/* * X86-64 specific CPU setup. * Copyright (C) 1995 Linus Torvalds * Copyright 2001, 2002, 2003 SuSE Labs / Andi Kleen. * See setup.c for older changelog. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_DEBUG_BOOT_PARAMS struct boot_params __initdata boot_params; #else struct boot_params boot_params; #endif cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE; struct x8664_pda **_cpu_pda __read_mostly; EXPORT_SYMBOL(_cpu_pda); struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table }; char boot_cpu_stack[IRQSTACKSIZE] __attribute__((section(".bss.page_aligned"))); unsigned long __supported_pte_mask __read_mostly = ~0UL; EXPORT_SYMBOL_GPL(__supported_pte_mask); static int do_not_nx __cpuinitdata = 0; /* noexec=on|off Control non executable mappings for 64bit processes. on Enable(default) off Disable */ static int __init nonx_setup(char *str) { if (!str) return -EINVAL; if (!strncmp(str, "on", 2)) { __supported_pte_mask |= _PAGE_NX; do_not_nx = 0; } else if (!strncmp(str, "off", 3)) { do_not_nx = 1; __supported_pte_mask &= ~_PAGE_NX; } return 0; } early_param("noexec", nonx_setup); int force_personality32 = 0; /* noexec32=on|off Control non executable heap for 32bit processes. To control the stack too use noexec=off on PROT_READ does not imply PROT_EXEC for 32bit processes (default) off PROT_READ implies PROT_EXEC */ static int __init nonx32_setup(char *str) { if (!strcmp(str, "on")) force_personality32 &= ~READ_IMPLIES_EXEC; else if (!strcmp(str, "off")) force_personality32 |= READ_IMPLIES_EXEC; return 1; } __setup("noexec32=", nonx32_setup); void pda_init(int cpu) { struct x8664_pda *pda = cpu_pda(cpu); /* Setup up data that may be needed in __get_free_pages early */ asm volatile("movl %0,%%fs ; movl %0,%%gs" :: "r" (0)); /* Memory clobbers used to order PDA accessed */ mb(); wrmsrl(MSR_GS_BASE, pda); mb(); pda->cpunumber = cpu; pda->irqcount = -1; pda->kernelstack = (unsigned long)stack_thread_info() - PDA_STACKOFFSET + THREAD_SIZE; pda->active_mm = &init_mm; pda->mmu_state = 0; if (cpu == 0) { /* others are initialized in smpboot.c */ pda->pcurrent = &init_task; pda->irqstackptr = boot_cpu_stack; } else { pda->irqstackptr = (char *) __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER); if (!pda->irqstackptr) panic("cannot allocate irqstack for cpu %d", cpu); if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE) pda->nodenumber = cpu_to_node(cpu); } pda->irqstackptr += IRQSTACKSIZE-64; } char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ] __attribute__((section(".bss.page_aligned"))); extern asmlinkage void ignore_sysret(void); /* May not be marked __init: used by software suspend */ void syscall_init(void) { /* * LSTAR and STAR live in a bit strange symbiosis. * They both write to the same internal register. STAR allows to set CS/DS * but only a 32bit target. LSTAR sets the 64bit rip. */ wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32); wrmsrl(MSR_LSTAR, system_call); wrmsrl(MSR_CSTAR, ignore_sysret); #ifdef CONFIG_IA32_EMULATION syscall32_cpu_init (); #endif /* Flags to clear on syscall */ wrmsrl(MSR_SYSCALL_MASK, X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL); } void __cpuinit check_efer(void) { unsigned long efer; rdmsrl(MSR_EFER, efer); if (!(efer & EFER_NX) || do_not_nx) { __supported_pte_mask &= ~_PAGE_NX; } } unsigned long kernel_eflags; /* * Copies of the original ist values from the tss are only accessed during * debugging, no special alignment required. */ DEFINE_PER_CPU(struct orig_ist, orig_ist); /* * cpu_init() initializes state that is per-CPU. Some data is already * initialized (naturally) in the bootstrap process, such as the GDT * and IDT. We reload them nevertheless, this function acts as a * 'CPU state barrier', nothing should get across. * A lot of state is already set up in PDA init. */ void __cpuinit cpu_init (void) { int cpu = stack_smp_processor_id(); struct tss_struct *t = &per_cpu(init_tss, cpu); struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu); unsigned long v; char *estacks = NULL; struct task_struct *me; int i; /* CPU 0 is initialised in head64.c */ if (cpu != 0) { pda_init(cpu); } else estacks = boot_exception_stacks; me = current; if (cpu_test_and_set(cpu, cpu_initialized)) panic("CPU#%d already initialized!\n", cpu); printk("Initializing CPU#%d\n", cpu); clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); /* * Initialize the per-CPU GDT with the boot GDT, * and set up the GDT descriptor: */ if (cpu) memcpy(get_cpu_gdt_table(cpu), cpu_gdt_table, GDT_SIZE); cpu_gdt_descr[cpu].size = GDT_SIZE; load_gdt((const struct desc_ptr *)&cpu_gdt_descr[cpu]); load_idt((const struct desc_ptr *)&idt_descr); memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); syscall_init(); wrmsrl(MSR_FS_BASE, 0); wrmsrl(MSR_KERNEL_GS_BASE, 0); barrier(); check_efer(); /* * set up and load the per-CPU TSS */ for (v = 0; v < N_EXCEPTION_STACKS; v++) { static const unsigned int order[N_EXCEPTION_STACKS] = { [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER, [DEBUG_STACK - 1] = DEBUG_STACK_ORDER }; if (cpu) { estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]); if (!estacks) panic("Cannot allocate exception stack %ld %d\n", v, cpu); } estacks += PAGE_SIZE << order[v]; orig_ist->ist[v] = t->x86_tss.ist[v] = (unsigned long)estacks; } t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); /* * <= is required because the CPU will access up to * 8 bits beyond the end of the IO permission bitmap. */ for (i = 0; i <= IO_BITMAP_LONGS; i++) t->io_bitmap[i] = ~0UL; atomic_inc(&init_mm.mm_count); me->active_mm = &init_mm; if (me->mm) BUG(); enter_lazy_tlb(&init_mm, me); set_tss_desc(cpu, t); load_TR_desc(); load_LDT(&init_mm.context); #ifdef CONFIG_KGDB /* * If the kgdb is connected no debug regs should be altered. This * is only applicable when KGDB and a KGDB I/O module are built * into the kernel and you are using early debugging with * kgdbwait. KGDB will control the kernel HW breakpoint registers. */ if (kgdb_connected && arch_kgdb_ops.correct_hw_break) arch_kgdb_ops.correct_hw_break(); else { #endif /* * Clear all 6 debug registers: */ set_debugreg(0UL, 0); set_debugreg(0UL, 1); set_debugreg(0UL, 2); set_debugreg(0UL, 3); set_debugreg(0UL, 6); set_debugreg(0UL, 7); #ifdef CONFIG_KGDB /* If the kgdb is connected no debug regs should be altered. */ } #endif fpu_init(); raw_local_save_flags(kernel_eflags); if (is_uv_system()) uv_cpu_init(); }