/* * Quick & dirty crypto testing module. * * This will only exist until we have a better testing mechanism * (e.g. a char device). * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * 14 - 09 - 2003 * Rewritten by Kartikey Mahendra Bhatt */ #include <linux/init.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/slab.h> #include <asm/scatterlist.h> #include <linux/string.h> #include <linux/crypto.h> #include <linux/highmem.h> #include <linux/moduleparam.h> #include "tcrypt.h" /* * Need to kmalloc() memory for testing kmap(). */ #define TVMEMSIZE 4096 #define XBUFSIZE 32768 /* * Indexes into the xbuf to simulate cross-page access. */ #define IDX1 37 #define IDX2 32400 #define IDX3 1 #define IDX4 8193 #define IDX5 22222 #define IDX6 17101 #define IDX7 27333 #define IDX8 3000 /* * Used by test_cipher() */ #define ENCRYPT 1 #define DECRYPT 0 #define MODE_ECB 1 #define MODE_CBC 0 static unsigned int IDX[8] = { IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 }; static int mode; static char *xbuf; static char *tvmem; static char *check[] = { "des", "md5", "des3_ede", "rot13", "sha1", "sha256", "blowfish", "twofish", "serpent", "sha384", "sha512", "md4", "aes", "cast6", "arc4", "michael_mic", "deflate", "crc32c", "tea", "xtea", "khazad", "wp512", "wp384", "wp256", "tnepres", NULL }; static void hexdump(unsigned char *buf, unsigned int len) { while (len--) printk("%02x", *buf++); printk("\n"); } static void test_hash (char * algo, struct hash_testvec * template, unsigned int tcount) { char *p; unsigned int i, j, k, temp; struct scatterlist sg[8]; char result[64]; struct crypto_tfm *tfm; struct hash_testvec *hash_tv; unsigned int tsize; printk("\ntesting %s\n", algo); tsize = sizeof (struct hash_testvec); tsize *= tcount; if (tsize > TVMEMSIZE) { printk("template (%u) too big for tvmem (%u)\n", tsize, TVMEMSIZE); return; } memcpy(tvmem, template, tsize); hash_tv = (void *) tvmem; tfm = crypto_alloc_tfm(algo, 0); if (tfm == NULL) { printk("failed to load transform for %s\n", algo); return; } for (i = 0; i < tcount; i++) { printk ("test %u:\n", i + 1); memset (result, 0, 64); p = hash_tv[i].plaintext; sg[0].page = virt_to_page (p); sg[0].offset = offset_in_page (p); sg[0].length = hash_tv[i].psize; crypto_digest_init (tfm); if (tfm->crt_u.digest.dit_setkey) { crypto_digest_setkey (tfm, hash_tv[i].key, hash_tv[i].ksize); } crypto_digest_update (tfm, sg, 1); crypto_digest_final (tfm, result); hexdump (result, crypto_tfm_alg_digestsize (tfm)); printk("%s\n", memcmp(result, hash_tv[i].digest, crypto_tfm_alg_digestsize(tfm)) ? "fail" : "pass"); } printk ("testing %s across pages\n", algo); /* setup the dummy buffer first */ memset(xbuf, 0, XBUFSIZE); j = 0; for (i = 0; i < tcount; i++) { if (hash_tv[i].np) { j++; printk ("test %u:\n", j); memset (result, 0, 64); temp = 0; for (k = 