/* * Kernel-based Virtual Machine driver for Linux * * AMD SVM support * * Copyright (C) 2006 Qumranet, Inc. * * Authors: * Yaniv Kamay * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include #include "irq.h" #include "mmu.h" #include "kvm_cache_regs.h" #include "x86.h" #include #include #include #include #include #include #include #include #include "trace.h" #define __ex(x) __kvm_handle_fault_on_reboot(x) MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); #define IOPM_ALLOC_ORDER 2 #define MSRPM_ALLOC_ORDER 1 #define SEG_TYPE_LDT 2 #define SEG_TYPE_BUSY_TSS16 3 #define SVM_FEATURE_NPT (1 << 0) #define SVM_FEATURE_LBRV (1 << 1) #define SVM_FEATURE_SVML (1 << 2) #define SVM_FEATURE_PAUSE_FILTER (1 << 10) #define NESTED_EXIT_HOST 0 /* Exit handled on host level */ #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */ #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */ #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) static const u32 host_save_user_msrs[] = { #ifdef CONFIG_X86_64 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE, MSR_FS_BASE, #endif MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, }; #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs) struct kvm_vcpu; struct nested_state { struct vmcb *hsave; u64 hsave_msr; u64 vmcb; /* These are the merged vectors */ u32 *msrpm; /* gpa pointers to the real vectors */ u64 vmcb_msrpm; /* A VMEXIT is required but not yet emulated */ bool exit_required; /* cache for intercepts of the guest */ u16 intercept_cr_read; u16 intercept_cr_write; u16 intercept_dr_read; u16 intercept_dr_write; u32 intercept_exceptions; u64 intercept; }; struct vcpu_svm { struct kvm_vcpu vcpu; struct vmcb *vmcb; unsigned long vmcb_pa; struct svm_cpu_data *svm_data; uint64_t asid_generation; uint64_t sysenter_esp; uint64_t sysenter_eip; u64 next_rip; u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS]; u64 host_gs_base; u32 *msrpm; struct nested_state nested; bool nmi_singlestep; }; /* enable NPT for AMD64 and X86 with PAE */ #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) static bool npt_enabled = true; #else static bool npt_enabled = false; #endif static int npt = 1; module_param(npt, int, S_IRUGO); static int nested = 1; module_param(nested, int, S_IRUGO); static void svm_flush_tlb(struct kvm_vcpu *vcpu); static void svm_complete_interrupts(struct vcpu_svm *svm); static int nested_svm_exit_handled(struct vcpu_svm *svm); static int nested_svm_vmexit(struct vcpu_svm *svm); static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, bool has_error_code, u32 error_code); static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) { return container_of(vcpu, struct vcpu_svm, vcpu); } static inline bool is_nested(struct vcpu_svm *svm) { return svm->nested.vmcb; } static inline void enable_gif(struct vcpu_svm *svm) { svm->vcpu.arch.hflags |= HF_GIF_MASK; } static inline void disable_gif(struct vcpu_svm *svm) { svm->vcpu.arch.hflags &= ~HF_GIF_MASK; } static inline bool gif_set(struct vcpu_svm *svm) { return !!(svm->vcpu.arch.hflags & HF_GIF_MASK); } static unsigned long iopm_base; struct kvm_ldttss_desc { u16 limit0; u16 base0; unsigned base1 : 8, type : 5, dpl : 2, p : 1; unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8; u32 base3; u32 zero1; } __attribute__((packed)); struct svm_cpu_data { int cpu; u64 asid_generation; u32 max_asid; u32 next_asid; struct kvm_ldttss_desc *tss_desc; struct page *save_area; }; static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); static uint32_t svm_features; struct svm_init_data { int cpu; int r; }; static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) #define MSRS_RANGE_SIZE 2048 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) #define MAX_INST_SIZE 15 static inline u32 svm_has(u32 feat) { return svm_features & feat; } static inline void clgi(void) { asm volatile (__ex(SVM_CLGI)); } static inline void stgi(void) { asm volatile (__ex(SVM_STGI)); } static inline void invlpga(unsigned long addr, u32 asid) { asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid)); } static inline void force_new_asid(struct kvm_vcpu *vcpu) { to_svm(vcpu)->asid_generation--; } static inline void flush_guest_tlb(struct kvm_vcpu *vcpu) { force_new_asid(vcpu); } static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) { if (!npt_enabled && !(efer & EFER_LMA)) efer &= ~EFER_LME; to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME; vcpu->arch.shadow_efer = efer; } static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, bool has_error_code, u32 error_code) { struct vcpu_svm *svm = to_svm(vcpu); /* If we are within a nested VM we'd better #VMEXIT and let the guest handle the exception */ if (nested_svm_check_exception(svm, nr, has_error_code, error_code)) return; svm->vmcb->control.event_inj = nr | SVM_EVTINJ_VALID | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) | SVM_EVTINJ_TYPE_EXEPT; svm->vmcb->control.event_inj_err = error_code; } static int is_external_interrupt(u32 info) { info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); } static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) { struct vcpu_svm *svm = to_svm(vcpu); u32 ret = 0; if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS; return ret & mask; } static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) { struct vcpu_svm *svm = to_svm(vcpu); if (mask == 0) svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; else svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; } static void skip_emulated_instruction(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (!svm->next_rip) { if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) != EMULATE_DONE) printk(KERN_DEBUG "%s: NOP\n", __func__); return; } if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE) printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n", __func__, kvm_rip_read(vcpu), svm->next_rip); kvm_rip_write(vcpu, svm->next_rip); svm_set_interrupt_shadow(vcpu, 0); } static int has_svm(void) { const char *msg; if (!cpu_has_svm(&msg)) { printk(KERN_INFO "has_svm: %s\n", msg); return 0; } return 1; } static void svm_hardware_disable(void *garbage) { cpu_svm_disable(); } static int svm_hardware_enable(void *garbage) { struct svm_cpu_data *sd; uint64_t efer; struct descriptor_table gdt_descr; struct desc_struct *gdt; int me = raw_smp_processor_id(); rdmsrl(MSR_EFER, efer); if (efer & EFER_SVME) return -EBUSY; if (!has_svm()) { printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n", me); return -EINVAL; } sd = per_cpu(svm_data, me); if (!sd) { printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n", me); return -EINVAL; } sd->asid_generation = 1; sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; sd->next_asid = sd->max_asid + 1; kvm_get_gdt(&gdt_descr); gdt = (struct desc_struct *)gdt_descr.base; sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); wrmsrl(MSR_EFER, efer | EFER_SVME); wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); return 0; } static void svm_cpu_uninit(int cpu) { struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id()); if (!sd) return; per_cpu(svm_data, raw_smp_processor_id()) = NULL; __free_page(sd->save_area); kfree(sd); } static int svm_cpu_init(int cpu) { struct svm_cpu_data *sd; int r; sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); if (!sd) return -ENOMEM; sd->cpu = cpu; sd->save_area = alloc_page(GFP_KERNEL); r = -ENOMEM; if (!sd->save_area) goto err_1; per_cpu(svm_data, cpu) = sd; return 0; err_1: kfree(sd); return r; } static void set_msr_interception(u32 *msrpm, unsigned msr, int read, int write) { int i; for (i = 0; i < NUM_MSR_MAPS; i++) { if (msr >= msrpm_ranges[i] && msr < msrpm_ranges[i] + MSRS_IN_RANGE) { u32 msr_offset = (i * MSRS_IN_RANGE + msr - msrpm_ranges[i]) * 2; u32 *base = msrpm + (msr_offset / 32); u32 msr_shift = msr_offset % 32; u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1); *base = (*base & ~(0x3 << msr_shift)) | (mask << msr_shift); return; } } BUG(); } static void svm_vcpu_init_msrpm(u32 *msrpm) { memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); #ifdef CONFIG_X86_64 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1); set_msr_interception(msrpm, MSR_FS_BASE, 1, 1); set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1); set_msr_interception(msrpm, MSR_LSTAR, 1, 1); set_msr_interception(msrpm, MSR_CSTAR, 1, 1); set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1); #endif set_msr_interception(msrpm, MSR_K6_STAR, 1, 1); set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1); } static void svm_enable_lbrv(struct vcpu_svm *svm) { u32 *msrpm = svm->msrpm; svm->vmcb->control.lbr_ctl = 1; set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1); } static void svm_disable_lbrv(struct vcpu_svm *svm) { u32 *msrpm = svm->msrpm; svm->vmcb->control.lbr_ctl = 0; set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); } static __init int svm_hardware_setup(void) { int cpu; struct page *iopm_pages; void *iopm_va; int r; iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); if (!iopm_pages) return -ENOMEM; iopm_va = page_address(iopm_pages); memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; if (boot_cpu_has(X86_FEATURE_NX)) kvm_enable_efer_bits(EFER_NX); if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) kvm_enable_efer_bits(EFER_FFXSR); if (nested) { printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); kvm_enable_efer_bits(EFER_SVME); } for_each_possible_cpu(cpu) { r = svm_cpu_init(cpu); if (r) goto err; } svm_features = cpuid_edx(SVM_CPUID_FUNC); if (!svm_has(SVM_FEATURE_NPT)) npt_enabled = false; if (npt_enabled && !npt) { printk(KERN_INFO "kvm: Nested Paging disabled\n"); npt_enabled = false; } if (npt_enabled) { printk(KERN_INFO "kvm: Nested Paging enabled\n"); kvm_enable_tdp(); } else kvm_disable_tdp(); return 0; err: __free_pages(iopm_pages, IOPM_ALLOC_ORDER); iopm_base = 0; return r; } static __exit void svm_hardware_unsetup(void) { int cpu; for_each_possible_cpu(cpu) svm_cpu_uninit(cpu); __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); iopm_base = 0; } static void init_seg(struct vmcb_seg *seg) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ seg->limit = 0xffff; seg->base = 0; } static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | type; seg->limit = 0xffff; seg->base = 0; } static void init_vmcb(struct vcpu_svm *svm) { struct vmcb_control_area *control = &svm->vmcb->control; struct vmcb_save_area *save = &svm->vmcb->save; control->intercept_cr_read = INTERCEPT_CR0_MASK | INTERCEPT_CR3_MASK | INTERCEPT_CR4_MASK; control->intercept_cr_write = INTERCEPT_CR0_MASK | INTERCEPT_CR3_MASK | INTERCEPT_CR4_MASK | INTERCEPT_CR8_MASK; control->intercept_dr_read = INTERCEPT_DR0_MASK | INTERCEPT_DR1_MASK | INTERCEPT_DR2_MASK | INTERCEPT_DR3_MASK; control->intercept_dr_write = INTERCEPT_DR0_MASK | INTERCEPT_DR1_MASK | INTERCEPT_DR2_MASK | INTERCEPT_DR3_MASK | INTERCEPT_DR5_MASK | INTERCEPT_DR7_MASK; control->intercept_exceptions = (1 << PF_VECTOR) | (1 << UD_VECTOR) | (1 << MC_VECTOR); control->intercept = (1ULL << INTERCEPT_INTR) | (1ULL << INTERCEPT_NMI) | (1ULL << INTERCEPT_SMI) | (1ULL << INTERCEPT_CPUID) | (1ULL << INTERCEPT_INVD) | (1ULL << INTERCEPT_HLT) | (1ULL << INTERCEPT_INVLPG) | (1ULL << INTERCEPT_INVLPGA) | (1ULL << INTERCEPT_IOIO_PROT) | (1ULL << INTERCEPT_MSR_PROT) | (1ULL << INTERCEPT_TASK_SWITCH) | (1ULL << INTERCEPT_SHUTDOWN) | (1ULL << INTERCEPT_VMRUN) | (1ULL << INTERCEPT_VMMCALL) | (1ULL << INTERCEPT_VMLOAD) | (1ULL << INTERCEPT_VMSAVE) | (1ULL << INTERCEPT_STGI) | (1ULL << INTERCEPT_CLGI) | (1ULL << INTERCEPT_SKINIT) | (1ULL << INTERCEPT_WBINVD) | (1ULL << INTERCEPT_MONITOR) | (1ULL << INTERCEPT_MWAIT); control->iopm_base_pa = iopm_base; control->msrpm_base_pa = __pa(svm->msrpm); control->tsc_offset = 0; control->int_ctl = V_INTR_MASKING_MASK; init_seg(&save->es); init_seg(&save->ss); init_seg(&save->ds); init_seg(&save->fs); init_seg(&save->gs); save->cs.selector = 0xf000; /* Executable/Readable Code Segment */ save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; save->cs.limit = 0xffff; /* * cs.base should really be 0xffff0000, but vmx can't handle that, so * be consistent with it. * * Replace when we have real mode working for vmx. */ save->cs.base = 0xf0000; save->gdtr.limit = 0xffff; save->idtr.limit = 0xffff; init_sys_seg(&save->ldtr, SEG_TYPE_LDT); init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); save->efer = EFER_SVME; save->dr6 = 0xffff0ff0; save->dr7 = 0x400; save->rflags = 2; save->rip = 0x0000fff0; svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; /* This is the guest-visible cr0 value. * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. */ svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0); save->cr4 = X86_CR4_PAE; /* rdx = ?? */ if (npt_enabled) { /* Setup VMCB for Nested Paging */ control->nested_ctl = 1; control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) | (1ULL << INTERCEPT_INVLPG)); control->intercept_exceptions &= ~(1 << PF_VECTOR); control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK| INTERCEPT_CR3_MASK); control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK| INTERCEPT_CR3_MASK); save->g_pat = 0x0007040600070406ULL; save->cr3 = 0; save->cr4 = 0; } force_new_asid(&svm->vcpu); svm->nested.vmcb = 0; svm->vcpu.arch.hflags = 0; if (svm_has(SVM_FEATURE_PAUSE_FILTER)) { control->pause_filter_count = 3000; control->intercept |= (1ULL << INTERCEPT_PAUSE); } enable_gif(svm); } static int svm_vcpu_reset(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); init_vmcb(svm); if (!kvm_vcpu_is_bsp(vcpu)) { kvm_rip_write(vcpu, 0); svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12; svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8; } vcpu->arch.regs_avail = ~0; vcpu->arch.regs_dirty = ~0; return 0; } static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) { struct vcpu_svm *svm; struct page *page; struct page *msrpm_pages; struct page *hsave_page; struct page *nested_msrpm_pages; int err; svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); if (!svm) { err = -ENOMEM; goto out; } err = kvm_vcpu_init(&svm->vcpu, kvm, id); if (err) goto free_svm; page = alloc_page(GFP_KERNEL); if (!page) { err = -ENOMEM; goto uninit; } err = -ENOMEM; msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); if (!msrpm_pages) goto uninit; nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); if (!nested_msrpm_pages) goto uninit; svm->msrpm = page_address(msrpm_pages); svm_vcpu_init_msrpm(svm->msrpm); hsave_page = alloc_page(GFP_KERNEL); if (!hsave_page) goto uninit; svm->nested.hsave = page_address(hsave_page); svm->nested.msrpm = page_address(nested_msrpm_pages); svm->vmcb = page_address(page); clear_page(svm->vmcb); svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT; svm->asid_generation = 0; init_vmcb(svm); fx_init(&svm->vcpu); svm->vcpu.fpu_active = 1; svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE; if (kvm_vcpu_is_bsp(&svm->vcpu)) svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; return &svm->vcpu; uninit: kvm_vcpu_uninit(&svm->vcpu); free_svm: kmem_cache_free(kvm_vcpu_cache, svm); out: return ERR_PTR(err); } static void svm_free_vcpu(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT)); __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); __free_page(virt_to_page(svm->nested.hsave)); __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); kvm_vcpu_uninit(vcpu); kmem_cache_free(kvm_vcpu_cache, svm); } static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct vcpu_svm *svm = to_svm(vcpu); int i; if (unlikely(cpu != vcpu->cpu)) { u64 delta; if (check_tsc_unstable()) { /* * Make sure that the guest sees a monotonically * increasing TSC. */ delta = vcpu->arch.host_tsc - native_read_tsc(); svm->vmcb->control.tsc_offset += delta; if (is_nested(svm)) svm->nested.hsave->control.tsc_offset += delta; } vcpu->cpu = cpu; kvm_migrate_timers(vcpu); svm->asid_generation = 0; } for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); } static void svm_vcpu_put(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); int i; ++vcpu->stat.host_state_reload; for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); vcpu->arch.host_tsc = native_read_tsc(); } static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) { return to_svm(vcpu)->vmcb->save.rflags; } static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { to_svm(vcpu)->vmcb->save.rflags = rflags; } static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) { switch (reg) { case VCPU_EXREG_PDPTR: BUG_ON(!npt_enabled); load_pdptrs(vcpu, vcpu->arch.cr3); break; default: BUG(); } } static void svm_set_vintr(struct vcpu_svm *svm) { svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR; } static void svm_clear_vintr(struct vcpu_svm *svm) { svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR); } static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) { struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; switch (seg) { case VCPU_SREG_CS: return &save->cs; case VCPU_SREG_DS: return &save->ds; case VCPU_SREG_ES: return &save->es; case VCPU_SREG_FS: return &save->fs; case VCPU_SREG_GS: return &save->gs; case VCPU_SREG_SS: return &save->ss; case VCPU_SREG_TR: return &save->tr; case