/* * Copyright (C) 1995 Linus Torvalds * * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * * Memory region support * David Parsons <orc@pell.chi.il.us>, July-August 1999 * * Added E820 sanitization routine (removes overlapping memory regions); * Brian Moyle <bmoyle@mvista.com>, February 2001 * * Moved CPU detection code to cpu/${cpu}.c * Patrick Mochel <mochel@osdl.org>, March 2002 * * Provisions for empty E820 memory regions (reported by certain BIOSes). * Alex Achenbach <xela@slit.de>, December 2002. * */ /* * This file handles the architecture-dependent parts of initialization */ #include <linux/sched.h> #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/screen_info.h> #include <linux/ioport.h> #include <linux/acpi.h> #include <linux/apm_bios.h> #include <linux/initrd.h> #include <linux/bootmem.h> #include <linux/seq_file.h> #include <linux/console.h> #include <linux/mca.h> #include <linux/root_dev.h> #include <linux/highmem.h> #include <linux/module.h> #include <linux/efi.h> #include <linux/init.h> #include <linux/edd.h> #include <linux/iscsi_ibft.h> #include <linux/nodemask.h> #include <linux/kexec.h> #include <linux/crash_dump.h> #include <linux/dmi.h> #include <linux/pfn.h> #include <linux/pci.h> #include <linux/init_ohci1394_dma.h> #include <linux/kvm_para.h> #include <video/edid.h> #include <asm/mtrr.h> #include <asm/apic.h> #include <asm/e820.h> #include <asm/mpspec.h> #include <asm/mmzone.h> #include <asm/setup.h> #include <asm/arch_hooks.h> #include <asm/sections.h> #include <asm/io_apic.h> #include <asm/ist.h> #include <asm/io.h> #include <asm/vmi.h> #include <setup_arch.h> #include <asm/bios_ebda.h> #include <asm/cacheflush.h> #include <asm/processor.h> /* This value is set up by the early boot code to point to the value immediately after the boot time page tables. It contains a *physical* address, and must not be in the .bss segment! */ unsigned long init_pg_tables_end __initdata = ~0UL; /* * Machine setup.. */ static struct resource data_resource = { .name = "Kernel data", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource code_resource = { .name = "Kernel code", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource bss_resource = { .name = "Kernel bss", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource video_ram_resource = { .name = "Video RAM area", .start = 0xa0000, .end = 0xbffff, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource standard_io_resources[] = { { .name = "dma1", .start = 0x0000, .end = 0x001f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "pic1", .start = 0x0020, .end = 0x0021, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "timer0", .start = 0x0040, .end = 0x0043, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "timer1", .start = 0x0050, .end = 0x0053, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "keyboard", .start = 0x0060, .end = 0x0060, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "keyboard", .start = 0x0064, .end = 0x0064, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "dma page reg", .start = 0x0080, .end = 0x008f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "pic2", .start = 0x00a0, .end = 0x00a1, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "dma2", .start = 0x00c0, .end = 0x00df, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "fpu", .start = 0x00f0, .end = 0x00ff, .flags = IORESOURCE_BUSY | IORESOURCE_IO } }; /* cpu data as detected by the assembly code in head.S */ struct cpuinfo_x86 new_cpu_data __cpuinitdata = { 0, 0, 0, 0, -1, 1, 0, 0, -1 }; /* common cpu data for all cpus */ struct cpuinfo_x86 boot_cpu_data __read_mostly = { 0, 0, 0, 0, -1, 1, 0, 0, -1 }; EXPORT_SYMBOL(boot_cpu_data); unsigned int def_to_bigsmp; #ifndef CONFIG_X86_PAE unsigned long mmu_cr4_features; #else unsigned long mmu_cr4_features = X86_CR4_PAE; #endif /* for MCA, but anyone else can use it if they want */ unsigned int machine_id; unsigned int machine_submodel_id; unsigned int BIOS_revision; /* Boot