/* * Deadline i/o scheduler. * * Copyright (C) 2002 Jens Axboe <axboe@suse.de> */ #include <linux/kernel.h> #include <linux/fs.h> #include <linux/blkdev.h> #include <linux/elevator.h> #include <linux/bio.h> #include <linux/config.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/compiler.h> #include <linux/hash.h> #include <linux/rbtree.h> /* * See Documentation/block/deadline-iosched.txt */ static const int read_expire = HZ / 2; /* max time before a read is submitted. */ static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */ static const int writes_starved = 2; /* max times reads can starve a write */ static const int fifo_batch = 16; /* # of sequential requests treated as one by the above parameters. For throughput. */ static const int deadline_hash_shift = 5; #define DL_HASH_BLOCK(sec) ((sec) >> 3) #define DL_HASH_FN(sec) (hash_long(DL_HASH_BLOCK((sec)), deadline_hash_shift)) #define DL_HASH_ENTRIES (1 << deadline_hash_shift) #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) #define list_entry_hash(ptr) list_entry((ptr), struct deadline_rq, hash) #define ON_HASH(drq) (drq)->on_hash struct deadline_data { /* * run time data */ /* * requests (deadline_rq s) are present on both sort_list and fifo_list */ struct rb_root sort_list[2]; struct list_head fifo_list[2]; /* * next in sort order. read, write or both are NULL */ struct deadline_rq *next_drq[2]; struct list_head *hash; /* request hash */ unsigned int batching; /* number of sequential requests made */ sector_t last_sector; /* head position */ unsigned int starved; /* times reads have starved writes */ /* * settings that change how the i/o scheduler behaves */ int fifo_expire[2]; int fifo_batch; int writes_starved; int front_merges; mempool_t *drq_pool; }; /* * pre-request data. */ struct deadline_rq { /* * rbtree index, key is the starting offset */ struct rb_node rb_node; sector_t rb_key; struct request *request; /* * request hash, key is the ending offset (for back merge lookup) */ struct list_head hash; char on_hash; /* * expire fifo */ struct list_head fifo; unsigned long expires; }; static void deadline_move_request(struct deadline_data *dd, struct deadline_rq *drq); static kmem_cache_t *drq_pool; #define RQ_DATA(rq) ((struct deadline_rq *) (rq)->elevator_private) /* * the back merge hash support functions */ static inline void __deadline_del_drq_hash(struct deadline_rq *drq) { drq->on_hash = 0; list_del_init(&drq->hash); } static inline void deadline_del_drq_hash(struct deadline_rq *drq) { if (ON_HASH(drq)) __deadline_del_drq_hash(drq); } static inline void deadline_add_drq_hash(struct deadline_data *dd, struct deadline_rq *drq) { struct request *rq = drq->request; BUG_ON(ON_HASH(drq)); drq->on_hash = 1; list_add(&drq->hash, &dd->hash[DL_HASH_FN(rq_hash_key(rq))]); } /* * move hot entry to front of chain */ static inline void deadline_hot_drq_hash(struct deadline_data *dd, struct deadline_rq *drq) { struct request *rq = drq->request; struct list_head *head = &dd->hash[DL_HASH_FN(rq_hash_key(rq))]; if (ON_HASH(drq) && drq->hash.prev != head) { list_del(&drq->hash); list_add(&drq->hash, head); } } static struct request * deadline_find_drq_hash(struct deadline_data *dd, sector_t offset) { struct list_head *hash_list = &dd->hash[DL_HASH_FN(offset)]; struct list_head *entry, *next = hash_list->next; while ((entry = next) != hash_list) { struct deadline_rq *drq = list_entry_hash(entry); struct request *__rq = drq->request; next = entry->next; BUG_ON(!ON_HASH(drq)); if (!rq_mergeable(__rq)) { __deadline_del_drq_hash(drq); continue; } if (rq_hash_key(__rq) == offset) return __rq; } return NULL; } /* * rb