VCPU_SREG_LDTR: return &save->ldtr; } BUG(); return NULL; } static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); return s->base; } static void svm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); var->base = s->base; var->limit = s->limit; var->selector = s->selector; var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1; /* AMD's VMCB does not have an explicit unusable field, so emulate it * for cross vendor migration purposes by "not present" */ var->unusable = !var->present || (var->type == 0); switch (seg) { case VCPU_SREG_CS: /* * SVM always stores 0 for the 'G' bit in the CS selector in * the VMCB on a VMEXIT. This hurts cross-vendor migration: * Intel's VMENTRY has a check on the 'G' bit. */ var->g = s->limit > 0xfffff; break; case VCPU_SREG_TR: /* * Work around a bug where the busy flag in the tr selector * isn't exposed */ var->type |= 0x2; break; case VCPU_SREG_DS: case VCPU_SREG_ES: case VCPU_SREG_FS: case VCPU_SREG_GS: /* * The accessed bit must always be set in the segment * descriptor cache, although it can be cleared in the * descriptor, the cached bit always remains at 1. Since * Intel has a check on this, set it here to support * cross-vendor migration. */ if (!var->unusable) var->type |= 0x1; break; case VCPU_SREG_SS: /* On AMD CPUs sometimes the DB bit in the segment * descriptor is left as 1, although the whole segment has * been made unusable. Clear it here to pass an Intel VMX * entry check when cross vendor migrating. */ if (var->unusable) var->db = 0; break; } } static int svm_get_cpl(struct kvm_vcpu *vcpu) { struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; return save->cpl; } static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { struct vcpu_svm *svm = to_svm(vcpu); dt->limit = svm->vmcb->save.idtr.limit; dt->base = svm->vmcb->save.idtr.base; } static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.idtr.limit = dt->limit; svm->vmcb->save.idtr.base = dt->base ; } static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { struct vcpu_svm *svm = to_svm(vcpu); dt->limit = svm->vmcb->save.gdtr.limit; dt->base = svm->vmcb->save.gdtr.base; } static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.gdtr.limit = dt->limit; svm->vmcb->save.gdtr.base = dt->base ; } static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) { } static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { struct vcpu_svm *svm = to_svm(vcpu); #ifdef CONFIG_X86_64 if (vcpu->arch.shadow_efer & EFER_LME) { if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { vcpu->arch.shadow_efer |= EFER_LMA; svm->vmcb->save.efer |= EFER_LMA | EFER_LME; } if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { vcpu->arch.shadow_efer &= ~EFER_LMA; svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); } } #endif if (npt_enabled) goto set; if (kvm_read_cr0_bits(vcpu, X86_CR0_TS) && !(cr0 & X86_CR0_TS)) { svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR); vcpu->fpu_active = 1; } vcpu->arch.cr0 = cr0; cr0 |= X86_CR0_PG | X86_CR0_WP; if (!vcpu->fpu_active) { svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR); cr0 |= X86_CR0_TS; } set: /* * re-enable caching here because the QEMU bios * does not do it - this results in some delay at * reboot */ cr0 &= ~(X86_CR0_CD | X86_CR0_NW); svm->vmcb->save.cr0 = cr0; } static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE; unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) force_new_asid(vcpu); vcpu->arch.cr4 = cr4; if (!npt_enabled) cr4 |= X86_CR4_PAE; cr4 |= host_cr4_mce; to_svm(vcpu)->vmcb->save.cr4 = cr4; } static void svm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_seg *s = svm_seg(vcpu, seg); s->base = var->base; s->limit = var->limit; s->selector = var->selector; if (var->unusable) s->attrib = 0; else { s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT; s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; } if (seg == VCPU_SREG_CS) svm->vmcb->save.cpl = (svm->vmcb->save.cs.attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; } static void update_db_intercept(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.intercept_exceptions &= ~((1 << DB_VECTOR) | (1 << BP_VECTOR)); if (svm->nmi_singlestep) svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR); if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { if (vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) svm->vmcb->control.intercept_exceptions |= 1 << DB_VECTOR; if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) svm->vmcb->control.intercept_exceptions |= 1 << BP_VECTOR; } else vcpu->guest_debug = 0; } static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { struct vcpu_svm *svm = to_svm(vcpu); if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) svm->vmcb->save.dr7 = dbg->arch.debugreg[7]; else svm->vmcb->save.dr7 = vcpu->arch.dr7; update_db_intercept(vcpu); } static void load_host_msrs(struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base); #endif } static void save_host_msrs(struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base); #endif } static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) { if (sd->next_asid > sd->max_asid) { ++sd->asid_generation; sd->next_asid = 1; svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; } svm->asid_generation = sd->asid_generation; svm->vmcb->control.asid = sd->next_asid++; } static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr) { struct vcpu_svm *svm = to_svm(vcpu); unsigned long val; switch (dr) { case 0 ... 3: val = vcpu->arch.db[dr]; break; case 6: if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) val = vcpu->arch.dr6; else val = svm->vmcb->save.dr6; break; case 7: if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) val = vcpu->arch.dr7; else val = svm->vmcb->save.dr7; break; default: val = 0; } return val; } static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value, int *exception) { struct vcpu_svm *svm = to_svm(vcpu); *exception = 0; switch (dr) { case 0 ... 3: vcpu->arch.db[dr] = value; if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) vcpu->arch.eff_db[dr] = value; return; case 4 ... 5: if (vcpu->arch.cr4 & X86_CR4_DE) *exception = UD_VECTOR; return; case 6: if (value & 0xffffffff00000000ULL) { *exception = GP_VECTOR; return; } vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1; return; case 7: if (value & 0xffffffff00000000ULL) { *exception = GP_VECTOR; return; } vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1; if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { svm->vmcb->save.dr7 = vcpu->arch.dr7; vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK); } return; default: /* FIXME: Possible case? */ printk(KERN_DEBUG "%s: unexpected dr %u\n", __func__, dr); *exception = UD_VECTOR; return; } } static int pf_interception(struct vcpu_svm *svm) { u64 fault_address; u32 error_code; fault_address = svm->vmcb->control.exit_info_2; error_code = svm->vmcb->control.exit_info_1; trace_kvm_page_fault(fault_address, error_code); if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu)) kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address); return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code); } static int db_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; if (!(svm->vcpu.guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && !svm->nmi_singlestep) { kvm_queue_exception(&svm->vcpu, DB_VECTOR); return 1; } if (svm->nmi_singlestep) { svm->nmi_singlestep = false; if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) svm->vmcb->save.rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); update_db_intercept(&svm->vcpu); } if (svm->vcpu.guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){ kvm_run->exit_reason = KVM_EXIT_DEBUG; kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; kvm_run->debug.arch.exception = DB_VECTOR; return 0; } return 1; } static int bp_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; kvm_run->exit_reason = KVM_EXIT_DEBUG; kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; kvm_run->debug.arch.exception = BP_VECTOR; return 0; } static int ud_interception(struct vcpu_svm *svm) { int er; er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD); if (er != EMULATE_DONE) kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } static int nm_interception(struct vcpu_svm *svm) { svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR); if (!kvm_read_cr0_bits(&svm->vcpu, X86_CR0_TS)) svm->vmcb->save.cr0 &= ~X86_CR0_TS; svm->vcpu.fpu_active = 1; return 1; } static int mc_interception(struct vcpu_svm *svm) { /* * On an #MC intercept the MCE handler is not called automatically in * the host. So do it by hand here. */ asm volatile ( "int $0x12\n"); /* not sure if we ever come back to this point */ return 1; } static int shutdown_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; /* * VMCB is undefined after a SHUTDOWN intercept * so reinitialize it. */ clear_page(svm->vmcb); init_vmcb(svm); kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; return 0; } static int io_interception(struct vcpu_svm *svm) { u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ int size, in, string; unsigned port; ++svm->vcpu.stat.io_exits; svm->next_rip = svm->vmcb->control.exit_info_2; string = (io_info & SVM_IOIO_STR_MASK) != 0; if (string) { if (emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DO_MMIO) return 0; return 1; } in = (io_info & SVM_IOIO_TYPE_MASK) != 0; port = io_info >> 16; size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; skip_emulated_instruction(&svm->vcpu); return kvm_emulate_pio(&svm->vcpu, in, size, port); } static int nmi_interception(struct vcpu_svm *svm) { return 1; } static int intr_interception(struct vcpu_svm *svm) { ++svm->vcpu.stat.irq_exits; return 1; } static int nop_on_interception(struct vcpu_svm *svm) { return 1; } static int halt_interception(struct vcpu_svm *svm) { svm->next_rip = kvm_rip_read(&svm->vcpu) + 1; skip_emulated_instruction(&svm->vcpu); return kvm_emulate_halt(&svm->vcpu); } static int vmmcall_interception(struct vcpu_svm *svm) { svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; skip_emulated_instruction(&svm->vcpu); kvm_emulate_hypercall(&svm->vcpu); return 1; } static int nested_svm_check_permissions(struct vcpu_svm *svm) { if (!(svm->vcpu.arch.shadow_efer & EFER_SVME) || !is_paging(&svm->vcpu)) { kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } if (svm->vmcb->save.cpl) { kvm_inject_gp(&svm->vcpu, 0); return 1; } return 0; } static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, bool has_error_code, u32 error_code) { if (!is_nested(svm)) return 0; svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr; svm->vmcb->control.exit_code_hi = 0; svm->vmcb->control.exit_info_1 = error_code; svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2; return nested_svm_exit_handled(svm); } static inline int nested_svm_intr(struct vcpu_svm *svm) { if (!is_nested(svm)) return 0; if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) return 0; if (!(svm->vcpu.arch.hflags & HF_HIF_MASK)) return 0; svm->vmcb->control.exit_code = SVM_EXIT_INTR; if (svm->nested.intercept & 1ULL) { /* * The #vmexit can't be emulated here directly because this * code path runs with irqs and preemtion disabled. A * #vmexit emulation might sleep. Only signal request for * the #vmexit here. */ svm->nested.exit_required = true; trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); return 1; } return 0; } static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx) { struct page *page; page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT); if (is_error_page(page)) goto error; return kmap_atomic(page, idx); error: kvm_release_page_clean(page); kvm_inject_gp(&svm->vcpu, 0); return NULL; } static void nested_svm_unmap(void *addr, enum km_type idx) { struct page *page; if (!addr) return; page = kmap_atomic_to_page(addr); kunmap_atomic(addr, idx); kvm_release_page_dirty(page); } static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm) { u32 param = svm->vmcb->control.exit_info_1 & 1; u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX]; bool ret = false; u32 t0, t1; u8 *msrpm; if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) return false; msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0); if (!msrpm) goto out; switch (msr) { case 0 ... 0x1fff: t0 = (msr * 2) % 8; t1 = msr / 8; break; case 0xc0000000 ... 0xc0001fff: t0 = (8192 + msr - 0xc0000000) * 2; t1 = (t0 / 8); t0 %= 8; break; case 0xc0010000 ... 0xc0011fff: t0 = (16384 + msr - 0xc0010000) * 2; t1 = (t0 / 8); t0 %= 8; break; default: ret = true; goto out; } ret = msrpm[t1] & ((1 << param) << t0); out: nested_svm_unmap(msrpm, KM_USER0); return ret; } static int nested_svm_exit_special(struct vcpu_svm *svm) { u32 exit_code = svm->vmcb->control.exit_code; switch (exit_code) { case SVM_EXIT_INTR: case SVM_EXIT_NMI: return NESTED_EXIT_HOST; /* For now we are always handling NPFs when using them */ case SVM_EXIT_NPF: if (npt_enabled) return NESTED_EXIT_HOST; break; /* When we're shadowing, trap PFs */ case SVM_EXIT_EXCP_BASE + PF_VECTOR: if (!npt_enabled) return NESTED_EXIT_HOST; break; default: break; } return NESTED_EXIT_CONTINUE; } /* * If this function returns true, this #vmexit was already handled */ static int nested_svm_exit_handled(struct vcpu_svm *svm) { u32 exit_code = svm->vmcb->control.exit_code; int vmexit = NESTED_EXIT_HOST; switch (exit_code) { case SVM_EXIT_MSR: vmexit = nested_svm_exit_handled_msr(svm); break; case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: { u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0); if (svm->nested.intercept_cr_read & cr_bits) vmexit = NESTED_EXIT_DONE; break; } case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: { u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0); if (svm->nested.intercept_cr_write & cr_bits) vmexit = NESTED_EXIT_DONE; break; } case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: { u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0); if (svm->nested.intercept_dr_read & dr_bits) vmexit = NESTED_EXIT_DONE; break; } case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: { u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0); if (svm->nested.intercept_dr_write & dr_bits) vmexit = NESTED_EXIT_DONE; break; } case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); if (svm->nested.intercept_exceptions & excp_bits) vmexit = NESTED_EXIT_DONE; break; } default: { u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR); if (svm->nested.intercept & exit_bits) vmexit = NESTED_EXIT_DONE; } } if (vmexit == NESTED_EXIT_DONE) { nested_svm_vmexit(svm); } return vmexit; } static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb) { struct vmcb_control_area *dst = &dst_vmcb->control; struct vmcb_control_area *from = &from_vmcb->control; dst->intercept_cr_read = from->intercept_cr_read; dst->intercept_cr_write = from->intercept_cr_write; dst->intercept_dr_read = from->intercept_dr_read; dst->intercept_dr_write = from->intercept_dr_write; dst->intercept_exceptions = from->intercept_exceptions; dst->intercept = from->intercept; dst->iopm_base_pa = from->iopm_base_pa; dst->msrpm_base_pa = from->msrpm_base_pa; dst->tsc_offset = from->tsc_offset; dst->asid = from->asid; dst->tlb_ctl = from->tlb_ctl; dst->int_ctl = from->int_ctl; dst->int_vector = from->int_vector; dst->int_state = from->int_state; dst->exit_code = from->exit_code; dst->exit_code_hi = from->exit_code_hi; dst->exit_info_1 = from->exit_info_1; dst->exit_info_2 = from->exit_info_2; dst->exit_int_info = from->exit_int_info; dst->exit_int_info_err = from->exit_int_info_err; dst->nested_ctl = from->nested_ctl; dst->event_inj = from->event_inj; dst->event_inj_err = from->event_inj_err; dst->nested_cr3 = from->nested_cr3; dst->lbr_ctl = from->lbr_ctl; } static int nested_svm_vmexit(struct vcpu_svm *svm) { struct vmcb *nested_vmcb; struct vmcb *hsave = svm->nested.hsave; struct vmcb *vmcb = svm->vmcb; trace_kvm_nested_vmexit_inject(vmcb->control.exit_code, vmcb->control.exit_info_1, vmcb->control.exit_info_2, vmcb->control.exit_int_info, vmcb->control.exit_int_info_err); nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0); if (!nested_vmcb) return 1; /* Give the current vmcb to the guest */ disable_gif(svm); nested_vmcb->save.es = vmcb->save.es; nested_vmcb->save.cs = vmcb->save.cs; nested_vmcb->save.ss = vmcb->save.ss; nested_vmcb->save.ds = vmcb->save.ds; nested_vmcb->save.gdtr = vmcb->save.gdtr; nested_vmcb->save.idtr = vmcb->save.idtr; if (npt_enabled) nested_vmcb->save.cr3 = vmcb->save.cr3; nested_vmcb->save.cr2 = vmcb->save.cr2; nested_vmcb->save.rflags = vmcb->save.rflags; nested_vmcb->save.rip = vmcb->save.rip; nested_vmcb->save.rsp = vmcb->save.rsp; nested_vmcb->save.rax = vmcb->save.rax; nested_vmcb->save.dr7 = vmcb->save.dr7; nested_vmcb->save.dr6 = vmcb->save.dr6; nested_vmcb->save.cpl = vmcb->save.cpl; nested_vmcb->control.int_ctl = vmcb->control.int_ctl; nested_vmcb->control.int_vector = vmcb->control.int_vector; nested_vmcb->control.int_state = vmcb->control.int_state; nested_vmcb->control.exit_code = vmcb->control.exit_code; nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi; nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1; nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2; nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info; nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err; /* * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have * to make sure that we do not lose injected events. So check event_inj * here and copy it to exit_int_info if it is valid. * Exit_int_info and event_inj can't be both valid because the case * below only happens on a VMRUN instruction intercept which has * no valid exit_int_info set. */ if (vmcb->control.event_inj & SVM_EVTINJ_VALID) { struct vmcb_control_area *nc = &nested_vmcb->control; nc->exit_int_info = vmcb->control.event_inj; nc->exit_int_info_err = vmcb->control.event_inj_err; } nested_vmcb->control.tlb_ctl = 0; nested_vmcb->control.event_inj = 0; nested_vmcb->control.event_inj_err = 0; /* We always set V_INTR_MASKING and remember the old value in hflags */ if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK; /* Restore the original control entries */ copy_vmcb_control_area(vmcb, hsave); kvm_clear_exception_queue(&svm->vcpu); kvm_clear_interrupt_queue(&svm->vcpu); /* Restore selected save entries */ svm->vmcb->save.es = hsave->save.es; svm->vmcb->save.cs = hsave->save.cs; svm->vmcb->save.ss = hsave->save.ss; svm->vmcb->save.ds = hsave->save.ds; svm->vmcb->save.gdtr = hsave->save.gdtr; svm->vmcb->save.idtr = hsave->save.idtr; svm->vmcb->save.rflags = hsave->save.rflags; svm_set_efer(&svm->vcpu, hsave->save.efer); svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE); svm_set_cr4(&svm->vcpu, hsave->save.cr4); if (npt_enabled) { svm->vmcb->save.cr3 = hsave->save.cr3; svm->vcpu.arch.cr3 = hsave->save.cr3; } else { kvm_set_cr3(&svm->vcpu, hsave->save.cr3); } kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax); kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp); kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip); svm->vmcb->save.dr7 = 0; svm->vmcb->save.cpl = 0; svm->vmcb->control.exit_int_info = 0; /* Exit nested SVM mode */ svm->nested.vmcb = 0; nested_svm_unmap(nested_vmcb, KM_USER0); kvm_mmu_reset_context(&svm->vcpu); kvm_mmu_load(&svm->vcpu); return 0; } static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) { u32 *nested_msrpm; int i; nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0); if (!nested_msrpm) return false; for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++) svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i]; svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm); nested_svm_unmap(nested_msrpm, KM_USER0); return true; } static bool nested_svm_vmrun(struct vcpu_svm *svm) { struct vmcb *nested_vmcb; struct vmcb *hsave = svm->nested.hsave; struct vmcb *vmcb = svm->vmcb; nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0); if (!nested_vmcb) return false; /* nested_vmcb is our indicator if nested SVM is activated */ svm->nested.vmcb = svm->vmcb->save.rax; trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, svm->nested.vmcb, nested_vmcb->save.rip, nested_vmcb->control.int_ctl, nested_vmcb->control.event_inj, nested_vmcb->control.nested_ctl); /* Clear internal status */ kvm_clear_exception_queue(&svm->vcpu); kvm_clear_interrupt_queue(&svm->vcpu); /* Save the old vmcb, so we don't need to pick what we save, but can restore everything when a VMEXIT occurs */ hsave->save.es = vmcb->save.es; hsave->save.cs = vmcb->save.cs; hsave->save.ss = vmcb->save.ss; hsave->save.ds = vmcb->save.ds; hsave->save.gdtr = vmcb->save.gdtr; hsave->save.idtr = vmcb->save.idtr; hsave->save.efer = svm->vcpu.arch.shadow_efer; hsave->save.cr0 = kvm_read_cr0(&svm->vcpu); hsave->save.cr4 = svm->vcpu.arch.cr4; hsave->save.rflags = vmcb->save.rflags; hsave->save.rip = svm->next_rip; hsave->save.rsp = vmcb->save.rsp; hsave->save.rax = vmcb->save.rax; if (npt_enabled) hsave->save.cr3 = vmcb->save.cr3; else hsave->save.cr3 = svm->vcpu.arch.cr3; copy_vmcb_control_area(hsave, vmcb); if (svm->vmcb->save.rflags & X86_EFLAGS_IF) svm->vcpu.arch.hflags |= HF_HIF_MASK; else svm->vcpu.arch.hflags &= ~HF_HIF_MASK; /* Load the nested guest state */ svm->vmcb->save.es = nested_vmcb->save.es; svm->vmcb->save.cs = nested_vmcb->save.cs; svm->vmcb->save.ss = nested_vmcb->save.ss; svm->vmcb->save.ds = nested_vmcb->save.ds; svm->vmcb->save.gdtr = nested_vmcb->save.gdtr; svm->vmcb->save.idtr = nested_vmcb->save.idtr; svm->vmcb->save.rflags = nested_vmcb->save.rflags; svm_set_efer(&svm->vcpu, nested_vmcb->save.efer); svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0); svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4); if (npt_enabled) { svm->vmcb->save.cr3 = nested_vmcb->save.cr3; svm->vcpu.arch.cr3 = nested_vmcb->save.cr3; } else { kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3); kvm_mmu_reset_context(&svm->vcpu); } svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2; kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax); kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp); kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip); /* In case we don't even reach vcpu_run, the fields are not updated */ svm->vmcb->save.rax = nested_vmcb->save.rax; svm->vmcb->save.rsp = nested_vmcb->save.rsp; svm->vmcb->save.rip = nested_vmcb->save.rip; svm->vmcb->save.dr7 = nested_vmcb->save.dr7; svm->vmcb->save.dr6 = nested_vmcb->save.dr6; svm->vmcb->save.cpl = nested_vmcb->save.cpl; /* We don't want a nested guest to be more powerful than the guest, so all intercepts are ORed */ svm->vmcb->control.intercept_cr_read |= nested_vmcb->control.intercept_cr_read; svm->vmcb->control.intercept_cr_write |= nested_vmcb->control.intercept_cr_write; svm->vmcb->control.intercept_dr_read |= nested_vmcb->control.intercept_dr_read; svm->vmcb->control.intercept_dr_write |= nested_vmcb->control.intercept_dr_write; svm->vmcb->control.intercept_exceptions |= nested_vmcb->control.intercept_exceptions; svm->vmcb->control.intercept |= nested_vmcb->control.intercept; svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa; /* cache intercepts */ svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read; svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write; svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read; svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write; svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions; svm->nested.intercept = nested_vmcb->control.intercept; force_new_asid(&svm->vcpu); svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK; if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK) svm->vcpu.arch.hflags |= HF_VINTR_MASK; else svm->vcpu.arch.hflags &= ~HF_VINTR_MASK; svm->vmcb->control.int_vector = nested_vmcb->control.int_vector; svm->vmcb->control.int_state = nested_vmcb->control.int_state; svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset; svm->vmcb->control.event_inj = nested_vmcb->control.event_inj; svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err; nested_svm_unmap(nested_vmcb, KM_USER0); enable_gif(svm); return true; } static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb) { to_vmcb->save.fs = from_vmcb->save.fs; to_vmcb->save.gs = from_vmcb->save.gs; to_vmcb->save.tr = from_vmcb->save.tr; to_vmcb->save.ldtr = from_vmcb->save.ldtr; to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; to_vmcb->save.star = from_vmcb->save.star; to_vmcb->save.lstar = from_vmcb->save.lstar; to_vmcb->save.cstar = from_vmcb->save.cstar; to_vmcb->save.sfmask = from_vmcb->save.sfmask; to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; } static int vmload_interception(struct vcpu_svm *svm) { struct vmcb *nested_vmcb; if (nested_svm_check_permissions(svm)) return 1; svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; skip_emulated_instruction(&svm->vcpu); nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0); if (!nested_vmcb) return 1; nested_svm_vmloadsave(nested_vmcb, svm->vmcb); nested_svm_unmap(nested_vmcb, KM_USER0); return 1; } static int vmsave_interception(struct vcpu_svm *svm) { struct vmcb *nested_vmcb; if (nested_svm_check_permissions(svm)) return 1; svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; skip_emulated_instruction(&svm->vcpu); nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0); if (!nested_vmcb) return 1; nested_svm_vmloadsave(svm->vmcb, nested_vmcb); nested_svm_unmap(nested_vmcb, KM_USER0); return 1; } static int vmrun_interception(struct vcpu_svm *svm) { if (nested_svm_check_permissions(svm)) return 1; svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; skip_emulated_instruction(&svm->vcpu); if (!nested_svm_vmrun(svm)) return 1; if (!nested_svm_vmrun_msrpm(svm)) goto failed; return 1; failed: svm->vmcb->control.exit_code = SVM_EXIT_ERR; svm->vmcb->control.exit_code_hi = 0; svm->vmcb->control.exit_info_1 = 0; svm->vmcb->control.exit_info_2 = 0; nested_svm_vmexit(svm); return 1; } static int stgi_interception(struct vcpu_svm *svm) { if (nested_svm_check_permissions(svm)) return 1; svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; skip_emulated_instruction(&svm->vcpu); enable_gif(svm); return 1; } static int clgi_interception(struct vcpu_svm *svm) { if (nested_svm_check_permissions(svm)) return 1; svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; skip_emulated_instruction(&svm->vcpu); disable_gif(svm); /* After a CLGI no interrupts should come */ svm_clear_vintr(svm); svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; return 1; } static int invlpga_interception(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX], vcpu->arch.regs[VCPU_REGS_RAX]); /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]); svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; skip_emulated_instruction(&svm->vcpu); return 1; } static int skinit_interception(struct vcpu_svm *svm) { trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]); kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } static int invalid_op_interception(struct vcpu_svm *svm) { kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } static int task_switch_interception(struct vcpu_svm *svm) { u16 tss_selector; int reason; int int_type = svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; uint32_t type = svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; uint32_t idt_v = svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; tss_selector = (u16)svm->vmcb->control.exit_info_1; if (svm->vmcb->control.exit_info_2 & (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) reason = TASK_SWITCH_IRET; else if (svm->vmcb->control.exit_info_2 & (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) reason = TASK_SWITCH_JMP; else if (idt_v) reason = TASK_SWITCH_GATE; else reason = TASK_SWITCH_CALL; if (reason == TASK_SWITCH_GATE) { switch (type) { case SVM_EXITINTINFO_TYPE_NMI: svm->vcpu.arch.nmi_injected = false; break; case SVM_EXITINTINFO_TYPE_EXEPT: kvm_clear_exception_queue(&svm->vcpu); break; case SVM_EXITINTINFO_TYPE_INTR: kvm_clear_interrupt_queue(&svm->vcpu); break; default: break; } } if (reason != TASK_SWITCH_GATE || int_type == SVM_EXITINTINFO_TYPE_SOFT || (int_type == SVM_EXITINTINFO_TYPE_EXEPT && (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) skip_emulated_instruction(&svm->vcpu); return kvm_task_switch(&svm->vcpu, tss_selector, reason); } static int cpuid_interception(struct vcpu_svm *svm) { svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; kvm_emulate_cpuid(&svm->vcpu); return 1; } static int iret_interception(struct vcpu_svm *svm) { ++svm->vcpu.stat.nmi_window_exits; svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET); svm->vcpu.arch.hflags |= HF_IRET_MASK; return 1; } static int invlpg_interception(struct vcpu_svm *svm) { if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE) pr_unimpl(&svm->vcpu, "%s: failed\n", __func__); return 1; } static int emulate_on_interception(struct vcpu_svm *svm) { if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE) pr_unimpl(&svm->vcpu, "%s: failed\n", __func__); return 1; } static int cr8_write_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; u8 cr8_prev = kvm_get_cr8(&svm->vcpu); /* instruction emulation calls kvm_set_cr8() */ emulate_instruction(&svm->vcpu, 0, 0, 0); if (irqchip_in_kernel(svm->vcpu.kvm)) { svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK; return 1; } if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) return 1; kvm_run->exit_reason = KVM_EXIT_SET_TPR; return 0; } static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data) { struct vcpu_svm *svm = to_svm(vcpu); switch (ecx) { case MSR_IA32_TSC: { u64 tsc_offset; if (is_nested(svm)) tsc_offset = svm->nested.hsave->control.tsc_offset; else tsc_offset = svm->vmcb->control.tsc_offset; *data = tsc_offset + native_read_tsc(); break; } case MSR_K6_STAR: *data = svm->vmcb->save.star; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: *data = svm->vmcb->save.lstar; break; case MSR_CSTAR: *data = svm->vmcb->save.cstar; break; case MSR_KERNEL_GS_BASE: *data = svm->vmcb->save.kernel_gs_base; break; case MSR_SYSCALL_MASK: *data = svm->vmcb->save.sfmask; break; #endif case MSR_IA32_SYSENTER_CS: *data = svm->vmcb->save.sysenter_cs; break; case MSR_IA32_SYSENTER_EIP: *data = svm->sysenter_eip; break; case MSR_IA32_SYSENTER_ESP: *data = svm->sysenter_esp; break; /* Nobody will change the following 5 values in the VMCB so we can safely return them on rdmsr. They will always be 0 until LBRV is implemented. */ case MSR_IA32_DEBUGCTLMSR: *data = svm->vmcb->save.dbgctl; break; case MSR_IA32_LASTBRANCHFROMIP: *data = svm->vmcb->save.br_from; break; case MSR_IA32_LASTBRANCHTOIP: *data = svm->vmcb->save.br_to; break; case MSR_IA32_LASTINTFROMIP: *data = svm->vmcb->save.last_excp_from; break; case MSR_IA32_LASTINTTOIP: *data = svm->vmcb->save.last_excp_to; break; case MSR_VM_HSAVE_PA: *data = svm->nested.hsave_msr; break; case MSR_VM_CR: *data = 0; break; case MSR_IA32_UCODE_REV: *data = 0x01000065; break; default: return kvm_get_msr_common(vcpu, ecx, data); } return 0; } static int rdmsr_interception(struct vcpu_svm *svm) { u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; u64 data; if (svm_get_msr(&svm->vcpu, ecx, &data)) kvm_inject_gp(&svm->vcpu, 0); else { trace_kvm_msr_read(ecx, data); svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff; svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32; svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; skip_emulated_instruction(&svm->vcpu); } return 1; } static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data) { struct vcpu_svm *svm = to_svm(vcpu); switch (ecx) { case MSR_IA32_TSC: { u64 tsc_offset = data - native_read_tsc(); u64 g_tsc_offset = 0; if (is_nested(svm)) { g_tsc_offset = svm->vmcb->control.tsc_offset - svm->nested.hsave->control.tsc_offset; svm->nested.hsave->control.tsc_offset = tsc_offset; } svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset; break; } case MSR_K6_STAR: svm->vmcb->save.star = data; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: svm->vmcb->save.lstar = data; break; case MSR_CSTAR: svm->vmcb->save.cstar = data; break; case MSR_KERNEL_GS_BASE: svm->vmcb->save.kernel_gs_base = data; break; case MSR_SYSCALL_MASK: svm->vmcb->save.sfmask = data; break; #endif case MSR_IA32_SYSENTER_CS: svm->vmcb->save.sysenter_cs = data; break; case MSR_IA32_SYSENTER_EIP: svm->sysenter_eip = data; svm->vmcb->save.sysenter_eip = data; break; case MSR_IA32_SYSENTER_ESP: svm->sysenter_esp = data; svm->vmcb->save.sysenter_esp = data; break; case MSR_IA32_DEBUGCTLMSR: if (!svm_has(SVM_FEATURE_LBRV)) { pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", __func__, data); break; } if (data & DEBUGCTL_RESERVED_BITS) return 1; svm->vmcb->save.dbgctl = data; if (data & (1ULL<<0)) svm_enable_lbrv(svm); else svm_disable_lbrv(svm); break; case MSR_VM_HSAVE_PA: svm->nested.hsave_msr = data; break; case MSR_VM_CR: case MSR_VM_IGNNE: pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); break; default: return kvm_set_msr_common(vcpu, ecx, data); } return 0; } static int wrmsr_interception(struct vcpu_svm *svm) { u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u) | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32); trace_kvm_msr_write(ecx, data); svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; if (svm_set_msr(&svm->vcpu, ecx, data)) kvm_inject_gp(&svm->vcpu, 0); else skip_emulated_instruction(&svm->vcpu); return 1; } static int msr_interception(struct vcpu_svm *svm) { if (svm->vmcb->control.exit_info_1) return wrmsr_interception(svm); else return rdmsr_interception(svm); } static int interrupt_window_interception(struct vcpu_svm *svm) { struct kvm_run *kvm_run = svm->vcpu.run; svm_clear_vintr(svm); svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; /* * If the user space waits to inject interrupts, exit as soon as * possible */ if (!irqchip_in_kernel(svm->vcpu.kvm) && kvm_run->request_interrupt_window && !kvm_cpu_has_interrupt(&svm->vcpu)) { ++svm->vcpu.stat.irq_window_exits; kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; return 0; } return 1; } static int pause_interception(struct vcpu_svm *svm) { kvm_vcpu_on_spin(&(svm->vcpu)); return 1; } static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = { [SVM_EXIT_READ_CR0] = emulate_on_interception, [SVM_EXIT_READ_CR3] = emulate_on_interception, [SVM_EXIT_READ_CR4] = emulate_on_interception, [SVM_EXIT_READ_CR8] = emulate_on_interception, /* for