/* * Cryptographic API. * * Serpent Cipher Algorithm. * * Copyright (C) 2002 Dag Arne Osvik <osvik@ii.uib.no> * 2003 Herbert Valerio Riedel <hvr@gnu.org> * * Added tnepres support: Ruben Jesus Garcia Hernandez <ruben@ugr.es>, 18.10.2004 * Based on code by hvr * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/init.h> #include <linux/module.h> #include <linux/errno.h> #include <asm/byteorder.h> #include <linux/crypto.h> #include <linux/types.h> /* Key is padded to the maximum of 256 bits before round key generation. * Any key length <= 256 bits (32 bytes) is allowed by the algorithm. */ #define SERPENT_MIN_KEY_SIZE 0 #define SERPENT_MAX_KEY_SIZE 32 #define SERPENT_EXPKEY_WORDS 132 #define SERPENT_BLOCK_SIZE 16 #define PHI 0x9e3779b9UL #define keyiter(a,b,c,d,i,j) \ b ^= d; b ^= c; b ^= a; b ^= PHI ^ i; b = rol32(b,11); k[j] = b; #define loadkeys(x0,x1,x2,x3,i) \ x0=k[i]; x1=k[i+1]; x2=k[i+2]; x3=k[i+3]; #define storekeys(x0,x1,x2,x3,i) \ k[i]=x0; k[i+1]=x1; k[i+2]=x2; k[i+3]=x3; #define K(x0,x1,x2,x3,i) \ x3 ^= k[4*(i)+3]; x2 ^= k[4*(i)+2]; \ x1 ^= k[4*(i)+1]; x0 ^= k[4*(i)+0]; #define LK(x0,x1,x2,x3,x4,i) \ x0=rol32(x0,13);\ x2=rol32(x2,3); x1 ^= x0; x4 = x0 << 3; \ x3 ^= x2; x1 ^= x2; \ x1=rol32(x1,1); x3 ^= x4; \ x3=rol32(x3,7); x4 = x1; \ x0 ^= x1; x4 <<= 7; x2 ^= x3; \ x0 ^= x3; x2 ^= x4; x3 ^= k[4*i+3]; \ x1 ^= k[4*i+1]; x0=rol32(x0,5); x2=rol32(x2,22);\ x0 ^= k[4*i+0]; x2 ^= k[4*i+2]; #define KL(x0,x1,x2,x3,x4,i) \ x0 ^= k[4*i+0]; x1 ^= k[4*i+1]; x2 ^= k[4*i+2]; \ x3 ^= k[4*i+3]; x0=ror32(x0,5); x2=ror32(x2,22);\ x4 = x1; x2 ^= x3; x0 ^= x3; \ x4 <<= 7; x0 ^= x1; x1=ror32(x1,1); \ x2 ^= x4; x3=ror32(x3,7); x4 = x0 << 3; \ x1 ^= x0; x3 ^= x4; x0=ror32(x0,13);\ x1 ^= x2; x3 ^= x2; x2=ror32(x2,3); #define S0(x0,x1,x2,x3,x4) \ x4 = x3; \ x3 |= x0; x0 ^= x4; x4 ^= x2; \ x4 =~ x4; x3 ^= x1; x1 &= x0; \ x1 ^= x4; x2 ^= x0; x0 ^= x3; \ x4 |= x0; x0 ^= x2; x2 &= x1; \ x3 ^= x2; x1 =~ x1; x2 ^= x4; \ x1 ^= x2; #define S1(x0,x1,x2,x3,x4) \ x4 = x1; \ x1 ^= x0; x0 ^= x3; x3 =~ x3; \ x4 &= x1; x0 |= x1; x3 ^= x2; \ x0 ^= x3; x1 ^= x3; x3 ^= x4; \ x1 |= x4; x4 ^= x2; x2 &= x0; \ x2 ^= x1; x1 |= x0; x0 =~ x0; \ x0 ^= x2; x4 ^= x1; #define S2(x0,x1,x2,x3,x4) \ x3 =~ x3; \ x1 ^= x0; x4 = x0; x0 &= x2; \ x0 ^= x3; x3 |= x4; x2 ^= x1; \ x3 ^= x1; x1 &= x0; x0 ^= x2; \ x2 &= x3; x3 |= x1; x0 =~ x0; \ x3 ^= x0; x4 ^= x0; x0 ^= x2; \ x1 |= x2; #define S3(x0,x1,x2,x3,x4) \ x4 = x1; \ x1 ^= x3; x3 |= x0; x4 &= x0; \ x0 ^= x2; x2 ^= x1; x1 &= x3; \ x2 ^= x3; x0 |= x4; x4 ^= x3; \ x1 ^= x0; x0 &= x3; x3 &= x4; \ x3 ^= x2; x4 |= x1; x2 &= x1; \ x4 ^= x3; x0 ^= x3; x3 ^= x2; #define S4(x0,x1,x2,x3,x4) \ x4 = x3; \ x3 &= x0; x0 ^= x4; \ x3 ^= x2; x2 |= x4; x0 ^= x1; \ x4 ^= x3; x2 |= x0; \ x2 ^= x1; x1 &= x0; \ x1 ^= x4; x4 &= x2; x2 ^= x3; \ x4 ^= x0; x3 |= x1; x1 =~ x1; \ x3 ^= x0; #define S5(x0,x1,x2,x3,x4) \ x4 = x1; x1 |= x0; \ x2 ^= x1; x3 =~ x3; x4 ^= x0; \ x0 ^= x2; x1 &= x4; x4 |= x3; \ x4 ^= x0; x0 &= x3; x1 ^= x3; \ x3 ^= x2; x0 ^= x1; x2 &= x4; \ x1 ^= x2; x2 &= x0; \ x3 ^= x2; #define S6(x0,x1,x2,x3,x4) \ x4 = x1; \ x3 ^= x0; x1 ^= x2; x2 ^= x0; \ x0 &= x3; x1 |= x3; x4 =~ x4; \ x0 ^= x1; x1 ^= x2; \ x3 ^= x4; x4 ^= x0; x2 &= x0; \ x4 ^= x1; x2 ^= x3; x3 &= x1; \ x3 ^= x0; x1 ^= x2; #define S7(x0,x1,x2,x3,x4) \ x1 =~ x1; \ x4 = x1; x0 =~ x0; x1 &= x2; \ x1 ^= x3; x3 |= x4; x4 ^= x2; \ x2 ^= x3; x3 ^= x0; x0 |= x1; \ x2 &= x0; x0 ^= x4; x4 ^= x3; \ x3 &= x0; x4 ^= x1; \ x2 ^= x4; x3 ^= x1; x4 |= x0; \ x4 ^= x1; #define SI0(x0,x1,x2,x3,x4) \ x4 = x3; x1 ^= x0; \ x3 |= x1; x4 ^= x1; x0 =~ x0; \ x2 ^= x3; x3 ^= x0; x0 &= x1; \ x0 ^= x2; x2 &= x3; x3 ^= x4; \ x2 ^= x3; x1 ^= x3; x3 &= x0; \ x1 ^= x0; x0 ^= x2; x4 ^= x3; #define SI1(x0,x1,x2,x3,x4) \ x1 ^= x3; x4 = x0; \ x0 ^= x2; x2 =~ x2; x4 |= x1; \ x4 ^= x3; x3 &= x1; x1 ^= x2; \ x2 &= x4; x4 ^= x1; x1 |= x3; \ x3 ^= x0; x2 ^= x0; x0 |= x4; \ x2 ^= x4; x1 ^= x0; \ x4 ^= x1; #define SI2(x0,x1,x2,x3,x4) \ x2 ^= x1; x4 = x3; x3 =~ x3; \ x3 |= x2; x2 ^= x4; x4 ^= x0; \ x3 ^= x1; x1 |= x2; x2 ^= x0; \ x1 ^= x4; x4 |= x3; x2 ^= x3; \ x4 ^= x2; x2 &= x1; \ x2 ^= x3; x3 ^= x4; x4 ^= x0; #define SI3(x0,x1,x2,x3,x4) \ x2 ^= x1; \ x4 = x1; x1 &= x2; \ x1 ^= x0; x0 |= x4; x4 ^= x3; \ x0 ^= x3; x3 |= x1; x1 ^= x2; \ x1 ^= x3; x0 ^= x2; x2 ^= x3; \ x3 &= x1; x1 ^= x0; x0 &= x2; \ x4 ^= x3; x3 ^= x0; x0 ^= x1; #define SI4(x0,x1,x2,x3,x4) \ x2 ^= x3; x4 = x0; x0 &= x1; \ x0 ^= x2; x2 |= x3; x4 =~ x4; \ x1 ^= x0; x0 ^= x2; x2 &= x4; \ x2 ^= x0; x0 |= x4; \ x0 ^= x3; x3 &= x2; \ x4 ^= x3; x3 ^= x1; x1 &= x0; \ x4 ^= x1; x0 ^= x3; #define SI5(x0,x1,x2,x3,x4) \ x4 = x1; x1 |= x2; \ x2 ^= x4; x1 ^= x3; x3 &= x4; \ x2 ^= x3; x3 |= x0; x0 =~ x0; \ x3 ^= x2; x2 |= x0; x4 ^= x1; \ x2 ^= x4; x4 &= x0; x0 ^= x1; \ x1 ^= x3; x0 &= x2; x2 ^= x3; \ x0 ^= x2; x2 ^= x4; x4 ^= x3; #define SI6(x0,x1,x2,x3,x4) \ x0 ^= x2; \ x4 = x0; x0 &= x3; x2 ^= x3; \ x0 ^= x2; x3 ^= x1; x2 |= x4; \ x2 ^= x3; x3 &= x0; x0 =~ x0; \ x3 ^= x1; x1 &= x2; x4 ^= x0; \ x3 ^= x4; x4 ^= x2; x0 ^= x1; \ x2 ^= x0; #define SI7(x0,x1,x2,x3,x4) \ x4 = x3; x3 &= x0; x0 ^= x2; \ x2 |= x4; x4 ^= x1; x0 =~ x0; \ x1 |= x3; x4 ^= x0; x0 &= x2; \ x0 ^= x1; x1 &= x2; x3 ^= x2; \ x4 ^= x3; x2 &= x3; x3 |= x0; \ x1 ^= x4; x3 ^= x4; x4 &= x0; \ x4 ^= x2; struct serpent_ctx { u32 expkey[SERPENT_EXPKEY_WORDS]; }; static int serpent_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen, u32 *flags) { struct serpent_ctx *ctx = crypto_tfm_ctx(tfm); u32 *k = ctx->expkey; u8 *k8 = (u8 *)k; u32 r0,r1,r2,r3,r4; int i; if ((keylen < SERPENT_MIN_KEY_SIZE) || (keylen > SERPENT_MAX_KEY_SIZE)) { *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } /* Copy key, add padding */ for (i = 0; i < keylen; ++i) k8[i] = key[i]; if (i < SERPENT_MAX_KEY_SIZE) k8[i++] = 1; while (i < SERPENT_MAX_KEY_SIZE) k8[i++] = 0; /* Expand key using polynomial */ r0 = le32_to_cpu(k[3]); r1 = le32_to_cpu(k[4]); r2 = le32_to_cpu(k[5]); r3 = le32_to_cpu(k[6]); r4 = le32_to_cpu(k[7]); keyiter(le32_to_cpu(k[0]),r0,r4,r2,0,0); keyiter(le32_to_cpu(k[1]),r1,r0,r3,1,1); keyiter(le32_to_cpu(k[2]),r2,r1,r4,2,2); keyiter(le32_to_cpu(k[3]),r3,r2,r0,3,3); keyiter(le32_to_cpu(k[4]),r4,r3,r1,4,4); keyiter(le32_to_cpu(k[5]),r0,r4,r2,5,5); keyiter(le32_to_cpu(k[6]),r1,r0,r3,6,6); keyiter(le32_to_cpu(k[7]),r2,r1,r4,7,7); keyiter(k[ 0],r3,r2,r0, 8, 8); keyiter(k[ 1],r4,r3,r1, 9, 9); keyiter(k[ 2],r0,r4,r2, 10, 10); keyiter(k[ 3],r1,r0,r3, 11, 11); keyiter(k[ 4],r2,r1,r4, 12, 12); keyiter(k[ 5],r3,r2,r0, 13, 13); keyiter(k[ 6],r4,r3,r1, 14, 14); keyiter(k[ 7],r0,r4,r2, 15, 15); keyiter(k[ 8],r1,r0,r3, 16, 16); keyiter(k[ 9],r2,r1,r4, 17, 17); keyiter(k[ 10],r3,r2,r0, 18, 18); keyiter(k[ 11],r4,r3,r1, 19, 19); keyiter(k[ 12],r0,r4,r2, 20, 20); keyiter(k[ 13],r1,r0,r3, 21, 21); keyiter(k[ 14],r2,r1,r4, 22, 22); keyiter(k[ 15],r3,r2,r0, 23, 23); keyiter(k[ 16],r4,r3,r1, 24, 24); keyiter(k[ 17],r0,r4,r2, 25, 25); keyiter(k[ 18],r1,r0,r3, 26, 26); keyiter(k[ 19],r2,r1,r4, 27, 27); keyiter(k[ 20],r3,r2,r0, 28, 28); keyiter(k[ 21],r4,r3,r1, 29, 29); keyiter(k[ 22],r0,r4,r2, 30, 30); keyiter(k[ 23],r1,r0,r3, 31, 31); k += 50; keyiter(k[-26],r2,r1,r4, 32,-18); keyiter(k[-25],r3,r2,r0, 33,-17); keyiter(k[-24],r4,r3,r1, 34,-16); keyiter(k[-23],r0,r4,r2, 35,-15); keyiter(k[-22],r1,r0,r3, 