loader ID as an integer, for the benefit of proc_dointvec */ int bootloader_type; /* user-defined highmem size */ static unsigned int highmem_pages = -1; /* * Setup options */ struct screen_info screen_info; EXPORT_SYMBOL(screen_info); struct apm_info apm_info; EXPORT_SYMBOL(apm_info); struct edid_info edid_info; EXPORT_SYMBOL_GPL(edid_info); struct ist_info ist_info; #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) EXPORT_SYMBOL(ist_info); #endif extern void early_cpu_init(void); extern int root_mountflags; unsigned long saved_video_mode; #define RAMDISK_IMAGE_START_MASK 0x07FF #define RAMDISK_PROMPT_FLAG 0x8000 #define RAMDISK_LOAD_FLAG 0x4000 static char __initdata command_line[COMMAND_LINE_SIZE]; #ifndef CONFIG_DEBUG_BOOT_PARAMS struct boot_params __initdata boot_params; #else struct boot_params boot_params; #endif #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) struct edd edd; #ifdef CONFIG_EDD_MODULE EXPORT_SYMBOL(edd); #endif /** * copy_edd() - Copy the BIOS EDD information * from boot_params into a safe place. * */ static inline void copy_edd(void) { memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, sizeof(edd.mbr_signature)); memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; edd.edd_info_nr = boot_params.eddbuf_entries; } #else static inline void copy_edd(void) { } #endif int __initdata user_defined_memmap; /* * "mem=nopentium" disables the 4MB page tables. * "mem=XXX[kKmM]" defines a memory region from HIGH_MEM * to <mem>, overriding the bios size. * "memmap=XXX[KkmM]@XXX[KkmM]" defines a memory region from * <start> to <start>+<mem>, overriding the bios size. * * HPA tells me bootloaders need to parse mem=, so no new * option should be mem= [also see Documentation/i386/boot.txt] */ static int __init parse_mem(char *arg) { if (!arg) return -EINVAL; if (strcmp(arg, "nopentium") == 0) { setup_clear_cpu_cap(X86_FEATURE_PSE); } else { /* If the user specifies memory size, we * limit the BIOS-provided memory map to * that size. exactmap can be used to specify * the exact map. mem=number can be used to * trim the existing memory map. */ unsigned long long mem_size; mem_size = memparse(arg, &arg); limit_regions(mem_size); user_defined_memmap = 1; } return 0; } early_param("mem", parse_mem); #ifdef CONFIG_PROC_VMCORE /* elfcorehdr= specifies the location of elf core header * stored by the crashed kernel. */ static int __init parse_elfcorehdr(char *arg) { if (!arg) return -EINVAL; elfcorehdr_addr = memparse(arg, &arg); return 0; } early_param("elfcorehdr", parse_elfcorehdr); #endif /* CONFIG_PROC_VMCORE */ /* * highmem=size forces highmem to be exactly 'size' bytes. * This works even on boxes that have no highmem otherwise. * This also works to reduce highmem size on bigger boxes. */ static int __init parse_highmem(char *arg) { if (!arg) return -EINVAL; highmem_pages = memparse(arg, &arg) >> PAGE_SHIFT; return 0; } early_param("highmem", parse_highmem); /* * vmalloc=size forces the vmalloc area to be exactly 'size' * bytes. This can be used to increase (or decrease) the * vmalloc area - the default is 128m. */ static int __init parse_vmalloc(char *arg) { if (!arg) return -EINVAL; __VMALLOC_RESERVE = memparse(arg, &arg); return 0; } early_param("vmalloc", parse_vmalloc); /* * reservetop=size reserves a hole at the top of the kernel address space which * a hypervisor can load into later. Needed for dynamically loaded hypervisors, * so relocating the fixmap can be done before paging initialization. */ static int __init parse_reservetop(char *arg) { unsigned long address; if (!arg) return -EINVAL; address = memparse(arg, &arg); reserve_top_address(address); return 0; } early_param("reservetop", parse_reservetop); /* * Determine low and high memory ranges: */ unsigned long __init find_max_low_pfn(void) { unsigned long max_low_pfn; max_low_pfn = max_pfn; if (max_low_pfn > MAXMEM_PFN) { if (highmem_pages == -1) highmem_pages = max_pfn - MAXMEM_PFN; if (highmem_pages + MAXMEM_PFN < max_pfn) max_pfn = MAXMEM_PFN + highmem_pages; if (highmem_pages + MAXMEM_PFN > max_pfn) { printk("only %luMB highmem pages available, ignoring highmem size of %uMB.