tree support functions */ #define RB_EMPTY(root) ((root)->rb_node == NULL) #define ON_RB(node) (rb_parent(node) != node) #define RB_CLEAR(node) (rb_set_parent(node, node)) #define rb_entry_drq(node) rb_entry((node), struct deadline_rq, rb_node) #define DRQ_RB_ROOT(dd, drq) (&(dd)->sort_list[rq_data_dir((drq)->request)]) #define rq_rb_key(rq) (rq)->sector static struct deadline_rq * __deadline_add_drq_rb(struct deadline_data *dd, struct deadline_rq *drq) { struct rb_node **p = &DRQ_RB_ROOT(dd, drq)->rb_node; struct rb_node *parent = NULL; struct deadline_rq *__drq; while (*p) { parent = *p; __drq = rb_entry_drq(parent); if (drq->rb_key < __drq->rb_key) p = &(*p)->rb_left; else if (drq->rb_key > __drq->rb_key) p = &(*p)->rb_right; else return __drq; } rb_link_node(&drq->rb_node, parent, p); return NULL; } static void deadline_add_drq_rb(struct deadline_data *dd, struct deadline_rq *drq) { struct deadline_rq *__alias; drq->rb_key = rq_rb_key(drq->request); retry: __alias = __deadline_add_drq_rb(dd, drq); if (!__alias) { rb_insert_color(&drq->rb_node, DRQ_RB_ROOT(dd, drq)); return; } deadline_move_request(dd, __alias); goto retry; } static inline void deadline_del_drq_rb(struct deadline_data *dd, struct deadline_rq *drq) { const int data_dir = rq_data_dir(drq->request); if (dd->next_drq[data_dir] == drq) { struct rb_node *rbnext = rb_next(&drq->rb_node); dd->next_drq[data_dir] = NULL; if (rbnext) dd->next_drq[data_dir] = rb_entry_drq(rbnext); } BUG_ON(!ON_RB(&drq->rb_node)); rb_erase(&drq->rb_node, DRQ_RB_ROOT(dd, drq)); RB_CLEAR(&drq->rb_node); } static struct request * deadline_find_drq_rb(struct deadline_data *dd, sector_t sector, int data_dir) { struct rb_node *n = dd->sort_list[data_dir].rb_node; struct deadline_rq *drq; while (n) { drq = rb_entry_drq(n); if (sector < drq->rb_key) n = n->rb_left; else if (sector > drq->rb_key) n = n->rb_right; else return drq->request; } return NULL; } /* * deadline_find_first_drq finds the first (lowest sector numbered) request * for the specified data_dir. Used to sweep back to the start of the disk * (1-way elevator) after we process the last (highest sector) request. */ static struct deadline_rq * deadline_find_first_drq(struct deadline_data *dd, int data_dir) { struct rb_node *n = dd->sort_list[data_dir].rb_node; for (;;) { if (n->rb_left == NULL) return rb_entry_drq(n); n = n->rb_left; } } /* * add drq to rbtree and fifo */ static void deadline_add_request(struct request_queue *q, struct request *rq) { struct deadline_data *dd = q->elevator->elevator_data; struct deadline_rq *drq = RQ_DATA(rq); const int data_dir = rq_data_dir(drq->request); deadline_add_drq_rb(dd, drq); /* * set expire time (only used for reads) and add to fifo list */ drq->expires = jiffies + dd->fifo_expire[data_dir]; list_add_tail(&drq->fifo, &dd->fifo_list[data_dir]); if (rq_mergeable(rq)) deadline_add_drq_hash(dd, drq); } /* * remove rq from rbtree, fifo, and hash */ static void deadline_remove_request(request_queue_t *q, struct request *rq) { struct deadline_rq *drq = RQ_DATA(rq); struct deadline_data *dd = q->elevator->elevator_data; list_del_init(&drq->fifo); deadline_del_drq_rb(dd, drq); deadline_del_drq_hash(drq); } static int deadline_merge(request_queue_t *q, struct request **req, struct bio *bio) { struct deadline_data *dd = q->elevator->elevator_data; struct request *__rq; int ret; /* * see if the merge hash can satisfy a back merge */ __rq = deadline_find_drq_hash(dd, bio->bi_sector); if (__rq) { BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector); if (elv_rq_merge_ok(__rq, bio)) { ret = ELEVATOR_BACK_MERGE; goto out; } } /* * check for