36,-14); keyiter(k[-21],r2,r1,r4, 37,-13); keyiter(k[-20],r3,r2,r0, 38,-12); keyiter(k[-19],r4,r3,r1, 39,-11); keyiter(k[-18],r0,r4,r2, 40,-10); keyiter(k[-17],r1,r0,r3, 41, -9); keyiter(k[-16],r2,r1,r4, 42, -8); keyiter(k[-15],r3,r2,r0, 43, -7); keyiter(k[-14],r4,r3,r1, 44, -6); keyiter(k[-13],r0,r4,r2, 45, -5); keyiter(k[-12],r1,r0,r3, 46, -4); keyiter(k[-11],r2,r1,r4, 47, -3); keyiter(k[-10],r3,r2,r0, 48, -2); keyiter(k[ -9],r4,r3,r1, 49, -1); keyiter(k[ -8],r0,r4,r2, 50, 0); keyiter(k[ -7],r1,r0,r3, 51, 1); keyiter(k[ -6],r2,r1,r4, 52, 2); keyiter(k[ -5],r3,r2,r0, 53, 3); keyiter(k[ -4],r4,r3,r1, 54, 4); keyiter(k[ -3],r0,r4,r2, 55, 5); keyiter(k[ -2],r1,r0,r3, 56, 6); keyiter(k[ -1],r2,r1,r4, 57, 7); keyiter(k[ 0],r3,r2,r0, 58, 8); keyiter(k[ 1],r4,r3,r1, 59, 9); keyiter(k[ 2],r0,r4,r2, 60, 10); keyiter(k[ 3],r1,r0,r3, 61, 11); keyiter(k[ 4],r2,r1,r4, 62, 12); keyiter(k[ 5],r3,r2,r0, 63, 13); keyiter(k[ 6],r4,r3,r1, 64, 14); keyiter(k[ 7],r0,r4,r2, 65, 15); keyiter(k[ 8],r1,r0,r3, 66, 16); keyiter(k[ 9],r2,r1,r4, 67, 17); keyiter(k[ 10],r3,r2,r0, 68, 18); keyiter(k[ 11],r4,r3,r1, 69, 19); keyiter(k[ 12],r0,r4,r2, 70, 20); keyiter(k[ 13],r1,r0,r3, 71, 21); keyiter(k[ 14],r2,r1,r4, 72, 22); keyiter(k[ 15],r3,r2,r0, 73, 23); keyiter(k[ 16],r4,r3,r1, 74, 24); keyiter(k[ 17],r0,r4,r2, 75, 25); keyiter(k[ 18],r1,r0,r3, 76, 26); keyiter(k[ 19],r2,r1,r4, 77, 27); keyiter(k[ 20],r3,r2,r0, 78, 28); keyiter(k[ 21],r4,r3,r1, 79, 29); keyiter(k[ 22],r0,r4,r2, 80, 30); keyiter(k[ 23],r1,r0,r3, 81, 31); k += 50; keyiter(k[-26],r2,r1,r4, 82,-18); keyiter(k[-25],r3,r2,r0, 83,-17); keyiter(k[-24],r4,r3,r1, 84,-16); keyiter(k[-23],r0,r4,r2, 85,-15); keyiter(k[-22],r1,r0,r3, 86,-14); keyiter(k[-21],r2,r1,r4, 87,-13); keyiter(k[-20],r3,r2,r0, 88,-12); keyiter(k[-19],r4,r3,r1, 89,-11); keyiter(k[-18],r0,r4,r2, 90,-10); keyiter(k[-17],r1,r0,r3, 91, -9); keyiter(k[-16],r2,r1,r4, 92, -8); keyiter(k[-15],r3,r2,r0, 93, -7); keyiter(k[-14],r4,r3,r1, 94, -6); keyiter(k[-13],r0,r4,r2, 95, -5); keyiter(k[-12],r1,r0,r3, 96, -4); keyiter(k[-11],r2,r1,r4, 97, -3); keyiter(k[-10],r3,r2,r0, 98, -2); keyiter(k[ -9],r4,r3,r1, 99, -1); keyiter(k[ -8],r0,r4,r2,100, 0); keyiter(k[ -7],r1,r0,r3,101, 1); keyiter(k[ -6],r2,r1,r4,102, 2); keyiter(k[ -5],r3,r2,r0,103, 3); keyiter(k[ -4],r4,r3,r1,104, 4); keyiter(k[ -3],r0,r4,r2,105, 5); keyiter(k[ -2],r1,r0,r3,106, 6); keyiter(k[ -1],r2,r1,r4,107, 7); keyiter(k[ 