\n", pages_to_mb(max_pfn - MAXMEM_PFN), pages_to_mb(highmem_pages)); highmem_pages = 0; } max_low_pfn = MAXMEM_PFN; #ifndef CONFIG_HIGHMEM /* Maximum memory usable is what is directly addressable */ printk(KERN_WARNING "Warning only %ldMB will be used.\n", MAXMEM>>20); if (max_pfn > MAX_NONPAE_PFN) printk(KERN_WARNING "Use a HIGHMEM64G enabled kernel.\n"); else printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); max_pfn = MAXMEM_PFN; #else /* !CONFIG_HIGHMEM */ #ifndef CONFIG_HIGHMEM64G if (max_pfn > MAX_NONPAE_PFN) { max_pfn = MAX_NONPAE_PFN; printk(KERN_WARNING "Warning only 4GB will be used.\n"); printk(KERN_WARNING "Use a HIGHMEM64G enabled kernel.\n"); } #endif /* !CONFIG_HIGHMEM64G */ #endif /* !CONFIG_HIGHMEM */ } else { if (highmem_pages == -1) highmem_pages = 0; #ifdef CONFIG_HIGHMEM if (highmem_pages >= max_pfn) { printk(KERN_ERR "highmem size specified (%uMB) is bigger than pages available (%luMB)!.\n", pages_to_mb(highmem_pages), pages_to_mb(max_pfn)); highmem_pages = 0; } if (highmem_pages) { if (max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){ printk(KERN_ERR "highmem size %uMB results in smaller than 64MB lowmem, ignoring it.\n", pages_to_mb(highmem_pages)); highmem_pages = 0; } max_low_pfn -= highmem_pages; } #else if (highmem_pages) printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n"); #endif } return max_low_pfn; } #define BIOS_LOWMEM_KILOBYTES 0x413 /* * The BIOS places the EBDA/XBDA at the top of conventional * memory, and usually decreases the reported amount of * conventional memory (int 0x12) too. This also contains a * workaround for Dell systems that neglect to reserve EBDA. * The same workaround also avoids a problem with the AMD768MPX * chipset: reserve a page before VGA to prevent PCI prefetch * into it (errata #56). Usually the page is reserved anyways, * unless you have no PS/2 mouse plugged in. */ static void __init reserve_ebda_region(void) { unsigned int lowmem, ebda_addr; /* To determine the position of the EBDA and the */ /* end of conventional memory, we need to look at */ /* the BIOS data area. In a paravirtual environment */ /* that area is absent. We'll just have to assume */ /* that the paravirt case can handle memory setup */ /* correctly, without our help. */ if (paravirt_enabled()) return; /* end of low (conventional) memory */ lowmem = *(unsigned short *)__va(BIOS_LOWMEM_KILOBYTES); lowmem <<= 10; /* start of EBDA area */ ebda_addr = get_bios_ebda(); /* Fixup: bios puts an EBDA in the top 64K segment */ /* of conventional memory, but does not adjust lowmem. */ if ((lowmem - ebda_addr) <= 0x10000) lowmem = ebda_addr; /* Fixup: bios does not report an EBDA at all. */ /* Some old Dells seem to need 4k anyhow (bugzilla 2990) */ if ((ebda_addr == 0) && (lowmem >= 0x9f000)) lowmem = 0x9f000; /* Paranoia: should never happen, but... */ if ((lowmem == 0) || (lowmem >= 0x100000)) lowmem = 0x9f000; /* reserve all memory between lowmem and the 1MB mark */ reserve_bootmem(lowmem, 0x100000 - lowmem, BOOTMEM_DEFAULT); } #ifndef CONFIG_NEED_MULTIPLE_NODES static void __init setup_bootmem_allocator(void); static unsigned long __init setup_memory(void) { /* * partially used pages are not usable - thus * we are rounding upwards: */ min_low_pfn = PFN_UP(init_pg_tables_end); max_low_pfn = find_max_low_pfn(); #ifdef CONFIG_HIGHMEM highstart_pfn = highend_pfn = max_pfn; if (max_pfn > max_low_pfn) { highstart_pfn = max_low_pfn; } printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", pages_to_mb(highend_pfn - highstart_pfn)); num_physpages = highend_pfn; high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; #else num_physpages = max_low_pfn; high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1; #endif #ifdef CONFIG_FLATMEM max_mapnr = num_physpages; #endif printk(KERN_NOTICE "%ldMB LOWMEM available.