsize = sizeof(struct crypto_xcbc_ctx) + ALIGN(inst->alg.cra_blocksize * 3, sizeof(void *)); inst->alg.cra_init = xcbc_init_tfm; inst->alg.cra_exit = xcbc_exit_tfm; inst->alg.cra_hash.init = crypto_xcbc_digest_init; inst->alg.cra_hash.update = crypto_xcbc_digest_update; inst->alg.cra_hash.final = crypto_xcbc_digest_final; inst->alg.cra_hash.digest = crypto_xcbc_digest; inst->alg.cra_hash.setkey = crypto_xcbc_digest_setkey; out_put_alg: crypto_mod_put(alg); return inst; } static void xcbc_free(struct crypto_instance *inst) { crypto_drop_spawn(crypto_instance_ctx(inst)); kfree(inst); } static struct crypto_template crypto_xcbc_tmpl = { .name = "xcbc", .alloc = xcbc_alloc, .free = xcbc_free, .module = THIS_MODULE, }; static int __init crypto_xcbc_module_init(void) { return crypto_register_template(&crypto_xcbc_tmpl); } static void __exit crypto_xcbc_module_exit(void) { crypto_unregister_template(&crypto_xcbc_tmpl); } module_init(crypto_xcbc_module_init); module_exit(crypto_xcbc_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("XCBC keyed hash algorithm");