0; k < hash_tv[i].np; k++) { memcpy (&xbuf[IDX[k]], hash_tv[i].plaintext + temp, hash_tv[i].tap[k]); temp += hash_tv[i].tap[k]; p = &xbuf[IDX[k]]; sg[k].page = virt_to_page (p); sg[k].offset = offset_in_page (p); sg[k].length = hash_tv[i].tap[k]; } crypto_digest_digest (tfm, sg, hash_tv[i].np, result); hexdump (result, crypto_tfm_alg_digestsize (tfm)); printk("%s\n", memcmp(result, hash_tv[i].digest, crypto_tfm_alg_digestsize(tfm)) ? "fail" : "pass"); } } crypto_free_tfm (tfm); } #ifdef CONFIG_CRYPTO_HMAC static void test_hmac(char *algo, struct hmac_testvec * template, unsigned int tcount) { char *p; unsigned int i, j, k, temp; struct scatterlist sg[8]; char result[64]; struct crypto_tfm *tfm; struct hmac_testvec *hmac_tv; unsigned int tsize, klen; tfm = crypto_alloc_tfm(algo, 0); if (tfm == NULL) { printk("failed to load transform for %s\n", algo); return; } printk("\ntesting hmac_%s\n", algo); tsize = sizeof (struct hmac_testvec); tsize *= tcount; if (tsize > TVMEMSIZE) { printk("template (%u) too big for tvmem (%u)\n", tsize, TVMEMSIZE); goto out; } memcpy(tvmem, template, tsize); hmac_tv = (void *) tvmem; for (i = 0; i < tcount; i++) { printk("test %u:\n", i + 1); memset(result, 0, sizeof (result)); p = hmac_tv[i].plaintext; klen = hmac_tv[i].ksize; sg[0].page = virt_to_page(p); sg[0].offset = offset_in_page(p); sg[0].length = hmac_tv[i].psize; crypto_hmac(tfm, hmac_tv[i].key, &klen, sg, 1, result); hexdump(result, crypto_tfm_alg_digestsize(tfm)); printk("%s\n", memcmp(result, hmac_tv[i].digest, crypto_tfm_alg_digestsize(tfm)) ? "fail" : "pass"); } printk("\ntesting hmac_%s across pages\n", algo); memset(xbuf, 0, XBUFSIZE); j = 0; for (i = 0; i < tcount; i++) { if (hmac_tv[i].np) { j++; printk ("test %u:\n",j); memset (result, 0, 64); temp = 0; klen = hmac_tv[i].ksize; for (k = 0; k < hmac_tv[i].np; k++) { memcpy (&xbuf[IDX[k]], hmac_tv[i].plaintext + temp, hmac_tv[i].tap[k]); temp += hmac_tv[i].tap[k]; p = &xbuf[IDX[k]]; sg[k].page = virt_to_page (p); sg[k].offset = offset_in_page (p); sg[k].length = hmac_tv[i].tap[k]; } crypto_hmac(tfm, hmac_tv[i].key, &klen, sg, hmac_tv[i].np, result); hexdump(result, crypto_tfm_alg_digestsize(tfm)); printk("%s\n", memcmp(result, hmac_tv[i].digest, crypto_tfm_alg_digestsize(tfm)) ? "fail" : "pass"); } } out: crypto_free_tfm(tfm); } #endif /* CONFIG_CRYPTO_HMAC */ static void test_cipher(char * algo, int mode, int enc, struct cipher_testvec * template, unsigned int tcount) { unsigned int ret, i, j, k, temp; unsigned int tsize; char *p, *q; struct crypto_tfm *tfm; char *key; struct cipher_testvec *cipher_tv; struct scatterlist sg[8]; char e[11], m[4]; if (enc == ENCRYPT) strncpy(e, "encryption", 11); else strncpy(e, "decryption", 11); if (mode == MODE_ECB) strncpy(m, "ECB", 4); else strncpy(m, "CBC", 4); printk("\ntesting %s %s %s \n", algo, m, e); tsize = sizeof (struct cipher_testvec); tsize *= tcount; if (tsize > TVMEMSIZE) { printk("template (%u) too big for tvmem (%u)\n", tsize, TVMEMSIZE); return; } memcpy(tvmem, template, tsize); cipher_tv = (void *) tvmem; if (mode) tfm = crypto_alloc_tfm (algo, 0); else tfm = crypto_alloc_tfm (algo, CRYPTO_TFM_MODE_CBC); if (tfm == NULL) { printk("failed to load transform for %s %s\n", algo, m); return; } j = 0; for (i = 0; i < tcount; i++) { if (!(cipher_tv[i].np)) { j++; printk("test %u (%d bit key):\n", j, cipher_tv[i].klen * 8); tfm->crt_flags = 0; if (cipher_tv[i].wk) tfm->crt_flags |= CRYPTO_TFM_REQ_WEAK_KEY; key = cipher_tv[i].key; ret = crypto_cipher_setkey(tfm, key, cipher_tv[i].klen); if (ret) { printk("setkey() failed flags=%x\n", tfm->crt_flags); if (!cipher_tv[i].fail) goto out; } p = cipher_tv[i].input; sg[0].page = virt_to_page(p); sg[0].offset = offset_in_page(p); sg[0].length = cipher_tv[i].ilen; if (!mode) { crypto_cipher_set_iv(tfm, cipher_tv[i].iv, crypto_tfm_alg_ivsize (tfm)); } if (enc) ret = crypto_cipher_encrypt(tfm, sg, sg, cipher_tv[i].ilen); else ret = crypto_cipher_decrypt(tfm, sg, sg, cipher_tv[i].ilen); if (ret) { printk("%s () failed flags=%x\n", e, tfm->crt_flags); goto out; } q = kmap(sg[0].page) + sg[0].offset; hexdump(q, cipher_tv[i].rlen); printk("%s\n", memcmp(q, cipher_tv[i].result, cipher_tv[i].rlen) ? "fail" : "pass"); } } printk("\ntesting %s %s %s across pages (chunking) \n", algo, m, e); memset(xbuf, 0, XBUFSIZE); j = 0; for (i = 0; i < tcount; i++) { if (cipher_tv[i].np) { j++; printk("test %u (%d bit key):\n", j, cipher_tv[i].klen * 8); tfm->crt_flags = 0; if (cipher_tv[i].wk) tfm->crt_flags |= CRYPTO_TFM_REQ_WEAK_KEY; key = cipher_tv[i].key; ret = crypto_cipher_setkey(tfm, key, cipher_tv[i].klen); if (ret) { printk("setkey() failed flags=%x\n", tfm->crt_flags); if (!cipher_tv[i].fail) goto out; } temp = 0; for (k = 0; k < cipher_tv[i].np; k++) { memcpy (&xbuf[IDX[k]], cipher_tv[i].input + temp, cipher_tv[i].tap[k]); temp += cipher_tv[i].tap[k]; p = &xbuf[IDX[k]]; sg[k].page = virt_to_page (p); sg[k].offset = offset_in_page (p); sg[k].length = cipher_tv[i].tap[k]; } if (!mode) { crypto_cipher_set_iv(tfm, cipher_tv[i].iv, crypto_tfm_alg_ivsize (tfm)); } if (enc) ret = crypto_cipher_encrypt(tfm, sg, sg, cipher_tv[i].ilen); else ret = crypto_cipher_decrypt(tfm, sg, sg, cipher_tv[i].ilen); if (ret) { printk("%s () failed flags=%x\n", e, tfm->crt_flags); goto out; } temp = 0; for (k = 0; k < cipher_tv[i].np; k++) { printk("page %u\n", k); q = kmap(sg[k].page) + sg[k].offset; hexdump(q, cipher_tv[i].tap[k]); printk("%s\n", memcmp(q, cipher_tv[i].result + temp, cipher_tv[i].tap[k]) ? "fail" : "pass"); temp += cipher_tv[i].tap[k]; } } } out: crypto_free_tfm(tfm); } static void test_deflate(void) { unsigned int i; char result[COMP_BUF_SIZE]; struct