0],r3,r2,r0,108, 8); keyiter(k[ 1],r4,r3,r1,109, 9); keyiter(k[ 2],r0,r4,r2,110, 10); keyiter(k[ 3],r1,r0,r3,111, 11); keyiter(k[ 4],r2,r1,r4,112, 12); keyiter(k[ 5],r3,r2,r0,113, 13); keyiter(k[ 6],r4,r3,r1,114, 14); keyiter(k[ 7],r0,r4,r2,115, 15); keyiter(k[ 8],r1,r0,r3,116, 16); keyiter(k[ 9],r2,r1,r4,117, 17); keyiter(k[ 10],r3,r2,r0,118, 18); keyiter(k[ 11],r4,r3,r1,119, 19); keyiter(k[ 12],r0,r4,r2,120, 20); keyiter(k[ 13],r1,r0,r3,121, 21); keyiter(k[ 14],r2,r1,r4,122, 22); keyiter(k[ 15],r3,r2,r0,123, 23); keyiter(k[ 16],r4,r3,r1,124, 24); keyiter(k[ 17],r0,r4,r2,125, 25); keyiter(k[ 18],r1,r0,r3,126, 26); keyiter(k[ 19],r2,r1,r4,127, 27); keyiter(k[ 20],r3,r2,r0,128, 28); keyiter(k[ 21],r4,r3,r1,129, 29); keyiter(k[ 22],r0,r4,r2,130, 30); keyiter(k[ 23],r1,r0,r3,131, 31); /* Apply S-boxes */ S3(r3,r4,r0,r1,r2); storekeys(r1,r2,r4,r3, 28); loadkeys(r1,r2,r4,r3, 24); S4(r1,r2,r4,r3,r0); storekeys(r2,r4,r3,r0, 24); loadkeys(r2,r4,r3,r0, 20); S5(r2,r4,r3,r0,r1); storekeys(r1,r2,r4,r0, 20); loadkeys(r1,r2,r4,r0, 16); S6(r1,r2,r4,r0,r3); storekeys(r4,r3,r2,r0, 16); loadkeys(r4,r3,r2,r0, 12); S7(r4,r3,r2,r0,r1); storekeys(r1,r2,r0,r4, 12); loadkeys(r1,r2,r0,r4, 8); S0(r1,r2,r0,r4,r3); storekeys(r0,r2,r4,r1, 8); loadkeys(r0,r2,r4,r1, 4); S1(r0,r2,r4,r1,r3); storekeys(r3,r4,r1,r0, 4); loadkeys(r3,r4,r1,r0, 0); S2(r3,r4,r1,r0,r2); storekeys(r2,r4,r3,r0, 0); loadkeys(r2,r4,r3,r0, -4); S3(r2,r4,r3,r0,r1); storekeys(r0,r1,r4,r2, -4); loadkeys(r0,r1,r4,r2, -8); S4(r0,r1,r4,r2,r3); storekeys(r1,r4,r2,r3, -8); loadkeys(r1,r4,r2,r3,-12); S5(r1,r4,r2,r3,r0); storekeys(r0,r1,r4,r3,-12); loadkeys(r0,r1,r4,r3,-16); S6(r0,r1,r4,r3,r2); storekeys(r4,r2,r1,r3,-16); loadkeys(r4,r2,r1,r3,-20); S7(r4,r2,r1,r3,r0); storekeys(r0,r1,r3,r4,-20); loadkeys(r0,r1,r3,r4,-24); S0(r0,r1,r3,r4,r2); storekeys(r3,r1,r4,r0,-24); loadkeys(r3,r1,r4,r0,-28); k -= 50; S1(r3,r1,r4,r0,r2); storekeys(r2,r4,r0,r3, 22); loadkeys(r2,r4,r0,r3, 18); S2(r2,r4,r0,r3,r1); storekeys(r1,r4,r2,r3, 18); loadkeys(r1,r4,r2,r3, 14); S3(r1,r4,r2,r3,r0); storekeys(r3,r0,r4,r1, 14); loadkeys(r3,r0,r4,r1, 10); S4(r3,r0,r4,r1,r2); storekeys(r0,r4,r1,r2, 10); loadkeys(r0,r4,r1,r2, 6); S5(r0,r4,r1,r2,r3); storekeys(r3,r0,r4,r2, 6); loadkeys(r3,r0,r4,r2, 2); S6(r3,r0,r4,r2,r1); storekeys(r4,r1,r0,r2, 