/* * Copyright 2002 Andi Kleen, SuSE Labs. * Thanks to Ben LaHaise for precious feedback. */ #include <linux/config.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/highmem.h> #include <linux/module.h> #include <linux/slab.h> #include <asm/uaccess.h> #include <asm/processor.h> #include <asm/tlbflush.h> #include <asm/io.h> static inline pte_t *lookup_address(unsigned long address) { pgd_t *pgd = pgd_offset_k(address); pud_t *pud; pmd_t *pmd; pte_t *pte; if (pgd_none(*pgd)) return NULL; pud = pud_offset(pgd, address); if (!pud_present(*pud)) return NULL; pmd = pmd_offset(pud, address); if (!pmd_present(*pmd)) return NULL; if (pmd_large(*pmd)) return (pte_t *)pmd; pte = pte_offset_kernel(pmd, address); if (pte && !pte_present(*pte)) pte = NULL; return pte; } static struct page *split_large_page(unsigned long address, pgprot_t prot, pgprot_t ref_prot) { int i; unsigned long addr; struct page *base = alloc_pages(GFP_KERNEL, 0); pte_t *pbase; if (!base) return NULL; address = __pa(address); addr = address & LARGE_PAGE_MASK; pbase = (pte_t *)page_address(base); for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) { pbase[i] = pfn_pte(addr >> PAGE_SHIFT, addr == address ? prot : ref_prot); } return base; } static void flush_kernel_map(void *address) { if (0 && address && cpu_has_clflush) { /* is this worth it? */ int i; for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size) asm volatile("clflush (%0)" :: "r" (address + i)); } else asm volatile("wbinvd":::"memory"); if (address) __flush_tlb_one(address); else __flush_tlb_all(); } static inline void flush_map(unsigned long address) { on_each_cpu(flush_kernel_map, (void *)address, 1, 1); } struct deferred_page { struct deferred_page *next; struct page *fpage; unsigned long address; }; static struct deferred_page *df_list; /* protected by init_mm.mmap_sem */ static inline void save_page(unsigned long address, struct page *fpage) { struct deferred_page *df; df = kmalloc(sizeof(struct deferred_page), GFP_KERNEL); if (!df) { flush_map(address); __free_page(fpage); } else { df->next = df_list; df->fpage = fpage; df->address = address; df_list = df; } } /* * No more special protections in this 2/4MB area - revert to a * large page again. */ static void revert_page(unsigned long address, pgprot_t ref_prot) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t large_pte; pgd = pgd_offset_k(address); BUG_ON(pgd_none(*pgd)); pud = pud_offset(pgd,address); BUG_ON(pud_none(*pud)); pmd = pmd_offset(pud, address); BUG_ON(pmd_val(*pmd) & _PAGE_PSE); pgprot_val(ref_prot) |= _PAGE_PSE; large_pte = mk_pte_phys(__pa(address) & LARGE_PAGE_MASK, ref_prot); set_pte((pte_t *)pmd, large_pte); } static int __change_page_attr(unsigned long address, unsigned long pfn, pgprot_t prot, pgprot_t ref_prot) { pte_t *kpte; struct page *kpte_page; unsigned kpte_flags; kpte = lookup_address(address); if (!kpte) return 0; kpte_page = virt_to_page(((unsigned long)kpte) & PAGE_MASK); kpte_flags = pte_val(*kpte); if (pgprot_val(prot) != pgprot_val(ref_prot)) { if ((kpte_flags & _PAGE_PSE) == 0) { set_pte(kpte, pfn_pte(pfn, prot)); } else { /* * split_large_page will take the reference for this change_page_attr * on the split page. */ struct page *split = split_large_page(address, prot, ref_prot); if (!split) return -ENOMEM; set_pte(kpte,mk_pte(split, ref_prot)); kpte_page = split; } get_page(kpte_page); } else if ((kpte_flags & _PAGE_PSE) == 0) { set_pte(kpte, pfn_pte(pfn, ref_prot)); __put_page(kpte_page); } else BUG(); /* on x86-64 the direct mapping set at boot is not using 4k pages */ BUG_ON(PageReserved(kpte_page)); switch (page_count(kpte_page)) { case 1: save_page(address, kpte_page); revert_page(address, ref_prot); break; case 0: BUG(); /* memleak and failed 2M page regeneration */ } return 0; } /* * Change the page attributes of an page in the linear mapping. * * This should be used when a page is mapped with a different caching policy * than write-back somewhere - some CPUs do not like it when mappings with * different caching policies exist. This changes the page attributes of the * in kernel linear mapping too. * * The caller needs to ensure that there are no conflicting mappings elsewhere. * This function only deals with the kernel linear map. * * Caller must call global_flush_tlb() after this. */ int change_page_attr_addr(unsigned long address, int numpages, pgprot_t prot) { int err = 0; int i; down_write(&init_mm.mmap_sem); for (i = 0; i < numpages; i++, address += PAGE_SIZE) { unsigned long pfn = __pa(address) >> PAGE_SHIFT; err = __change_page_attr(address, pfn, prot, PAGE_KERNEL); if (err) break; /* Handle kernel mapping too which aliases part of the * lowmem */ if (__pa(address) < KERNEL_TEXT_SIZE) { unsigned long addr2; pgprot_t prot2 = prot; addr2 = __START_KERNEL_map + __pa(address); pgprot_val(prot2) &= ~_PAGE_NX; err = __change_page_attr(addr2, pfn, prot2, PAGE_KERNEL_EXEC); } } up_write(&init_mm.mmap_sem); return err; } /* Don't call this for MMIO areas that may not have a mem_map entry */ int change_page_attr(struct page *page, int numpages, pgprot_t prot) { unsigned long addr = (unsigned long)page_address(page); return change_page_attr_addr(addr, numpages, prot); } void global_flush_tlb(void) { struct deferred_page *df, *next_df; down_read(&init_mm.mmap_sem); df = xchg(&df_list, NULL); up_read(&init_mm.mmap_sem); if (!df) return; flush_map((df && !df->next) ? df->address : 0); for (; df; df = next_df) { next_df = df->next; if (df->fpage) __free_page(df->fpage); kfree(df); } } EXPORT_SYMBOL(change_page_attr); EXPORT_SYMBOL(global_flush_tlb);