crypto_tfm *tfm; struct comp_testvec *tv; unsigned int tsize; printk("\ntesting deflate compression\n"); tsize = sizeof (deflate_comp_tv_template); if (tsize > TVMEMSIZE) { printk("template (%u) too big for tvmem (%u)\n", tsize, TVMEMSIZE); return; } memcpy(tvmem, deflate_comp_tv_template, tsize); tv = (void *) tvmem; tfm = crypto_alloc_tfm("deflate", 0); if (tfm == NULL) { printk("failed to load transform for deflate\n"); return; } for (i = 0; i < DEFLATE_COMP_TEST_VECTORS; i++) { int ilen, ret, dlen = COMP_BUF_SIZE; printk("test %u:\n", i + 1); memset(result, 0, sizeof (result)); ilen = tv[i].inlen; ret = crypto_comp_compress(tfm, tv[i].input, ilen, result, &dlen); if (ret) { printk("fail: ret=%d\n", ret); continue; } hexdump(result, dlen); printk("%s (ratio %d:%d)\n", memcmp(result, tv[i].output, dlen) ? "fail" : "pass", ilen, dlen); } printk("\ntesting deflate decompression\n"); tsize = sizeof (deflate_decomp_tv_template); if (tsize > TVMEMSIZE) { printk("template (%u) too big for tvmem (%u)\n", tsize, TVMEMSIZE); goto out; } memcpy(tvmem, deflate_decomp_tv_template, tsize); tv = (void *) tvmem; for (i = 0; i < DEFLATE_DECOMP_TEST_VECTORS; i++) { int ilen, ret, dlen = COMP_BUF_SIZE; printk("test %u:\n", i + 1); memset(result, 0, sizeof (result)); ilen = tv[i].inlen; ret = crypto_comp_decompress(tfm, tv[i].input, ilen, result, &dlen); if (ret) { printk("fail: ret=%d\n", ret); continue; } hexdump(result, dlen); printk("%s (ratio %d:%d)\n", memcmp(result, tv[i].output, dlen) ? "fail" : "pass", ilen, dlen); } out: crypto_free_tfm(tfm); } static void test_crc32c(void) { #define NUMVEC 6 #define VECSIZE 40 int i, j, pass; u32 crc; u8 b, test_vec[NUMVEC][VECSIZE]; static u32 vec_results[NUMVEC] = { 0x0e2c157f, 0xe980ebf6, 0xde74bded, 0xd579c862, 0xba979ad0, 0x2b29d913 }; static u32 tot_vec_results = 0x24c5d375; struct scatterlist sg[NUMVEC]; struct crypto_tfm *tfm; char *fmtdata = "testing crc32c initialized to %08x: %s\n"; #define SEEDTESTVAL 0xedcba987 u32 seed; printk("\ntesting crc32c\n"); tfm = crypto_alloc_tfm("crc32c", 0); if (tfm == NULL) { printk("failed to load transform for crc32c\n"); return; } crypto_digest_init(tfm); crypto_digest_final(tfm, (u8*)&crc); printk(fmtdata, crc, (crc == 0) ? "pass" : "ERROR"); /* * stuff test_vec with known values, simple incrementing * byte values. */ b = 0; for (i = 0; i < NUMVEC; i++) { for (j = 0; j < VECSIZE; j++) test_vec[i][j] = ++b; sg[i].page = virt_to_page(test_vec[i]); sg[i].offset = offset_in_page(test_vec[i]); sg[i].length = VECSIZE; } seed = SEEDTESTVAL; (void)crypto_digest_setkey(tfm, (const u8*)&seed, sizeof(u32)); crypto_digest_final(tfm, (u8*)&crc); printk("testing crc32c setkey returns %08x : %s\n", crc, (crc == (SEEDTESTVAL ^ ~(u32)0)) ? "pass" : "ERROR"); printk("testing crc32c using update/final:\n"); pass = 