2); loadkeys(r4,r1,r0,r2, -2); S7(r4,r1,r0,r2,r3); storekeys(r3,r0,r2,r4, -2); loadkeys(r3,r0,r2,r4, -6); S0(r3,r0,r2,r4,r1); storekeys(r2,r0,r4,r3, -6); loadkeys(r2,r0,r4,r3,-10); S1(r2,r0,r4,r3,r1); storekeys(r1,r4,r3,r2,-10); loadkeys(r1,r4,r3,r2,-14); S2(r1,r4,r3,r2,r0); storekeys(r0,r4,r1,r2,-14); loadkeys(r0,r4,r1,r2,-18); S3(r0,r4,r1,r2,r3); storekeys(r2,r3,r4,r0,-18); loadkeys(r2,r3,r4,r0,-22); k -= 50; S4(r2,r3,r4,r0,r1); storekeys(r3,r4,r0,r1, 28); loadkeys(r3,r4,r0,r1, 24); S5(r3,r4,r0,r1,r2); storekeys(r2,r3,r4,r1, 24); loadkeys(r2,r3,r4,r1, 20); S6(r2,r3,r4,r1,r0); storekeys(r4,r0,r3,r1, 20); loadkeys(r4,r0,r3,r1, 16); S7(r4,r0,r3,r1,r2); storekeys(r2,r3,r1,r4, 16); loadkeys(r2,r3,r1,r4, 12); S0(r2,r3,r1,r4,r0); storekeys(r1,r3,r4,r2, 12); loadkeys(r1,r3,r4,r2, 8); S1(r1,r3,r4,r2,r0); storekeys(r0,r4,r2,r1, 8); loadkeys(r0,r4,r2,r1, 4); S2(r0,r4,r2,r1,r3); storekeys(r3,r4,r0,r1, 4); loadkeys(r3,r4,r0,r1, 0); S3(r3,r4,r0,r1,r2); storekeys(r1,r2,r4,r3, 0); return 0; } static void serpent_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct serpent_ctx *ctx = crypto_tfm_ctx(tfm); const u32 *k = ctx->expkey, *s = (const u32 *)src; u32 *d = (u32 *)dst, r0, r1, r2, r3, r4; /* * Note: The conversions between u8* and u32* might cause trouble * on architectures with stricter alignment rules than x86 */ r0 = le32_to_cpu(s[0]); r1 = le32_to_cpu(s[1]); r2 = le32_to_cpu(s[2]); r3 = le32_to_cpu(s[3]); K(r0,r1,r2,r3,0); S0(r0,r1,r2,r3,r4); LK(r2,r1,r3,r0,r4,1); S1(r2,r1,r3,r0,r4); LK(r4,r3,r0,r2,r1,2); S2(r4,r3,r0,r2,r1); LK(r1,r3,r4,r2,r0,3); S3(r1,r3,r4,r2,r0); LK(r2,r0,r3,r1,r4,4); S4(r2,r0,r3,r1,r4); LK(r0,r3,r1,r4,r2,5); S5(r0,r3,r1,r4,r2); LK(r2,r0,r3,r4,r1,6); S6(r2,r0,r3,r4,r1); LK(r3,r1,r0,r4,r2,7); S7(r3,r1,r0,r4,r2); LK(r2,r0,r4,r3,r1,8); S0(r2,r0,r4,r3,r1); LK(r4,r0,r3,r2,r1,9); S1(r4,r0,r3,r2,r1); LK(r1,r3,r2,r4,r0,10); S2(r1,r3,r2,r4,r0); LK(r0,r3,r1,r4,r2,11); S3(r0,r3,r1,r4,r2); LK(r4,r2,r3,r0,r1,12); S4(r4,r2,r3,r0,r1); LK(r2,r3,r0,r1,r4,13); S5(r2,r3,r0,r1,r4); LK(r4,r2,r3,r1,r0,14); S6(r4,r2,r3,r1,r0); LK(r3,r0,r2,r1,r4,15); S7(r3,r0,r2,r1,r4); LK(r4,r2,r1,r3,r0,16); S0(r4,r2,r1,r3,r0); LK(r1,r2,r3,r4,r0,17); S1(r1,r2,r3,r4,r0); LK(r0,r3,r4,r1,r2,18); S2(r0,r3,r4,r1,r2); LK(r2,r3,r0,r1,r4,19); S3(r2,r3,r0,r1,r4); LK(r1,r4,r3,r2,r0,20); S4(r1,r4,r3,r2,r0); LK(r4,r3,r2,r0,r1,21); S5(r4,r3,r2,r0,r1); LK(r1,r4,r3,r0,r2,22); S6(r1,r4,r3,r0,r2); LK(r3,r2,r4,r0,r1,23); S7(r3,r2,r4,r0,r1); LK(r1,r4,r0,r3,r2,24); S0(r1,r4,r0,r3,r2); LK(r0,r4,r3,r1,r2,25); S1(r0,r4,r3,r1,r2); LK(r2,r3,r