#include #include #include #include #include #include #include #include #include #include #include #include #include #define HPET_MASK 0xFFFFFFFF #define HPET_SHIFT 22 /* FSEC = 10^-15 NSEC = 10^-9 */ #define FSEC_PER_NSEC 1000000 int nohpet __initdata; unsigned long hpet_address; unsigned long hpet_period; /* fsecs / HPET clock */ unsigned long hpet_tick; /* HPET clocks / interrupt */ int hpet_use_timer; /* Use counter of hpet for time keeping, * otherwise PIT */ #ifdef CONFIG_HPET static __init int late_hpet_init(void) { struct hpet_data hd; unsigned int ntimer; if (!hpet_address) return 0; memset(&hd, 0, sizeof(hd)); ntimer = hpet_readl(HPET_ID); ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT; ntimer++; /* * Register with driver. * Timer0 and Timer1 is used by platform. */ hd.hd_phys_address = hpet_address; hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE); hd.hd_nirqs = ntimer; hd.hd_flags = HPET_DATA_PLATFORM; hpet_reserve_timer(&hd, 0); #ifdef CONFIG_HPET_EMULATE_RTC hpet_reserve_timer(&hd, 1); #endif hd.hd_irq[0] = HPET_LEGACY_8254; hd.hd_irq[1] = HPET_LEGACY_RTC; if (ntimer > 2) { struct hpet *hpet; struct hpet_timer *timer; int i; hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE); timer = &hpet->hpet_timers[2]; for (i = 2; i < ntimer; timer++, i++) hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT; } hpet_alloc(&hd); return 0; } fs_initcall(late_hpet_init); #endif int hpet_timer_stop_set_go(unsigned long tick) { unsigned int cfg; /* * Stop the timers and reset the main counter. */ cfg = hpet_readl(HPET_CFG); cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY); hpet_writel(cfg, HPET_CFG); hpet_writel(0, HPET_COUNTER); hpet_writel(0, HPET_COUNTER + 4); /* * Set up timer 0, as periodic with first interrupt to happen at hpet_tick, * and period also hpet_tick. */ if (hpet_use_timer) { hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL | HPET_TN_32BIT, HPET_T0_CFG); hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */ hpet_writel(hpet_tick, HPET_T0_CMP); /* period */ cfg |= HPET_CFG_LEGACY; } /* * Go! */ cfg |= HPET_CFG_ENABLE; hpet_writel(cfg, HPET_CFG); return 0; } static cycle_t read_hpet(void) { return (cycle_t)hpet_readl(HPET_COUNTER); } static cycle_t __vsyscall_fn vread_hpet(void) { return readl((void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0); } struct clocksource clocksource_hpet = { .name = "hpet", .rating = 250, .read = read_hpet, .mask = (cycle_t)HPET_MASK, .mult = 0, /* set below */ .shift = HPET_SHIFT, .flags = CLOCK_SOURCE_IS_CONTINUOUS, .vread = vread_hpet, }; int hpet_arch_init(void) { unsigned int id; u64 tmp; if (!hpet_address) return -1; set_fixmap_nocache(FIX_HPET_BASE, hpet_address); __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE); /* * Read the period, compute tick and quotient. */ id = hpet_readl(HPET_ID); if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER)) return -1; hpet_period = hpet_readl(HPET_PERIOD); if (hpet_period < 100000 || hpet_period > 100000000) return -1; hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period; hpet_use_timer = (id & HPET_ID_LEGSUP); /* * hpet period is in femto seconds per cycle * so we need to convert this to ns/cyc units * aproximated by mult/2^shift * * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift * fsec/cyc * 1ns/1000000fsec * 2^shift = mult * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult * (fsec/cyc << shift)/1000000 = mult * (hpet_period << shift)/FSEC_PER_NSEC = mult */ tmp = (u64)hpet_period << HPET_SHIFT; do_div(tmp, FSEC_PER_NSEC); clocksource_hpet.mult = (u32)tmp; clocksource_register(&clocksource_hpet); return hpet_timer_stop_set_go(hpet_tick); } int hpet_reenable(void) { return hpet_timer_stop_set_go(hpet_tick); } /* * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing * it to the HPET timer of known frequency. */ #define TICK_COUNT 100000000 #define SMI_THRESHOLD 50000 #define MAX_TRIES 5 /* * Some platforms take periodic SMI interrupts with 5ms duration. Make sure none * occurs between the reads of the hpet & TSC. */ static void __init read_hpet_tsc(int *hpet, int *tsc) { int tsc1, tsc2, hpet1, i; for (i = 0; i < MAX_TRIES; i++) { tsc1 = get_cycles_sync(); hpet1 = hpet_readl(HPET_COUNTER); tsc2 = get_cycles_sync(); if ((tsc2 - tsc1) < SMI_THRESHOLD) break; } *hpet = hpet1; *tsc = tsc2; } unsigned int __init hpet_calibrate_tsc(void) { int tsc_start, hpet_start; int tsc_now, hpet_now; unsigned long flags; local_irq_save(flags); read_hpet_tsc(&hpet_start, &tsc_start); do { local_irq_disable(); read_hpet_tsc(&hpet_now, &tsc_now); local_irq_restore(flags); } while ((tsc_now - tsc_start) < TICK_COUNT && (hpet_now - hpet_start) < TICK_COUNT); return (tsc_now - tsc_start) * 1000000000L / ((hpet_now - hpet_start) * hpet_period / 1000); } #ifdef CONFIG_HPET_EMULATE_RTC /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET * is enabled, we support RTC interrupt functionality in software. * RTC has 3 kinds of interrupts: * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock * is updated * 2) Alarm Interrupt - generate an interrupt at a specific time of day * 3) Periodic Interrupt - generate periodic interrupt, with frequencies * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) * (1) and (2) above are implemented using polling at a frequency of * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt * overhead. (DEFAULT_RTC_INT_FREQ) * For (3), we use interrupts at 64Hz or user specified periodic * frequency, whichever is higher. */ #include #define DEFAULT_RTC_INT_FREQ 64 #define RTC_NUM_INTS 1 static unsigned long UIE_on; static unsigned long prev_update_sec; static unsigned long AIE_on; static struct rtc_time alarm_time; static unsigned long PIE_on; static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ; static unsigned long PIE_count; static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */ static unsigned int hpet_t1_cmp; /* cached comparator register */ int is_hpet_enabled(void) { return hpet_address != 0; } /* * Timer 1 for RTC, we do not use periodic interrupt feature, * even if HPET supports periodic interrupts on Timer 1. * The reason being, to set up a periodic interrupt in HPET, we need to * stop the main counter. And if we do that everytime someone diables/enables * RTC, we will have adverse effect on main kernel timer running on Timer 0. * So, for the time being, simulate the periodic interrupt in software. * * hpet_rtc_timer_init() is called for the first time and during subsequent * interuppts reinit happens through hpet_rtc_timer_reinit(). */ int hpet_rtc_timer_init(void) { unsigned int cfg, cnt; unsigned long flags; if (!is_hpet_enabled()) return 0; /* * Set the counter 1 and enable the interrupts. */ if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) hpet_rtc_int_freq = PIE_freq; else hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; local_irq_save(flags); cnt = hpet_readl(HPET_COUNTER); cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq); hpet_writel(cnt, HPET_T1_CMP); hpet_t1_cmp = cnt; cfg = hpet_readl(HPET_T1_CFG); cfg &= ~HPET_TN_PERIODIC; cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; hpet_writel(cfg, HPET_T1_CFG); local_irq_restore(flags); return 1; } static void hpet_rtc_timer_reinit(void) { unsigned int cfg, cnt, ticks_per_int, lost_ints; if (unlikely(!