1; /* assume all is well */ for (i = 0; i < NUMVEC; i++) { seed = ~(u32)0; (void)crypto_digest_setkey(tfm, (const u8*)&seed, sizeof(u32)); crypto_digest_update(tfm, &sg[i], 1); crypto_digest_final(tfm, (u8*)&crc); if (crc == vec_results[i]) { printk(" %08x:OK", crc); } else { printk(" %08x:BAD, wanted %08x\n", crc, vec_results[i]); pass = 0; } } printk("\ntesting crc32c using incremental accumulator:\n"); crc = 0; for (i = 0; i < NUMVEC; i++) { seed = (crc ^ ~(u32)0); (void)crypto_digest_setkey(tfm, (const u8*)&seed, sizeof(u32)); crypto_digest_update(tfm, &sg[i], 1); crypto_digest_final(tfm, (u8*)&crc); } if (crc == tot_vec_results) { printk(" %08x:OK", crc); } else { printk(" %08x:BAD, wanted %08x\n", crc, tot_vec_results); pass = 0; } printk("\ntesting crc32c using digest:\n"); seed = ~(u32)0; (void)crypto_digest_setkey(tfm, (const u8*)&seed, sizeof(u32)); crypto_digest_digest(tfm, sg, NUMVEC, (u8*)&crc); if (crc == tot_vec_results) { printk(" %08x:OK", crc); } else { printk(" %08x:BAD, wanted %08x\n", crc, tot_vec_results); pass = 0; } printk("\n%s\n", pass ? "pass" : "ERROR"); crypto_free_tfm(tfm); printk("crc32c test complete\n"); } static void test_available(void) { char **name = check; while (*name) { printk("alg %s ", *name); printk((crypto_alg_available(*name, 0)) ? "found\n" : "not found\n"); name++; } } static void do_test(void) { switch (mode) { case 0: test_hash("md5", md5_tv_template, MD5_TEST_VECTORS); test_hash("sha1", sha1_tv_template, SHA1_TEST_VECTORS); //DES test_cipher ("des", MODE_ECB, ENCRYPT, des_enc_tv_template, DES_ENC_TEST_VECTORS); test_cipher ("des", MODE_ECB, DECRYPT, des_dec_tv_template, DES_DEC_TEST_VECTORS); test_cipher ("des", MODE_CBC, ENCRYPT, des_cbc_enc_tv_template, DES_CBC_ENC_TEST_VECTORS); test_cipher ("des", MODE_CBC, DECRYPT, des_cbc_dec_tv_template, DES_CBC_DEC_TEST_VECTORS); //DES3_EDE test_cipher ("des3_ede", MODE_ECB, ENCRYPT, des3_ede_enc_tv_template, DES3_EDE_ENC_TEST_VECTORS); test_cipher ("des3_ede", MODE_ECB, DECRYPT, des3_ede_dec_tv_template, DES3_EDE_DEC_TEST_VECTORS); test_hash("md4", md4_tv_template, MD4_TEST_VECTORS); test_hash("sha256", sha256_tv_template, SHA256_TEST_VECTORS); //BLOWFISH test_cipher ("blowfish", MODE_ECB, ENCRYPT, bf_enc_tv_template, BF_ENC_TEST_VECTORS); test_cipher ("blowfish", MODE_ECB, DECRYPT, bf_dec_tv_template, BF_DEC_TEST_VECTORS); test_cipher ("blowfish", MODE_CBC, ENCRYPT, bf_cbc_enc_tv_template, BF_CBC_ENC_TEST_VECTORS); test_cipher ("blowfish", MODE_CBC, DECRYPT, bf_cbc_dec_tv_template, BF_CBC_DEC_TEST_VECTORS); //TWOFISH test_cipher ("twofish", MODE_ECB, ENCRYPT, tf_enc_tv_template, TF_ENC_TEST_VECTORS); test_cipher ("twofish", MODE_ECB, DECRYPT, tf_dec_tv_template, TF_DEC_TEST_VECTORS); test_cipher ("twofish", MODE_CBC, ENCRYPT, tf_cbc_enc_tv_template, TF_CBC_ENC_TEST_VECTORS); test_cipher ("twofish", MODE_CBC, DECRYPT, tf_cbc_dec_tv_template, TF_CBC_DEC_TEST_VECTORS); //SERPENT test_cipher ("serpent", MODE_ECB, ENCRYPT, serpent_enc_tv_template, SERPENT_ENC_TEST_VECTORS); test_cipher ("serpent", MODE_ECB, DECRYPT, serpent_dec_tv_template, SERPENT_DEC_TEST_VECTORS); //TNEPRES test_cipher ("tnepres", MODE_ECB, ENCRYPT, tnepres_enc_tv_template, TNEPRES_ENC_TEST_VECTORS); test_cipher ("tnepres", MODE_ECB, DECRYPT, tnepres_dec_tv_template, TNEPRES_DEC_TEST_VECTORS); //AES test_cipher ("aes", MODE_ECB, ENCRYPT, aes_enc_tv_template, AES_ENC_TEST_VECTORS); test_cipher ("aes", MODE_ECB, DECRYPT, aes_dec_tv_template, AES_DEC_TEST_VECTORS); //CAST5 test_cipher ("cast5", MODE_ECB, ENCRYPT, cast5_enc_tv_template, CAST5_ENC_TEST_VECTORS); test_cipher ("cast5", MODE_ECB, DECRYPT, cast5_dec_tv_template, CAST5_DEC_TEST_VECTORS); //CAST6 test_cipher ("cast6", MODE_ECB, ENCRYPT, cast6_enc_tv_template, CAST6_ENC_TEST_VECTORS); test_cipher ("cast6", MODE_ECB, DECRYPT, cast6_dec_tv_template, CAST6_DEC_TEST_VECTORS); //ARC4 test_cipher ("arc4", MODE_ECB, ENCRYPT, arc4_enc_tv_template, ARC4_ENC_TEST_VECTORS); test_cipher ("arc4", MODE_ECB, DECRYPT, arc4_dec_tv_template, ARC4_DEC_TEST_VECTORS); //TEA test_cipher ("tea", MODE_ECB, ENCRYPT, tea_enc_tv_template, TEA_ENC_TEST_VECTORS); test_cipher ("tea", MODE_ECB, DECRYPT, tea_dec_tv_template, TEA_DEC_TEST_VECTORS); //XTEA test_cipher ("xtea", MODE_ECB, ENCRYPT, xtea_enc_tv_template, XTEA_ENC_TEST_VECTORS); test_cipher ("xtea", MODE_ECB, DECRYPT, xtea_dec_tv_template, XTEA_DEC_TEST_VECTORS); //KHAZAD test_cipher ("khazad", MODE_ECB, ENCRYPT, khazad_enc_tv_template, KHAZAD_ENC_TEST_VECTORS); test_cipher ("khazad", MODE_ECB, DECRYPT, khazad_dec_tv_template, KHAZAD_DEC_TEST_VECTORS); //ANUBIS test_cipher ("anubis", MODE_ECB, ENCRYPT, anubis_enc_tv_template, ANUBIS_ENC_TEST_VECTORS); test_cipher ("anubis", MODE_ECB, DECRYPT, anubis_dec_tv_template, ANUBIS_DEC_TEST_VECTORS); test_cipher ("anubis", MODE_CBC, ENCRYPT, anubis_cbc_enc_tv_template, ANUBIS_CBC_ENC_TEST_VECTORS); test_cipher ("anubis", MODE_CBC, DECRYPT, anubis_cbc_dec_tv_template, ANUBIS_CBC_ENC_TEST_VECTORS); test_hash("sha384", sha384_tv_template, SHA384_TEST_VECTORS); test_hash("sha512", sha512_tv_template, SHA512_TEST_VECTORS); test_hash("wp512", wp512_tv_template, WP512_TEST_VECTORS); test_hash("wp384", wp384_tv_template, WP384_TEST_VECTORS); test_hash("wp256", wp256_tv_template, WP256_TEST_VECTORS); test_hash("tgr192", tgr192_tv_template, TGR192_TEST_VECTORS); test_hash("tgr160", tgr160_tv_template, TGR160_TEST_VECTORS); test_hash("tgr128", tgr128_tv_template, TGR128_TEST_VECTORS); test_deflate(); test_crc32c(); #ifdef CONFIG_CRYPTO_HMAC test_hmac("md5", hmac_md5_tv_template, HMAC_MD5_TEST_VECTORS); test_hmac("sha1", hmac_sha1_tv_template, HMAC_SHA1_TEST_VECTORS); test_hmac("sha256", hmac_sha256_tv_template, HMAC_SHA256_TEST_VECTORS); #endif