1,r0,r4,26); S2(r2,r3,r1,r0,r4); LK(r4,r3,r2,r0,r1,27); S3(r4,r3,r2,r0,r1); LK(r0,r1,r3,r4,r2,28); S4(r0,r1,r3,r4,r2); LK(r1,r3,r4,r2,r0,29); S5(r1,r3,r4,r2,r0); LK(r0,r1,r3,r2,r4,30); S6(r0,r1,r3,r2,r4); LK(r3,r4,r1,r2,r0,31); S7(r3,r4,r1,r2,r0); K(r0,r1,r2,r3,32); d[0] = cpu_to_le32(r0); d[1] = cpu_to_le32(r1); d[2] = cpu_to_le32(r2); d[3] = cpu_to_le32(r3); } static void serpent_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct serpent_ctx *ctx = crypto_tfm_ctx(tfm); const u32 *k = ((struct serpent_ctx *)ctx)->expkey, *s = (const u32 *)src; u32 *d = (u32 *)dst, r0, r1, r2, r3, r4; r0 = le32_to_cpu(s[0]); r1 = le32_to_cpu(s[1]); r2 = le32_to_cpu(s[2]); r3 = le32_to_cpu(s[3]); K(r0,r1,r2,r3,32); SI7(r0,r1,r2,r3,r4); KL(r1,r3,r0,r4,r2,31); SI6(r1,r3,r0,r4,r2); KL(r0,r2,r4,r1,r3,30); SI5(r0,r2,r4,r1,r3); KL(r2,r3,r0,r4,r1,29); SI4(r2,r3,r0,r4,r1); KL(r2,r0,r1,r4,r3,28); SI3(r2,r0,r1,r4,r3); KL(r1,r2,r3,r4,r0,27); SI2(r1,r2,r3,r4,r0); KL(r2,r0,r4,r3,r1,26); SI1(r2,r0,r4,r3,r1); KL(r1,r0,r4,r3,r2,25); SI0(r1,r0,r4,r3,r2); KL(r4,r2,r0,r1,r3,24); SI7(r4,r2,r0,r1,r3); KL(r2,r1,r4,r3,r0,23); SI6(r2,r1,r4,r3,r0); KL(r4,r0,r3,r2,r1,22); SI5(r4,r0,r3,r2,r1); KL(r0,r1,r4,r3,r2,21); SI4(r0,r1,r4,r3,r2); KL(r0,r4,r2,r3,r1,20); SI3(r0,r4,r2,r3,r1); KL(r2,r0,r1,r3,r4,19); SI2(r2,r0,r1,r3,r4); KL(r0,r4,r3,r1,r2,18); SI1(r0,r4,r3,r1,r2); KL(r2,r4,r3,r1,r0,17); SI0(r2,r4,r3,r1,r0); KL(r3,r0,r4,r2,r1,16); SI7(r3,r0,r4,r2,r1); KL(r0,r2,r3,r1,r4,15); SI6(r0,r2,r3,r1,r4); KL(r3,r4,r1,r0,r2,14); SI5(r3,r4,r1,r0,r2); KL(r4,r2,r3,r1,r0,13); SI4(r4,r2,r3,r1,r0); KL(r4,r3,r0,r1,r2,12); SI3(r4,r3,r0,r1,r2); KL(r0,r4,r2,r1,r3,11); SI2(r0,r4,r2,r1,r3); KL(r4,r3,r1,r2,r0,10); SI1(r4,r3,r1,r2,r0); KL(r0,r3,r1,r2,r4,9); SI0(r0,r3,r1,r2,r4); KL(r1,r4,r3,r0,r2,8); SI7(r1,r4,r3,r0,r2); KL(r4,r0,r1,r2,r3,7); SI6(r4,r0,r1,r2,r3); KL(r1,r3,r2,r4,r0,6); SI5(r1,r3,r2,r4,r0); KL(r3,r0,r1,r2,r4,5); SI4(r3,r0,r1,r2,r4); KL(r3,r1,r4,r2,r0,4); SI3(r3,r1,r4,r2,r0); KL(r4,r3,r0,r2,r1,3); SI2(r4,r3,r0,r2,r1); KL(r3,r1,r2,r0,r4,2); SI1(r3,r1,r2,r0,r4); KL(r4,r1,r2,r0,r3,1); SI0(r4,r1,r2,r0,r3); K(r2,r3,r1,r4,0); d[0] = cpu_to_le32(r2); d[1] = cpu_to_le32(r3); d[2] = cpu_to_le32(r1); d[3] = cpu_to_le32(r4); } static struct crypto_alg serpent_alg = { .cra_name = "serpent", .