/* KVM paravirtual clock driver. A clocksource implementation Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include <linux/clocksource.h> #include <linux/kvm_para.h> #include <asm/pvclock.h> #include <asm/arch_hooks.h> #include <asm/msr.h> #include <asm/apic.h> #include <linux/percpu.h> #include <asm/reboot.h> #define KVM_SCALE 22 static int kvmclock = 1; static int parse_no_kvmclock(char *arg) { kvmclock = 0; return 0; } early_param("no-kvmclock", parse_no_kvmclock); /* The hypervisor will put information about time periodically here */ static DEFINE_PER_CPU_SHARED_ALIGNED(struct pvclock_vcpu_time_info, hv_clock); static struct pvclock_wall_clock wall_clock; /* * The wallclock is the time of day when we booted. Since then, some time may * have elapsed since the hypervisor wrote the data. So we try to account for * that with system time */ static unsigned long kvm_get_wallclock(void) { struct pvclock_vcpu_time_info *vcpu_time; struct timespec ts; int low, high; low = (int)__pa(&wall_clock); high = ((u64)__pa(&wall_clock) >> 32); native_write_msr(MSR_KVM_WALL_CLOCK, low, high); vcpu_time = &get_cpu_var(hv_clock); pvclock_read_wallclock(&wall_clock, vcpu_time, &ts); put_cpu_var(hv_clock); return ts.tv_sec; } static int kvm_set_wallclock(unsigned long now) { return -1; } static cycle_t kvm_clock_read(void) { struct pvclock_vcpu_time_info *src; cycle_t ret; src = &get_cpu_var(hv_clock); ret = pvclock_clocksource_read(src); put_cpu_var(hv_clock); return ret; } /* * If we don't do that, there is the possibility that the guest * will calibrate under heavy load - thus, getting a lower lpj - * and execute the delays themselves without load. This is wrong, * because no delay loop can finish beforehand. * Any heuristics is subject to fail, because ultimately, a large * poll of guests can be running and trouble each other. So we preset * lpj here */ static unsigned long kvm_get_tsc_khz(void) { return preset_lpj; } static void kvm_get_preset_lpj(void) { struct pvclock_vcpu_time_info *src; unsigned long khz; u64 lpj; src = &per_cpu(hv_clock, 0); khz = pvclock_tsc_khz(src); lpj = ((u64)khz * 1000); do_div(lpj, HZ); preset_lpj = lpj; } static struct clocksource kvm_clock = { .name = "kvm-clock", .read = kvm_clock_read, .rating = 400, .mask = CLOCKSOURCE_MASK(64), .mult = 1 << KVM_SCALE, .shift = KVM_SCALE, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int kvm_register_clock(char *txt) { int cpu = smp_processor_id(); int low, high; low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1; high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32); printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n", cpu, high, low, txt); return native_write_msr_safe(MSR_KVM_SYSTEM_TIME, low, high); } #ifdef CONFIG_X86_LOCAL_APIC static void __devinit kvm_setup_secondary_clock(void) { /* * Now that the first cpu already had this clocksource initialized, * we shouldn't fail. */ WARN_ON(kvm_register_clock("secondary cpu clock")); /* ok, done with our trickery, call native */ setup_secondary_APIC_clock(); } #endif #ifdef CONFIG_SMP static void __init kvm_smp_prepare_boot_cpu(void) { WARN_ON(kvm_register_clock("primary cpu clock")); native_smp_prepare_boot_cpu(); } #endif /* * After the clock is registered, the host will keep writing to the * registered memory location. If the guest happens to shutdown, this memory * won't be valid. In cases like kexec, in which you install a new kernel, this * means a random memory location will be kept being written. So before any * kind of shutdown from our side, we unregister the clock by writting anything * that does not have the 'enable' bit set in the msr */ #ifdef CONFIG_KEXEC static void kvm_crash_shutdown(struct pt_regs *regs) { native_write_msr_safe(MSR_KVM_SYSTEM_TIME, 0, 0); native_machine_crash_shutdown(regs); } #endif static void kvm_shutdown(void) { native_write_msr_safe(MSR_KVM_SYSTEM_TIME, 0, 0); native_machine_shutdown(); } void __init kvmclock_init(void) { if (!kvm_para_available()) return; if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) { if (kvm_register_clock("boot clock")) return; pv_time_ops.get_wallclock = kvm_get_wallclock; pv_time_ops.set_wallclock = kvm_set_wallclock; pv_time_ops.sched_clock = kvm_clock_read; pv_time_ops.get_tsc_khz = kvm_get_tsc_khz; #ifdef CONFIG_X86_LOCAL_APIC pv_apic_ops.setup_secondary_clock = kvm_setup_secondary_clock; #endif #ifdef CONFIG_SMP smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu; #endif machine_ops.shutdown = kvm_shutdown; #ifdef CONFIG_KEXEC machine_ops.crash_shutdown = kvm_crash_shutdown; #endif kvm_get_preset_lpj(); clocksource_register(&kvm_clock); } }