(PIE_on | AIE_on | UIE_on))) { cfg = hpet_readl(HPET_T1_CFG); cfg &= ~HPET_TN_ENABLE; hpet_writel(cfg, HPET_T1_CFG); return; } if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) hpet_rtc_int_freq = PIE_freq; else hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; /* It is more accurate to use the comparator value than current count.*/ ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq; hpet_t1_cmp += ticks_per_int; hpet_writel(hpet_t1_cmp, HPET_T1_CMP); /* * If the interrupt handler was delayed too long, the write above tries * to schedule the next interrupt in the past and the hardware would * not interrupt until the counter had wrapped around. * So we have to check that the comparator wasn't set to a past time. */ cnt = hpet_readl(HPET_COUNTER); if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) { lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1; /* Make sure that, even with the time needed to execute * this code, the next scheduled interrupt has been moved * back to the future: */ lost_ints++; hpet_t1_cmp += lost_ints * ticks_per_int; hpet_writel(hpet_t1_cmp, HPET_T1_CMP); if (PIE_on) PIE_count += lost_ints; if (printk_ratelimit()) printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", hpet_rtc_int_freq); } } /* * The functions below are called from rtc driver. * Return 0 if HPET is not being used. * Otherwise do the necessary changes and return 1. */ int hpet_mask_rtc_irq_bit(unsigned long bit_mask) { if (!is_hpet_enabled()) return 0; if (bit_mask & RTC_UIE) UIE_on = 0; if (bit_mask & RTC_PIE) PIE_on = 0; if (bit_mask & RTC_AIE) AIE_on = 0; return 1; } int hpet_set_rtc_irq_bit(unsigned long bit_mask) { int timer_init_reqd = 0; if (!is_hpet_enabled()) return 0; if (!(PIE_on | AIE_on | UIE_on)) timer_init_reqd = 1; if (bit_mask & RTC_UIE) { UIE_on = 1; } if (bit_mask & RTC_PIE) { PIE_on = 1; PIE_count = 0; } if (bit_mask & RTC_AIE) { AIE_on = 1; } if (timer_init_reqd) hpet_rtc_timer_init(); return 1; } int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) { if (!is_hpet_enabled()) return 0; alarm_time.tm_hour = hrs; alarm_time.tm_min = min; alarm_time.tm_sec = sec; return 1; } int hpet_set_periodic_freq(unsigned long freq) { if (!is_hpet_enabled()) return 0; PIE_freq = freq; PIE_count = 0; return 1; } int hpet_rtc_dropped_irq(void) { if (!is_hpet_enabled()) return 0; return 1; } irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct rtc_time curr_time; unsigned long rtc_int_flag = 0; int call_rtc_interrupt = 0; hpet_rtc_timer_reinit(); if (UIE_on | AIE_on) { rtc_get_rtc_time(&curr_time); } if (UIE_on) { if (curr_time.tm_sec != prev_update_sec) { /* Set update int info, call real rtc int routine */ call_rtc_interrupt = 1; rtc_int_flag = RTC_UF; prev_update_sec = curr_time.tm_sec; } } if (PIE_on) { PIE_count++; if (PIE_count >= hpet_rtc_int_freq/PIE_freq) { /* Set periodic int info, call real rtc int routine */ call_rtc_interrupt = 1; rtc_int_flag |= RTC_PF; PIE_count = 0; } } if (AIE_on) { if ((curr_time.tm_sec == alarm_time.tm_sec) && (curr_time.tm_min == alarm_time.tm_min) && (curr_time.tm_hour == alarm_time.tm_hour)) { /* Set alarm int info, call real rtc int routine */ call_rtc_interrupt = 1; rtc_int_flag |= RTC_AF; } } if (call_rtc_interrupt) { rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); rtc_interrupt(rtc_int_flag, dev_id); } return IRQ_HANDLED; } #endif static int __init nohpet_setup(char *s) { nohpet = 1; return 1; } __setup("nohpet", nohpet_setup);