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_ctx), .cra_alignmask = 3, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(serpent_alg.cra_list), .cra_u = { .cipher = { .cia_min_keysize = SERPENT_MIN_KEY_SIZE, .cia_max_keysize = SERPENT_MAX_KEY_SIZE, .cia_setkey = serpent_setkey, .cia_encrypt = serpent_encrypt, .cia_decrypt = serpent_decrypt } } }; static int tnepres_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen, u32 *flags) { u8 rev_key[SERPENT_MAX_KEY_SIZE]; int i; if ((keylen < SERPENT_MIN_KEY_SIZE) || (keylen > SERPENT_MAX_KEY_SIZE)) { *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } for (i = 0; i < keylen; ++i) rev_key[keylen - i - 1] = key[i]; return serpent_setkey(tfm, rev_key, keylen, flags); } static void tnepres_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { const u32 * const s = (const u32 * const)src; u32 * const d = (u32 * const)dst; u32 rs[4], rd[4]; rs[0] = swab32(s[3]); rs[1] = swab32(s[2]); rs[2] = swab32(s[1]); rs[3] = swab32(s[0]); serpent_encrypt(tfm, (u8 *)rd, (u8 *)rs); d[0] = swab32(rd[3]); d[1] = swab32(rd[2]); d[2] = swab32(rd[1]); d[3] = swab32(rd[0]); } static void tnepres_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { const u32 * const s = (const u32 * const)src; u32 * const d = (u32 * const)dst; u32 rs[4], rd[4]; rs[0] = swab32(s[3]); rs[1] = swab32(s[2]); rs[2] = swab32(s[1]); rs[3] = swab32(s[0]); serpent_decrypt(tfm, (u8 *)rd, (u8 *)rs); d[0] = swab32(rd[3]); d[1] = swab32(rd[2]); d[2] = swab32(rd[1]); d[3] = swab32(rd[0]); } static struct crypto_alg tnepres_alg = { .cra_name = "tnepres", .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = SERPENT_BLOCK_SIZE, .cra_ctxsize = sizeof(struct serpent_ctx), .cra_alignmask = 3, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(serpent_alg.cra_list), .cra_u = { .cipher = { .cia_min_keysize = SERPENT_MIN_KEY_SIZE, .cia_max_keysize = SERPENT_MAX_KEY_SIZE, .cia_setkey = tnepres_setkey, .cia_encrypt = tnepres_encrypt, .cia_decrypt = tnepres_decrypt } } }; static int __init init(void) { int ret = crypto_register_alg(&serpent_alg); if (ret) return ret; ret = crypto_register_alg(&tnepres_alg); if (ret) crypto_unregister_alg(&serpent_alg); return ret; } static void __exit fini(void) { crypto_unregister_alg(&tnepres_alg); crypto_unregister_alg(&serpent_alg); } module_init(init); module_exit(fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Serpent and tnepres (kerneli compatible serpent reversed) Cipher Algorithm"); MODULE_AUTHOR("Dag Arne Osvik <osvik@ii.uib.no>"); MODULE_ALIAS("tnepres");