test_hash("michael_mic", michael_mic_tv_template, MICHAEL_MIC_TEST_VECTORS); break; case 1: test_hash("md5", md5_tv_template, MD5_TEST_VECTORS); break; case 2: test_hash("sha1", sha1_tv_template, SHA1_TEST_VECTORS); break; case 3: test_cipher ("des", MODE_ECB, ENCRYPT, des_enc_tv_template, DES_ENC_TEST_VECTORS); test_cipher ("des", MODE_ECB, DECRYPT, des_dec_tv_template, DES_DEC_TEST_VECTORS); test_cipher ("des", MODE_CBC, ENCRYPT, des_cbc_enc_tv_template, DES_CBC_ENC_TEST_VECTORS); test_cipher ("des", MODE_CBC, DECRYPT, des_cbc_dec_tv_template, DES_CBC_DEC_TEST_VECTORS); break; case 4: test_cipher ("des3_ede", MODE_ECB, ENCRYPT, des3_ede_enc_tv_template, DES3_EDE_ENC_TEST_VECTORS); test_cipher ("des3_ede", MODE_ECB, DECRYPT, des3_ede_dec_tv_template, DES3_EDE_DEC_TEST_VECTORS); break; case 5: test_hash("md4", md4_tv_template, MD4_TEST_VECTORS); break; case 6: test_hash("sha256", sha256_tv_template, SHA256_TEST_VECTORS); break; case 7: test_cipher ("blowfish", MODE_ECB, ENCRYPT, bf_enc_tv_template, BF_ENC_TEST_VECTORS); test_cipher ("blowfish", MODE_ECB, DECRYPT, bf_dec_tv_template, BF_DEC_TEST_VECTORS); test_cipher ("blowfish", MODE_CBC, ENCRYPT, bf_cbc_enc_tv_template, BF_CBC_ENC_TEST_VECTORS); test_cipher ("blowfish", MODE_CBC, DECRYPT, bf_cbc_dec_tv_template, BF_CBC_DEC_TEST_VECTORS); break; case 8: test_cipher ("twofish", MODE_ECB, ENCRYPT, tf_enc_tv_template, TF_ENC_TEST_VECTORS); test_cipher ("twofish", MODE_ECB, DECRYPT, tf_dec_tv_template, TF_DEC_TEST_VECTORS); test_cipher ("twofish", MODE_CBC, ENCRYPT, tf_cbc_enc_tv_template, TF_CBC_ENC_TEST_VECTORS); test_cipher ("twofish", MODE_CBC, DECRYPT, tf_cbc_dec_tv_template, TF_CBC_DEC_TEST_VECTORS); break; case 9: test_cipher ("serpent", MODE_ECB, ENCRYPT, serpent_enc_tv_template, SERPENT_ENC_TEST_VECTORS); test_cipher ("serpent", MODE_ECB, DECRYPT, serpent_dec_tv_template, SERPENT_DEC_TEST_VECTORS); break; case 10: test_cipher ("aes", MODE_ECB, ENCRYPT, aes_enc_tv_template, AES_ENC_TEST_VECTORS); test_cipher ("aes", MODE_ECB, DECRYPT, aes_dec_tv_template, AES_DEC_TEST_VECTORS); break; case 11: test_hash("sha384", sha384_tv_template, SHA384_TEST_VECTORS); break; case 12: test_hash("sha512", sha512_tv_template, SHA512_TEST_VECTORS); break; case 13: test_deflate(); break; case 14: test_cipher ("cast5", MODE_ECB, ENCRYPT, cast5_enc_tv_template, CAST5_ENC_TEST_VECTORS); test_cipher ("cast5", MODE_ECB, DECRYPT, cast5_dec_tv_template, CAST5_DEC_TEST_VECTORS); break; case 15: test_cipher ("cast6", MODE_ECB, ENCRYPT, cast6_enc_tv_template, CAST6_ENC_TEST_VECTORS); test_cipher ("cast6", MODE_ECB, DECRYPT, cast6_dec_tv_template, CAST6_DEC_TEST_VECTORS); break; case 16: test_cipher ("arc4", MODE_ECB, ENCRYPT, arc4_enc_tv_template, ARC4_ENC_TEST_VECTORS); test_cipher ("arc4", MODE_ECB, DECRYPT, arc4_dec_tv_template, ARC4_DEC_TEST_VECTORS); break; case 17: test_hash("michael_mic", michael_mic_tv_template, MICHAEL_MIC_TEST_VECTORS); break; case 18: test_crc32c(); break; case 19: test_cipher ("tea", MODE_ECB, ENCRYPT, tea_enc_tv_template, TEA_ENC_TEST_VECTORS); test_cipher ("tea", MODE_ECB, DECRYPT, tea_dec_tv_template, TEA_DEC_TEST_VECTORS); break; case 20: test_cipher ("xtea", MODE_ECB, ENCRYPT, xtea_enc_tv_template, XTEA_ENC_TEST_VECTORS); test_cipher ("xtea", MODE_ECB, DECRYPT, xtea_dec_tv_template, XTEA_DEC_TEST_VECTORS); break; case 21: test_cipher ("khazad", MODE_ECB, ENCRYPT, khazad_enc_tv_template, KHAZAD_ENC_TEST_VECTORS); test_cipher ("khazad", MODE_ECB, DECRYPT, khazad_dec_tv_template, KHAZAD_DEC_TEST_VECTORS); break; case 22: test_hash("wp512", wp512_tv_template, WP512_TEST_VECTORS); break; case 23: test_hash("wp384", wp384_tv_template, WP384_TEST_VECTORS); break; case 24: test_hash("wp256", wp256_tv_template, WP256_TEST_VECTORS); break; case 25: test_cipher ("tnepres", MODE_ECB, ENCRYPT, tnepres_enc_tv_template, TNEPRES_ENC_TEST_VECTORS); test_cipher ("tnepres", MODE_ECB, DECRYPT, tnepres_dec_tv_template, TNEPRES_DEC_TEST_VECTORS); break; case 26: test_cipher ("anubis", MODE_ECB, ENCRYPT, anubis_enc_tv_template, ANUBIS_ENC_TEST_VECTORS); test_cipher ("anubis", MODE_ECB, DECRYPT, anubis_dec_tv_template, ANUBIS_DEC_TEST_VECTORS); test_cipher ("anubis", MODE_CBC, ENCRYPT, anubis_cbc_enc_tv_template, ANUBIS_CBC_ENC_TEST_VECTORS); test_cipher ("anubis", MODE_CBC, DECRYPT, anubis_cbc_dec_tv_template, ANUBIS_CBC_ENC_TEST_VECTORS); break; case 27: test_hash("tgr192", tgr192_tv_template, TGR192_TEST_VECTORS); break; case 28: test_hash("tgr160", tgr160_tv_template, TGR160_TEST_VECTORS); break; case 29: test_hash("tgr128", tgr128_tv_template, TGR128_TEST_VECTORS); break; #ifdef CONFIG_CRYPTO_HMAC case 100: test_hmac("md5", hmac_md5_tv_template, HMAC_MD5_TEST_VECTORS); break; case 101: test_hmac("sha1", hmac_sha1_tv_template, HMAC_SHA1_TEST_VECTORS); break; case 102: test_hmac("sha256", hmac_sha256_tv_template, HMAC_SHA256_TEST_VECTORS); break; #endif case 1000: test_available(); break; default: /* useful for debugging */ printk("not testing anything\n"); break; } } static int __init init(void) { tvmem = kmalloc(TVMEMSIZE, GFP_KERNEL); if (tvmem == NULL) return -ENOMEM; xbuf = kmalloc(XBUFSIZE, GFP_KERNEL); if (xbuf == NULL) { kfree(tvmem); return -ENOMEM; } do_test(); kfree(xbuf); kfree(tvmem); return 0; } /* * If an init function is provided, an exit function must also be provided * to allow module unload. */ static void __exit fini(void) { } module_init(init); module_exit(fini); module_param(mode, int, 0); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Quick & dirty crypto testing module"); MODULE_AUTHOR("James Morris <jmorris@intercode.com.au>");