front merge */ if (dd->front_merges) { sector_t rb_key = bio->bi_sector + bio_sectors(bio); __rq = deadline_find_drq_rb(dd, rb_key, bio_data_dir(bio)); if (__rq) { BUG_ON(rb_key != rq_rb_key(__rq)); if (elv_rq_merge_ok(__rq, bio)) { ret = ELEVATOR_FRONT_MERGE; goto out; } } } return ELEVATOR_NO_MERGE; out: if (ret) deadline_hot_drq_hash(dd, RQ_DATA(__rq)); *req = __rq; return ret; } static void deadline_merged_request(request_queue_t *q, struct request *req) { struct deadline_data *dd = q->elevator->elevator_data; struct deadline_rq *drq = RQ_DATA(req); /* * hash always needs to be repositioned, key is end sector */ deadline_del_drq_hash(drq); deadline_add_drq_hash(dd, drq); /* * if the merge was a front merge, we need to reposition request */ if (rq_rb_key(req) != drq->rb_key) { deadline_del_drq_rb(dd, drq); deadline_add_drq_rb(dd, drq); } } static void deadline_merged_requests(request_queue_t *q, struct request *req, struct request *next) { struct deadline_data *dd = q->elevator->elevator_data; struct deadline_rq *drq = RQ_DATA(req); struct deadline_rq *dnext = RQ_DATA(next); BUG_ON(!drq); BUG_ON(!dnext); /* * reposition drq (this is the merged request) in hash, and in rbtree * in case of a front merge */ deadline_del_drq_hash(drq); deadline_add_drq_hash(dd, drq); if (rq_rb_key(req) != drq->rb_key) { deadline_del_drq_rb(dd, drq); deadline_add_drq_rb(dd, drq); } /* * if dnext expires before drq, assign its expire time to drq * and move into dnext position (dnext will be deleted) in fifo */ if (!list_empty(&drq->fifo) && !list_empty(&dnext->fifo)) { if (time_before(dnext->expires, drq->expires)) { list_move(&drq->fifo, &dnext->fifo); drq->expires = dnext->expires; } } /* * kill knowledge of next, this one is a goner */ deadline_remove_request(q, next); } /* * move request from sort list to dispatch queue. */ static inline void deadline_move_to_dispatch(struct deadline_data *dd, struct deadline_rq *drq) { request_queue_t *q = drq->request->q; deadline_remove_request(q, drq->request); elv_dispatch_add_tail(q, drq->request); } /* * move an entry to dispatch queue */ static void deadline_move_request(struct deadline_data *dd, struct deadline_rq *drq) { const int data_dir = rq_data_dir(drq->request); struct rb_node *rbnext = rb_next(&drq->rb_node); dd->next_drq[READ] = NULL; dd->next_drq[WRITE] = NULL; if (rbnext) dd->next_drq[data_dir] = rb_entry_drq(rbnext); dd->last_sector = drq->request->sector + drq->request->nr_sectors; /* * take it off the sort and fifo list, move * to dispatch queue */ deadline_move_to_dispatch(dd, drq); } #define list_entry_fifo(ptr) list_entry((ptr), struct deadline_rq, fifo) /* * deadline_check_fifo returns 0 if there are no expired reads on the fifo, * 1 otherwise. Requires !list_empty(&dd->fifo_list[data_dir]) */ static inline int deadline_check_fifo(struct deadline_data *dd, int ddir) { struct deadline_rq *drq = list_entry_fifo(dd->fifo_list[ddir].next); /* * drq is expired! */ if (time_after(jiffies, drq->expires)) return 1; return 0; } /* * deadline_dispatch_requests selects the best request according to * read/write expire, fifo_batch, etc */ static int deadline_dispatch_requests(request_queue_t *q, int force) { struct deadline_data *dd = q->elevator->elevator_data; const int reads = !list_empty(&dd->fifo_list[READ]); const int writes = !list_empty(&dd->fifo_list[WRITE]); struct deadline_rq *drq; int data_dir; /* * batches are currently reads XOR writes */ if (dd->next_drq[WRITE]) drq = dd->next_drq[WRITE]; else drq = dd->next_drq[READ]; if (drq) { /* we have a "next request" */ if (dd->last_sector != drq->request->sector) /* end the batch