\n", pages_to_mb(max_low_pfn)); setup_bootmem_allocator(); return max_low_pfn; } static void __init zone_sizes_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); max_zone_pfns[ZONE_DMA] = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; max_zone_pfns[ZONE_NORMAL] = max_low_pfn; #ifdef CONFIG_HIGHMEM max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; add_active_range(0, 0, highend_pfn); #else add_active_range(0, 0, max_low_pfn); #endif free_area_init_nodes(max_zone_pfns); } #else extern unsigned long __init setup_memory(void); extern void zone_sizes_init(void); #endif /* !CONFIG_NEED_MULTIPLE_NODES */ static inline unsigned long long get_total_mem(void) { unsigned long long total; total = max_low_pfn - min_low_pfn; #ifdef CONFIG_HIGHMEM total += highend_pfn - highstart_pfn; #endif return total << PAGE_SHIFT; } #ifdef CONFIG_KEXEC static void __init reserve_crashkernel(void) { unsigned long long total_mem; unsigned long long crash_size, crash_base; int ret; total_mem = get_total_mem(); ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); if (ret == 0 && crash_size > 0) { if (crash_base > 0) { printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " "for crashkernel (System RAM: %ldMB)\n", (unsigned long)(crash_size >> 20), (unsigned long)(crash_base >> 20), (unsigned long)(total_mem >> 20)); crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; reserve_bootmem(crash_base, crash_size, BOOTMEM_DEFAULT); } else printk(KERN_INFO "crashkernel reservation failed - " "you have to specify a base address\n"); } } #else static inline void __init reserve_crashkernel(void) {} #endif #ifdef CONFIG_BLK_DEV_INITRD static bool do_relocate_initrd = false; static void __init reserve_initrd(void) { unsigned long ramdisk_image = boot_params.hdr.ramdisk_image; unsigned long ramdisk_size = boot_params.hdr.ramdisk_size; unsigned long ramdisk_end = ramdisk_image + ramdisk_size; unsigned long end_of_lowmem = max_low_pfn << PAGE_SHIFT; unsigned long ramdisk_here; initrd_start = 0; if (!boot_params.hdr.type_of_loader || !ramdisk_image || !ramdisk_size) return; /* No initrd provided by bootloader */ if (ramdisk_end < ramdisk_image) { printk(KERN_ERR "initrd wraps around end of memory, " "disabling initrd\n"); return; } if (ramdisk_size >= end_of_lowmem/2) { printk(KERN_ERR "initrd too large to handle, " "disabling initrd\n"); return; } if (ramdisk_end <= end_of_lowmem) { /* All in lowmem, easy case */ reserve_bootmem(ramdisk_image, ramdisk_size, BOOTMEM_DEFAULT); initrd_start = ramdisk_image + PAGE_OFFSET; initrd_end = initrd_start+ramdisk_size; return; } /* We need to move the initrd down into lowmem */ ramdisk_here = (end_of_lowmem - ramdisk_size) & PAGE_MASK; /* Note: this includes all the lowmem currently occupied by the initrd, we rely on that fact to keep the data intact. */ reserve_bootmem(ramdisk_here, ramdisk_size, BOOTMEM_DEFAULT); initrd_start = ramdisk_here + PAGE_OFFSET; initrd_end = initrd_start + ramdisk_size; do_relocate_initrd = true; } #define MAX_MAP_CHUNK (NR_FIX_BTMAPS << PAGE_SHIFT) static void __init relocate_initrd(void) { unsigned long ramdisk_image = boot_params.hdr.ramdisk_image; unsigned long ramdisk_size = boot_params.hdr.ramdisk_size; unsigned long end_of_lowmem = max_low_pfn << PAGE_SHIFT; unsigned long ramdisk_here; unsigned long slop, clen, mapaddr; char *p, *q; if (!do_relocate_initrd) return; ramdisk_here = initrd_start - PAGE_OFFSET; q = (char *)initrd_start; /* Copy any lowmem portion of the initrd */ if (ramdisk_image < end_of_lowmem) { clen = end_of_lowmem - ramdisk_image; p = (char *)__va(ramdisk_image); memcpy(q, p, clen); q += clen; ramdisk_image += clen; ramdisk_size -= clen; } /* Copy the highmem portion of the initrd */ while (ramdisk_size) { slop = ramdisk_image & ~PAGE_MASK; clen = ramdisk_size; if (clen > MAX_MAP_CHUNK-slop) clen = MAX_MAP_CHUNK-slop; mapaddr = ramdisk_image & PAGE_MASK; p = early_ioremap(mapaddr, clen+slop); memcpy(q, p+slop, clen); early_iounmap(p, clen+slop); q += clen; ramdisk_image += clen; ramdisk_size -= clen; } } #endif /* CONFIG_BLK_DEV_INITRD */ void __init setup_bootmem_allocator(void) { unsigned long bootmap_size; /* * Initialize the boot-time allocator (with low memory only): */ bootmap_size = init_bootmem(min_low_pfn, max_low_pfn); register_bootmem_low_pages(max_low_pfn); /* * Reserve the bootmem bitmap itself as well. We do this in two * steps (first step was init_bootmem()) because this catches * the (very unlikely) case of us accidentally initializing the * bootmem allocator with an invalid RAM area. */ reserve_bootmem(__pa_symbol(_text), (PFN_PHYS(min_low_pfn) + bootmap_size + PAGE_SIZE-1) - __pa_symbol(_text), BOOTMEM_DEFAULT); /* * reserve physical page 0 - it's a special BIOS page on many boxes, * enabling clean reboots, SMP operation, laptop functions. */ reserve_bootmem(0, PAGE_SIZE, BOOTMEM_DEFAULT); /* reserve EBDA region */ reserve_ebda_region(); #ifdef CONFIG_SMP /* * But first pinch a few for the stack/trampoline stuff * FIXME: Don't need the extra page at 4K, but need to fix * trampoline before removing it. (see the GDT stuff) */ reserve_bootmem(PAGE_SIZE, PAGE_SIZE, BOOTMEM_DEFAULT); #endif #ifdef CONFIG_ACPI_SLEEP /* * Reserve low memory region for sleep support. */ acpi_reserve_bootmem(); #endif #ifdef CONFIG_X86_FIND_SMP_CONFIG /* * Find and reserve possible boot-time SMP configuration: */ find_smp_config(); #endif #ifdef CONFIG_BLK_DEV_INITRD reserve_initrd(); #endif numa_kva_reserve(); reserve_crashkernel(); reserve_ibft_region(); } /* * The node 0 pgdat is initialized before all of these because * it's needed for bootmem. node>0 pgdats have their virtual * space allocated before the pagetables are in place to access * them, so they can't be cleared then. * * This should all compile down to nothing when NUMA is off. */ static void __init remapped_pgdat_init(void) { int nid; for_each_online_node(nid) { if (nid != 0) memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); } } #ifdef CONFIG_MCA static void set_mca_bus(int x) { MCA_bus = x; } #else static void set_mca_bus(int x) { } #endif /* Overridden in paravirt.c if CONFIG_PARAVIRT */ char * __init __attribute__((weak)) memory_setup(void) { return machine_specific_memory_setup(); } #ifdef CONFIG_NUMA /* * In the golden day, when everything among i386 and x86_64 will be * integrated, this will not live here */ void *x86_cpu_to_node_map_early_ptr; int x86_cpu_to_node_map_init[NR_CPUS] = { [0 ... NR_CPUS-1] = NUMA_NO_NODE }; DEFINE_PER_CPU(int, x86_cpu_to_node_map) = NUMA_NO_NODE; #endif /* * Determine if we were loaded by an EFI loader. If so, then we have also been * passed the efi memmap, systab, etc., so we should use these data structures * for initialization. Note, the efi init code path is determined by the * global efi_enabled. This allows the same kernel image to be used on existing * systems (with a traditional BIOS) as well as on EFI systems. */ void __init setup_arch(char **cmdline_p) { unsigned long max_low_pfn; memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); pre_setup_arch_hook(); early_cpu_init(); early_ioremap_init(); #ifdef CONFIG_EFI if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, "EL32", 4)) efi_enabled = 1; #endif ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); screen_info = boot_params.screen_info; edid_info = boot_params.edid_info; apm_info.bios = boot_params.apm_bios_info; ist_info = boot_params.ist_info; saved_video_mode = boot_params.hdr.vid_mode; if( boot_params.sys_desc_table.length != 0 ) { set_mca_bus(boot_params.sys_desc_table.table[3] & 0x2); machine_id = boot_params.sys_desc_table.table[0]; machine_submodel_id = boot_params.sys_desc_table.table[1]; BIOS_revision = boot_params.sys_desc_table.table[2]; } bootloader_type = boot_params.hdr.type_of_loader; #ifdef CONFIG_BLK_DEV_RAM rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0); #endif ARCH_SETUP