now: */ [SVM_EXIT_WRITE_CR0] = emulate_on_interception, [SVM_EXIT_WRITE_CR3] = emulate_on_interception, [SVM_EXIT_WRITE_CR4] = emulate_on_interception, [SVM_EXIT_WRITE_CR8] = cr8_write_interception, [SVM_EXIT_READ_DR0] = emulate_on_interception, [SVM_EXIT_READ_DR1] = emulate_on_interception, [SVM_EXIT_READ_DR2] = emulate_on_interception, [SVM_EXIT_READ_DR3] = emulate_on_interception, [SVM_EXIT_WRITE_DR0] = emulate_on_interception, [SVM_EXIT_WRITE_DR1] = emulate_on_interception, [SVM_EXIT_WRITE_DR2] = emulate_on_interception, [SVM_EXIT_WRITE_DR3] = emulate_on_interception, [SVM_EXIT_WRITE_DR5] = emulate_on_interception, [SVM_EXIT_WRITE_DR7] = emulate_on_interception, [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception, [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, [SVM_EXIT_INTR] = intr_interception, [SVM_EXIT_NMI] = nmi_interception, [SVM_EXIT_SMI] = nop_on_interception, [SVM_EXIT_INIT] = nop_on_interception, [SVM_EXIT_VINTR] = interrupt_window_interception, /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */ [SVM_EXIT_CPUID] = cpuid_interception, [SVM_EXIT_IRET] = iret_interception, [SVM_EXIT_INVD] = emulate_on_interception, [SVM_EXIT_PAUSE] = pause_interception, [SVM_EXIT_HLT] = halt_interception, [SVM_EXIT_INVLPG] = invlpg_interception, [SVM_EXIT_INVLPGA] = invlpga_interception, [SVM_EXIT_IOIO] = io_interception, [SVM_EXIT_MSR] = msr_interception, [SVM_EXIT_TASK_SWITCH] = task_switch_interception, [SVM_EXIT_SHUTDOWN] = shutdown_interception, [SVM_EXIT_VMRUN] = vmrun_interception, [SVM_EXIT_VMMCALL] = vmmcall_interception, [SVM_EXIT_VMLOAD] = vmload_interception, [SVM_EXIT_VMSAVE] = vmsave_interception, [SVM_EXIT_STGI] = stgi_interception, [SVM_EXIT_CLGI] = clgi_interception, [SVM_EXIT_SKINIT] = skinit_interception, [SVM_EXIT_WBINVD] = emulate_on_interception, [SVM_EXIT_MONITOR] = invalid_op_interception, [SVM_EXIT_MWAIT] = invalid_op_interception, [SVM_EXIT_NPF] = pf_interception, }; static int handle_exit(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct kvm_run *kvm_run = vcpu->run; u32 exit_code = svm->vmcb->control.exit_code; trace_kvm_exit(exit_code, svm->vmcb->save.rip); if (unlikely(svm->nested.exit_required)) { nested_svm_vmexit(svm); svm->nested.exit_required = false; return 1; } if (is_nested(svm)) { int vmexit; trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code, svm->vmcb->control.exit_info_1, svm->vmcb->control.exit_info_2, svm->vmcb->control.exit_int_info, svm->vmcb->control.exit_int_info_err); vmexit = nested_svm_exit_special(svm); if (vmexit == NESTED_EXIT_CONTINUE) vmexit = nested_svm_exit_handled(svm); if (vmexit == NESTED_EXIT_DONE) return 1; } svm_complete_interrupts(svm); if (npt_enabled) { int mmu_reload = 0; if ((kvm_read_cr0_bits(vcpu, X86_CR0_PG) ^ svm->vmcb->save.cr0) & X86_CR0_PG) { svm_set_cr0(vcpu, svm->vmcb->save.cr0); mmu_reload = 1; } vcpu->arch.cr0 = svm->vmcb->save.cr0; vcpu->arch.cr3 = svm->vmcb->save.cr3; if (mmu_reload) { kvm_mmu_reset_context(vcpu); kvm_mmu_load(vcpu); } } if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; kvm_run->fail_entry.hardware_entry_failure_reason = svm->vmcb->control.exit_code; return 0; } if (is_external_interrupt(svm->vmcb->control.exit_int_info) && exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH) printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x " "exit_code 0x%x\n", __func__, svm->vmcb->control.exit_int_info, exit_code); if (exit_code >= ARRAY_SIZE(svm_exit_handlers) || !svm_exit_handlers[exit_code]) { kvm_run->exit_reason = KVM_EXIT_UNKNOWN; kvm_run->hw.hardware_exit_reason = exit_code; return 0; } return svm_exit_handlers[exit_code](svm); } static void reload_tss(struct kvm_vcpu *vcpu) { int cpu = raw_smp_processor_id(); struct svm_cpu_data *sd = per_cpu(svm_data, cpu); sd->tss_desc->type = 9; /* available 32/64-bit TSS */ load_TR_desc(); } static void pre_svm_run(struct vcpu_svm *svm) { int cpu = raw_smp_processor_id(); struct svm_cpu_data *sd = per_cpu(svm_data, cpu); svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; /* FIXME: handle wraparound of asid_generation */ if (svm->asid_generation != sd->asid_generation) new_asid(svm, sd); } static void svm_inject_nmi(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; vcpu->arch.hflags |= HF_NMI_MASK; svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET); ++vcpu->stat.nmi_injections; } static inline void svm_inject_irq(struct vcpu_svm *svm, int irq) { struct vmcb_control_area *control; trace_kvm_inj_virq(irq); ++svm->vcpu.stat.irq_injections; control = &svm->vmcb->control; control->int_vector = irq; control->int_ctl &= ~V_INTR_PRIO_MASK; control->int_ctl |= V_IRQ_MASK | ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); } static void svm_set_irq(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); BUG_ON(!(gif_set(svm))); svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; } static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) { struct vcpu_svm *svm = to_svm(vcpu); if (irr == -1) return; if (tpr >= irr) svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK; } static int svm_nmi_allowed(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb = svm->vmcb; return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) && !(svm->vcpu.arch.hflags & HF_NMI_MASK); } static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); } static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) { struct vcpu_svm *svm = to_svm(vcpu); if (masked) { svm->vcpu.arch.hflags |= HF_NMI_MASK; svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET); } else { svm->vcpu.arch.hflags &= ~HF_NMI_MASK; svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET); } } static int svm_interrupt_allowed(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb = svm->vmcb; int ret; if (!gif_set(svm) || (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)) return 0; ret = !!(vmcb->save.rflags & X86_EFLAGS_IF); if (is_nested(svm)) return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK); return ret; } static void enable_irq_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); nested_svm_intr(svm); /* In case GIF=0 we can't rely on the CPU to tell us when * GIF becomes 1, because that's a separate STGI/VMRUN intercept. * The next time we get that intercept, this function will be * called again though and we'll get the vintr intercept. */ if (gif_set(svm)) { svm_set_vintr(svm); svm_inject_irq(svm, 0x0); } } static void enable_nmi_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) return; /* IRET will cause a vm exit */ /* Something prevents NMI from been injected. Single step over possible problem (IRET or exception injection or interrupt shadow) */ svm->nmi_singlestep = true; svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); update_db_intercept(vcpu); } static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) { return 0; } static void svm_flush_tlb(struct kvm_vcpu *vcpu) { force_new_asid(vcpu); } static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) { } static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) { int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; kvm_set_cr8(vcpu, cr8); } } static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u64 cr8; cr8 = kvm_get_cr8(vcpu); svm->vmcb->control.int_ctl &= ~V_TPR_MASK; svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; } static void svm_complete_interrupts(struct vcpu_svm *svm) { u8 vector; int type; u32 exitintinfo = svm->vmcb->control.exit_int_info; if (svm->vcpu.arch.hflags & HF_IRET_MASK) svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); svm->vcpu.arch.nmi_injected = false; kvm_clear_exception_queue(&svm->vcpu); kvm_clear_interrupt_queue(&svm->vcpu); if (!