on a non sequential request */ dd->batching += dd->fifo_batch; if (dd->batching < dd->fifo_batch) /* we are still entitled to batch */ goto dispatch_request; } /* * at this point we are not running a batch. select the appropriate * data direction (read / write) */ if (reads) { BUG_ON(RB_EMPTY(&dd->sort_list[READ])); if (writes && (dd->starved++ >= dd->writes_starved)) goto dispatch_writes; data_dir = READ; goto dispatch_find_request; } /* * there are either no reads or writes have been starved */ if (writes) { dispatch_writes: BUG_ON(RB_EMPTY(&dd->sort_list[WRITE])); dd->starved = 0; data_dir = WRITE; goto dispatch_find_request; } return 0; dispatch_find_request: /* * we are not running a batch, find best request for selected data_dir */ if (deadline_check_fifo(dd, data_dir)) { /* An expired request exists - satisfy it */ dd->batching = 0; drq = list_entry_fifo(dd->fifo_list[data_dir].next); } else if (dd->next_drq[data_dir]) { /* * The last req was the same dir and we have a next request in * sort order. No expired requests so continue on from here. */ drq = dd->next_drq[data_dir]; } else { /* * The last req was the other direction or we have run out of * higher-sectored requests. Go back to the lowest sectored * request (1 way elevator) and start a new batch. */ dd->batching = 0; drq = deadline_find_first_drq(dd, data_dir); } dispatch_request: /* * drq is the selected appropriate request. */ dd->batching++; deadline_move_request(dd, drq); return 1; } static int deadline_queue_empty(request_queue_t *q) { struct deadline_data *dd = q->elevator->elevator_data; return list_empty(&dd->fifo_list[WRITE]) && list_empty(&dd->fifo_list[READ]); } static struct request * deadline_former_request(request_queue_t *q, struct request *rq) { struct deadline_rq *drq = RQ_DATA(rq); struct rb_node *rbprev = rb_prev(&drq->rb_node); if (rbprev) return rb_entry_drq(rbprev)->request; return NULL; } static struct request * deadline_latter_request(request_queue_t *q, struct request *rq) { struct deadline_rq *drq = RQ_DATA(rq); struct rb_node *rbnext = rb_next(&drq->rb_node); if (rbnext) return rb_entry_drq(rbnext)->request; return NULL; } static void deadline_exit_queue(elevator_t *e) { struct deadline_data *dd = e->elevator_data; BUG_ON(!list_empty(&dd->fifo_list[READ])); BUG_ON(!list_empty(&dd->fifo_list[WRITE])); mempool_destroy(dd->drq_pool); kfree(dd->hash); kfree(dd); } /* * initialize elevator private data (deadline_data), and alloc a drq for * each request on the free lists */ static void *deadline_init_queue(request_queue_t *q, elevator_t *e) { struct deadline_data *dd; int i; if (!drq_pool) return NULL; dd = kmalloc_node(sizeof(*dd), GFP_KERNEL, q->node); if (!dd) return NULL; memset(dd, 0, sizeof(*dd)); dd->hash = kmalloc_node(sizeof(struct list_head)*DL_HASH_ENTRIES, GFP_KERNEL, q->node); if (!dd->hash) { kfree(dd); return NULL; } dd->drq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, drq_pool, q->node); if (!dd->drq_pool) { kfree(dd->hash); kfree(dd); return NULL; } for (i = 0; i < DL_HASH_ENTRIES; i++) INIT_LIST_HEAD(&dd->hash[i]); INIT_LIST_HEAD(&dd->fifo_list[READ]); INIT_LIST_HEAD(&dd->fifo_list[WRITE]); dd->sort_list[READ] = RB_ROOT; dd->sort_list[WRITE] = RB_ROOT; dd->fifo_expire[READ] = read_expire; dd->fifo_expire[WRITE] = write_expire; dd->writes_starved = writes_starved; dd->front_merges = 1; dd->fifo_batch = fifo_batch; return dd; } static void deadline_put_request(request_queue_t *q, struct request *rq) { struct deadline_data *dd = q->elevator->elevator_data; struct deadline_rq *drq = RQ_DATA(rq); mempool_free(drq, dd->drq_pool); rq->elevator_private = NULL; } static