/* Fallback functions when the main IOMMU code is not compiled in. This code is roughly equivalent to i386. */ #include #include #include #include #include #include #include #include #include static int check_addr(char *name, struct device *hwdev, dma_addr_t bus, size_t size) { if (hwdev && bus + size > *hwdev->dma_mask) { if (*hwdev->dma_mask >= DMA_32BIT_MASK) printk(KERN_ERR "nommu_%s: overflow %Lx+%zu of device mask %Lx\n", name, (long long)bus, size, (long long)*hwdev->dma_mask); return 0; } return 1; } static dma_addr_t nommu_map_single(struct device *hwdev, phys_addr_t paddr, size_t size, int direction) { dma_addr_t bus = paddr; WARN_ON(size == 0); if (!check_addr("map_single", hwdev, bus, size)) return bad_dma_address; flush_write_buffers(); return bus; } /* Map a set of buffers described by scatterlist in streaming * mode for DMA. This is the scatter-gather version of the * above pci_map_single interface. Here the scatter gather list * elements are each tagged with the appropriate dma address * and length. They are obtained via sg_dma_{address,length}(SG). * * NOTE: An implementation may be able to use a smaller number of * DMA address/length pairs than there are SG table elements. * (for example via virtual mapping capabilities) * The routine returns the number of addr/length pairs actually * used, at most nents. * * Device ownership issues as mentioned above for pci_map_single are * the same here. */ static int nommu_map_sg(struct device *hwdev, struct scatterlist *sg, int nents, int direction) { struct scatterlist *s; int i; WARN_ON(nents == 0 || sg[0].length == 0); for_each_sg(sg, s, nents, i) { BUG_ON(!sg_page(s)); s->dma_address = sg_phys(s); if (!check_addr("map_sg", hwdev, s->dma_address, s->length)) return 0; s->dma_length = s->length; } flush_write_buffers(); return nents; } static void * nommu_alloc_coherent(struct device *hwdev, size_t size, dma_addr_t *dma_addr, gfp_t gfp) { unsigned long dma_mask; int node; struct page *page; gfp &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); gfp |= __GFP_ZERO; dma_mask = hwdev->coherent_dma_mask; if (!dma_mask) dma_mask = *(hwdev->dma_mask); if (dma_mask < DMA_24BIT_MASK) return NULL; node = dev_to_node(hwdev); #ifdef CONFIG_X86_64 if (dma_mask <= DMA_32BIT_MASK) gfp |= GFP_DMA32; #endif /* No alloc-free penalty for ISA devices */ if (dma_mask == DMA_24BIT_MASK) gfp |= GFP_DMA; again: page = alloc_pages_node(node, gfp, get_order(size)); if (!page) return NULL; if ((page_to_phys(page) + size > dma_mask) && !(gfp & GFP_DMA)) { free_pages((unsigned long)page_address(page), get_order(size)); gfp |= GFP_DMA; goto again; } *dma_addr = page_to_phys(page); if (check_addr("alloc_coherent", hwdev, *dma_addr, size)) { flush_write_buffers(); return page_address(page); } free_pages((unsigned long)page_address(page), get_order(size)); return NULL; } static void nommu_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_addr) { free_pages((unsigned long)vaddr, get_order(size)); } struct dma_mapping_ops nommu_dma_ops = { .alloc_coherent = nommu_alloc_coherent, .free_coherent = nommu_free_coherent, .map_single = nommu_map_single, .map_sg = nommu_map_sg, .is_phys = 1, }; void __init no_iommu_init(void) { if (dma_ops) return; force_iommu = 0; /* no HW IOMMU */ dma_ops = &nommu_dma_ops; }