(exitintinfo & SVM_EXITINTINFO_VALID)) return; vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; switch (type) { case SVM_EXITINTINFO_TYPE_NMI: svm->vcpu.arch.nmi_injected = true; break; case SVM_EXITINTINFO_TYPE_EXEPT: /* In case of software exception do not reinject an exception vector, but re-execute and instruction instead */ if (is_nested(svm)) break; if (kvm_exception_is_soft(vector)) break; if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { u32 err = svm->vmcb->control.exit_int_info_err; kvm_queue_exception_e(&svm->vcpu, vector, err); } else kvm_queue_exception(&svm->vcpu, vector); break; case SVM_EXITINTINFO_TYPE_INTR: kvm_queue_interrupt(&svm->vcpu, vector, false); break; default: break; } } #ifdef CONFIG_X86_64 #define R "r" #else #define R "e" #endif static void svm_vcpu_run(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u16 fs_selector; u16 gs_selector; u16 ldt_selector; /* * A vmexit emulation is required before the vcpu can be executed * again. */ if (unlikely(svm->nested.exit_required)) return; svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; pre_svm_run(svm); sync_lapic_to_cr8(vcpu); save_host_msrs(vcpu); fs_selector = kvm_read_fs(); gs_selector = kvm_read_gs(); ldt_selector = kvm_read_ldt(); svm->vmcb->save.cr2 = vcpu->arch.cr2; /* required for live migration with NPT */ if (npt_enabled) svm->vmcb->save.cr3 = vcpu->arch.cr3; clgi(); local_irq_enable(); asm volatile ( "push %%"R"bp; \n\t" "mov %c[rbx](%[svm]), %%"R"bx \n\t" "mov %c[rcx](%[svm]), %%"R"cx \n\t" "mov %c[rdx](%[svm]), %%"R"dx \n\t" "mov %c[rsi](%[svm]), %%"R"si \n\t" "mov %c[rdi](%[svm]), %%"R"di \n\t" "mov %c[rbp](%[svm]), %%"R"bp \n\t" #ifdef CONFIG_X86_64 "mov %c[r8](%[svm]), %%r8 \n\t" "mov %c[r9](%[svm]), %%r9 \n\t" "mov %c[r10](%[svm]), %%r10 \n\t" "mov %c[r11](%[svm]), %%r11 \n\t" "mov %c[r12](%[svm]), %%r12 \n\t" "mov %c[r13](%[svm]), %%r13 \n\t" "mov %c[r14](%[svm]), %%r14 \n\t" "mov %c[r15](%[svm]), %%r15 \n\t" #endif /* Enter guest mode */ "push %%"R"ax \n\t" "mov %c[vmcb](%[svm]), %%"R"ax \n\t" __ex(SVM_VMLOAD) "\n\t" __ex(SVM_VMRUN) "\n\t" __ex(SVM_VMSAVE) "\n\t" "pop %%"R"ax \n\t" /* Save guest registers, load host registers */ "mov %%"R"bx, %c[rbx](%[svm]) \n\t" "mov %%"R"cx, %c[rcx](%[svm]) \n\t" "mov %%"R"dx, %c[rdx](%[svm]) \n\t" "mov %%"R"si, %c[rsi](%[svm]) \n\t" "mov %%"R"di, %c[rdi](%[svm]) \n\t" "mov %%"R"bp, %c[rbp](%[svm]) \n\t" #ifdef CONFIG_X86_64 "mov %%r8, %c[r8](%[svm]) \n\t" "mov %%r9, %c[r9](%[svm]) \n\t" "mov %%r10, %c[r10](%[svm]) \n\t" "mov %%r11, %c[r11](%[svm]) \n\t" "mov %%r12, %c[r12](%[svm]) \n\t" "mov %%r13, %c[r13](%[svm]) \n\t" "mov %%r14, %c[r14](%[svm]) \n\t" "mov %%r15, %c[r15](%[svm]) \n\t" #endif "pop %%"R"bp" : : [svm]"a"(svm), [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])), [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])), [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])), [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])), [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])), [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP])) #ifdef CONFIG_X86_64 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])), [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])), [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])), [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])), [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])), [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])), [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])), [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15])) #endif : "cc", "memory" , R"bx", R"cx", R"dx", R"si", R"di" #ifdef CONFIG_X86_64 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15" #endif ); vcpu->arch.cr2 = svm->vmcb->save.cr2; vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; kvm_load_fs(fs_selector); kvm_load_gs(gs_selector); kvm_load_ldt(ldt_selector); load_host_msrs(vcpu); reload_tss(vcpu); local_irq_disable(); stgi(); sync_cr8_to_lapic(vcpu); svm->next_rip = 0; if (npt_enabled) { vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); } } #undef R static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) { struct vcpu_svm *svm = to_svm(vcpu); if (npt_enabled) { svm->vmcb->control.nested_cr3 = root; force_new_asid(vcpu); return; } svm->vmcb->save.cr3 = root; force_new_asid(vcpu); if (vcpu->fpu_active) { svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR); svm->vmcb->save.cr0 |= X86_CR0_TS; vcpu->fpu_active = 0; } } static int is_disabled(void) { u64 vm_cr; rdmsrl(MSR_VM_CR, vm_cr); if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) return 1; return 0; } static void svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) { /* * Patch in the VMMCALL instruction: */ hypercall[0] = 0x0f; hypercall[1] = 0x01; hypercall[2] = 0xd9; } static void svm_check_processor_compat(void *rtn) { *(int *)rtn = 0; } static bool svm_cpu_has_accelerated_tpr(void) { return false; } static int get_npt_level(void) { #ifdef CONFIG_X86_64 return PT64_ROOT_LEVEL; #else return PT32E_ROOT_LEVEL; #endif } static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) { return 0; } static void svm_cpuid_update(struct kvm_vcpu *vcpu) { } static const struct trace_print_flags svm_exit_reasons_str[] = { { SVM_EXIT_READ_CR0, "read_cr0" }, { SVM_EXIT_READ_CR3, "read_cr3" }, { SVM_EXIT_READ_CR4, "read_cr4" }, { SVM_EXIT_READ_CR8, "read_cr8" }, { SVM_EXIT_WRITE_CR0, "write_cr0" }, { SVM_EXIT_WRITE_CR3, "write_cr3" }, { SVM_EXIT_WRITE_CR4, "write_cr4" }, { SVM_EXIT_WRITE_CR8, "write_cr8" }, { SVM_EXIT_READ_DR0, "read_dr0" }, { SVM_EXIT_READ_DR1, "read_dr1" }, { SVM_EXIT_READ_DR2, "read_dr2" }, { SVM_EXIT_READ_DR3, "read_dr3" }, { SVM_EXIT_WRITE_DR0, "write_dr0" }, { SVM_EXIT_WRITE_DR1, "write_dr1" }, { SVM_EXIT_WRITE_DR2, "write_dr2" }, { SVM_EXIT_WRITE_DR3, "write_dr3" }, { SVM_EXIT_WRITE_DR5, "write_dr5" }, { SVM_EXIT_WRITE_DR7, "write_dr7" }, { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" }, { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" }, { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" }, { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" }, { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" }, { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" }, { SVM_EXIT_INTR, "interrupt" }, { SVM_EXIT_NMI, "nmi" }, { SVM_EXIT_SMI, "smi" }, { SVM_EXIT_INIT, "init" }, { SVM_EXIT_VINTR, "vintr" }, { SVM_EXIT_CPUID, "cpuid" }, { SVM_EXIT_INVD, "invd" }, { SVM_EXIT_HLT, "hlt" }, { SVM_EXIT_INVLPG, "invlpg" }, { SVM_EXIT_INVLPGA, "invlpga" }, { SVM_EXIT_IOIO, "io" }, { SVM_EXIT_MSR, "msr" }, { SVM_EXIT_TASK_SWITCH, "task_switch" }, { SVM_EXIT_SHUTDOWN, "shutdown" }, { SVM_EXIT_VMRUN, "vmrun" }, { SVM_EXIT_VMMCALL, "hypercall" }, { SVM_EXIT_VMLOAD, "vmload" }, { SVM_EXIT_VMSAVE, "vmsave" }, { SVM_EXIT_STGI, "stgi" }, { SVM_EXIT_CLGI, "clgi" }, { SVM_EXIT_SKINIT, "skinit" }, { SVM_EXIT_WBINVD, "wbinvd" }, { SVM_EXIT_MONITOR, "monitor" }, { SVM_EXIT_MWAIT, "mwait" }, { SVM_EXIT_NPF, "npf" }, { -1, NULL } }; static int svm_get_lpage_level(void) { return PT_PDPE_LEVEL; } static bool svm_rdtscp_supported(void) { return false; } static struct kvm_x86_ops svm_x86_ops = { .cpu_has_kvm_support = has_svm, .disabled_by_bios = is_disabled, .hardware_setup = svm_hardware_setup, .hardware_unsetup = svm_hardware_unsetup, .check_processor_compatibility = svm_check_processor_compat, .hardware_enable = svm_hardware_enable, .hardware_disable = svm_hardware_disable, .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, .vcpu_create = svm_create_vcpu, .vcpu_free = svm_free_vcpu, .vcpu_reset = svm_vcpu_reset, .prepare_guest_switch = svm_prepare_guest_switch, .vcpu_load = svm_vcpu_load, .vcpu_put = svm_vcpu_put, .set_guest_debug = svm_guest_debug, .get_msr = svm_get_msr, .set_msr = svm_set_msr, .get_segment_base = svm_get_segment_base, .get_segment = svm_get_segment, .set_segment = svm_set_segment, .get_cpl = svm_get_cpl, .get_cs_db_l_bits = kvm_get_cs_db_l_bits, .decache_cr4_guest_bits = svm_decache_cr4_guest_bits, .set_cr0 = svm_set_cr0, .set_cr3 = svm_set_cr3, .set_cr4 = svm_set_cr4, .set_efer = svm_set_efer, .get_idt = svm_get_idt, .set_idt = svm_set_idt, .get_gdt = svm_get_gdt, .set_gdt = svm_set_gdt, .get_dr = svm_get_dr, .set_dr = svm_set_dr, .cache_reg = svm_cache_reg, .get_rflags = svm_get_rflags, .set_rflags = svm_set_rflags, .tlb_flush = svm_flush_tlb, .run = svm_vcpu_run, .handle_exit = handle_exit, .skip_emulated_instruction = skip_emulated_instruction, .set_interrupt_shadow = svm_set_interrupt_shadow, .get_interrupt_shadow = svm_get_interrupt_shadow, .patch_hypercall = svm_patch_hypercall, .set_irq = svm_set_irq, .set_nmi = svm_inject_nmi, .queue_exception = svm_queue_exception, .interrupt_allowed = svm_interrupt_allowed, .nmi_allowed = svm_nmi_allowed, .get_nmi_mask = svm_get_nmi_mask, .set_nmi_mask = svm_set_nmi_mask, .enable_nmi_window = enable_nmi_window, .enable_irq_window = enable_irq_window, .update_cr8_intercept = update_cr8_intercept, .set_tss_addr = svm_set_tss_addr, .get_tdp_level = get_npt_level, .get_mt_mask = svm_get_mt_mask, .exit_reasons_str = svm_exit_reasons_str, .get_lpage_level = svm_get_lpage_level, .cpuid_update = svm_cpuid_update, .rdtscp_supported = svm_rdtscp_supported, }; static int __init svm_init(void) { return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm), THIS_MODULE); } static void __exit svm_exit(void) { kvm_exit(); } module_init(svm_init) module_exit(svm_exit)