printk(KERN_INFO "BIOS-provided physical RAM map:\n"); print_memory_map(memory_setup()); copy_edd(); if (!boot_params.hdr.root_flags) root_mountflags &= ~MS_RDONLY; init_mm.start_code = (unsigned long) _text; init_mm.end_code = (unsigned long) _etext; init_mm.end_data = (unsigned long) _edata; init_mm.brk = init_pg_tables_end + PAGE_OFFSET; code_resource.start = virt_to_phys(_text); code_resource.end = virt_to_phys(_etext)-1; data_resource.start = virt_to_phys(_etext); data_resource.end = virt_to_phys(_edata)-1; bss_resource.start = virt_to_phys(&__bss_start); bss_resource.end = virt_to_phys(&__bss_stop)-1; parse_early_param(); if (user_defined_memmap) { printk(KERN_INFO "user-defined physical RAM map:\n"); print_memory_map("user"); } strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); *cmdline_p = command_line; if (efi_enabled) efi_init(); /* update e820 for memory not covered by WB MTRRs */ propagate_e820_map(); mtrr_bp_init(); if (mtrr_trim_uncached_memory(max_pfn)) propagate_e820_map(); max_low_pfn = setup_memory(); #ifdef CONFIG_KVM_CLOCK kvmclock_init(); #endif #ifdef CONFIG_VMI /* * Must be after max_low_pfn is determined, and before kernel * pagetables are setup. */ vmi_init(); #endif kvm_guest_init(); /* * NOTE: before this point _nobody_ is allowed to allocate * any memory using the bootmem allocator. Although the * allocator is now initialised only the first 8Mb of the kernel * virtual address space has been mapped. All allocations before * paging_init() has completed must use the alloc_bootmem_low_pages() * variant (which allocates DMA'able memory) and care must be taken * not to exceed the 8Mb limit. */ #ifdef CONFIG_SMP smp_alloc_memory(); /* AP processor realmode stacks in low memory*/ #endif paging_init(); /* * NOTE: On x86-32, only from this point on, fixmaps are ready for use. */ #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT if (init_ohci1394_dma_early) init_ohci1394_dma_on_all_controllers(); #endif remapped_pgdat_init(); sparse_init(); zone_sizes_init(); /* * NOTE: at this point the bootmem allocator is fully available. */ #ifdef CONFIG_BLK_DEV_INITRD relocate_initrd(); #endif paravirt_post_allocator_init(); dmi_scan_machine(); io_delay_init(); #ifdef CONFIG_X86_SMP /* * setup to use the early static init tables during kernel startup * X86_SMP will exclude sub-arches that don't deal well with it. */ x86_cpu_to_apicid_early_ptr = (void *)x86_cpu_to_apicid_init; x86_bios_cpu_apicid_early_ptr = (void *)x86_bios_cpu_apicid_init; #ifdef CONFIG_NUMA x86_cpu_to_node_map_early_ptr = (void *)x86_cpu_to_node_map_init; #endif #endif #ifdef CONFIG_X86_GENERICARCH generic_apic_probe(); #endif #ifdef CONFIG_ACPI /* * Parse the ACPI tables for possible boot-time SMP configuration. */ acpi_boot_table_init(); #endif early_quirks(); #ifdef CONFIG_ACPI acpi_boot_init(); #if defined(CONFIG_SMP) && defined(CONFIG_X86_PC) if (def_to_bigsmp) printk(KERN_WARNING "More than 8 CPUs detected and " "CONFIG_X86_PC cannot handle it.\nUse " "CONFIG_X86_GENERICARCH or CONFIG_X86_BIGSMP.\n"); #endif #endif #ifdef CONFIG_X86_LOCAL_APIC if (smp_found_config) get_smp_config(); #endif e820_register_memory(); e820_mark_nosave_regions(); #ifdef CONFIG_VT #if defined(CONFIG_VGA_CONSOLE) if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif } /* * Request address space for all standard resources * * This is called just before pcibios_init(), which is also a * subsys_initcall, but is linked in later (in arch/i386/pci/common.c). */ static int __init request_standard_resources(void) { int i; printk(KERN_INFO "Setting up standard PCI resources\n"); init_iomem_resources(&code_resource, &data_resource, &bss_resource); request_resource(&iomem_resource, &video_ram_resource); /* request I/O space for devices used on all i[345]86 PCs */ for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) request_resource(&ioport_resource, &standard_io_resources[i]); return 0; } subsys_initcall(request_standard_resources);