int deadline_set_request(request_queue_t *q, struct request *rq, struct bio *bio, gfp_t gfp_mask) { struct deadline_data *dd = q->elevator->elevator_data; struct deadline_rq *drq; drq = mempool_alloc(dd->drq_pool, gfp_mask); if (drq) { memset(drq, 0, sizeof(*drq)); RB_CLEAR(&drq->rb_node); drq->request = rq; INIT_LIST_HEAD(&drq->hash); drq->on_hash = 0; INIT_LIST_HEAD(&drq->fifo); rq->elevator_private = drq; return 0; } return 1; } /* * sysfs parts below */ static ssize_t deadline_var_show(int var, char *page) { return sprintf(page, "%d\n", var); } static ssize_t deadline_var_store(int *var, const char *page, size_t count) { char *p = (char *) page; *var = simple_strtol(p, &p, 10); return count; } #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ static ssize_t __FUNC(elevator_t *e, char *page) \ { \ struct deadline_data *dd = e->elevator_data; \ int __data = __VAR; \ if (__CONV) \ __data = jiffies_to_msecs(__data); \ return deadline_var_show(__data, (page)); \ } SHOW_FUNCTION(deadline_read_expire_show, dd->fifo_expire[READ], 1); SHOW_FUNCTION(deadline_write_expire_show, dd->fifo_expire[WRITE], 1); SHOW_FUNCTION(deadline_writes_starved_show, dd->writes_starved, 0); SHOW_FUNCTION(deadline_front_merges_show, dd->front_merges, 0); SHOW_FUNCTION(deadline_fifo_batch_show, dd->fifo_batch, 0); #undef SHOW_FUNCTION #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \ { \ struct deadline_data *dd = e->elevator_data; \ int __data; \ int ret = deadline_var_store(&__data, (page), count); \ if (__data < (MIN)) \ __data = (MIN); \ else if (__data > (MAX)) \ __data = (MAX); \ if (__CONV) \ *(__PTR) = msecs_to_jiffies(__data); \ else \ *(__PTR) = __data; \ return ret; \ } STORE_FUNCTION(deadline_read_expire_store, &dd->fifo_expire[READ], 0, INT_MAX, 1); STORE_FUNCTION(deadline_write_expire_store, &dd->fifo_expire[WRITE], 0, INT_MAX, 1); STORE_FUNCTION(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX, 0); STORE_FUNCTION(deadline_front_merges_store, &dd->front_merges, 0, 1, 0); STORE_FUNCTION(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX, 0); #undef STORE_FUNCTION #define DD_ATTR(name) \ __ATTR(name, S_IRUGO|S_IWUSR, deadline_##name##_show, \ deadline_##name##_store) static struct elv_fs_entry deadline_attrs[] = { DD_ATTR(read_expire), DD_ATTR(write_expire), DD_ATTR(writes_starved), DD_ATTR(front_merges), DD_ATTR(fifo_batch), __ATTR_NULL }; static struct elevator_type iosched_deadline = { .ops = { .elevator_merge_fn = deadline_merge, .elevator_merged_fn = deadline_merged_request, .elevator_merge_req_fn = deadline_merged_requests, .elevator_dispatch_fn = deadline_dispatch_requests, .elevator_add_req_fn = deadline_add_request, .elevator_queue_empty_fn = deadline_queue_empty, .elevator_former_req_fn = deadline_former_request, .elevator_latter_req_fn = deadline_latter_request, .elevator_set_req_fn = deadline_set_request, .elevator_put_req_fn = deadline_put_request, .elevator_init_fn = deadline_init_queue, .elevator_exit_fn = deadline_exit_queue, }, .elevator_attrs = deadline_attrs, .elevator_name = "deadline", .elevator_owner = THIS_MODULE, }; static int __init deadline_init(void) { int ret; drq_pool = kmem_cache_create("deadline_drq", sizeof(struct deadline_rq), 0, 0, NULL, NULL); if (!drq_pool) return -ENOMEM; ret = elv_register(&iosched_deadline); if (ret) kmem_cache_destroy(drq_pool); return ret; } static void __exit deadline_exit(void) { kmem_cache_destroy(drq_pool); elv_unregister(&iosched_deadline); } module_init(deadline_init); module_exit(deadline_exit); MODULE_AUTHOR("Jens Axboe"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("deadline IO scheduler");