/* * Routines to indentify additional cpu features that are scattered in * cpuid space. */ #include #include #include #include struct cpuid_bit { u16 feature; u8 reg; u8 bit; u32 level; }; enum cpuid_regs { CR_EAX = 0, CR_ECX, CR_EDX, CR_EBX }; void __cpuinit init_scattered_cpuid_features(struct cpuinfo_x86 *c) { u32 max_level; u32 regs[4]; const struct cpuid_bit *cb; static const struct cpuid_bit cpuid_bits[] = { { X86_FEATURE_IDA, CR_EAX, 1, 0x00000006 }, { 0, 0, 0, 0 } }; for (cb = cpuid_bits; cb->feature; cb++) { /* Verify that the level is valid */ max_level = cpuid_eax(cb->level & 0xffff0000); if (max_level < cb->level || max_level > (cb->level | 0xffff)) continue; cpuid(cb->level, ®s[CR_EAX], ®s[CR_EBX], ®s[CR_ECX], ®s[CR_EDX]); if (regs[cb->reg] & (1 << cb->bit)) set_cpu_cap(c, cb->feature); } } /* leaf 0xb SMT level */ #define SMT_LEVEL 0 /* leaf 0xb sub-leaf types */ #define INVALID_TYPE 0 #define SMT_TYPE 1 #define CORE_TYPE 2 #define LEAFB_SUBTYPE(ecx) (((ecx) >> 8) & 0xff) #define BITS_SHIFT_NEXT_LEVEL(eax) ((eax) & 0x1f) #define LEVEL_MAX_SIBLINGS(ebx) ((ebx) & 0xffff) /* * Check for extended topology enumeration cpuid leaf 0xb and if it * exists, use it for populating initial_apicid and cpu topology * detection. */ void __cpuinit detect_extended_topology(struct cpuinfo_x86 *c) { unsigned int eax, ebx, ecx, edx, sub_index; unsigned int ht_mask_width, core_plus_mask_width; unsigned int core_select_mask, core_level_siblings; if (c->cpuid_level < 0xb) return; cpuid_count(0xb, SMT_LEVEL, &eax, &ebx, &ecx, &edx); /* * check if the cpuid leaf 0xb is actually implemented. */ if (ebx == 0 || (LEAFB_SUBTYPE(ecx) != SMT_TYPE)) return; set_cpu_cap(c, X86_FEATURE_XTOPOLOGY); /* * initial apic id, which also represents 32-bit extended x2apic id. */ c->initial_apicid = edx; /* * Populate HT related information from sub-leaf level 0. */ core_level_siblings = smp_num_siblings = LEVEL_MAX_SIBLINGS(ebx); core_plus_mask_width = ht_mask_width = BITS_SHIFT_NEXT_LEVEL(eax); sub_index = 1; do { cpuid_count(0xb, sub_index, &eax, &ebx, &ecx, &edx); /* * Check for the Core type in the implemented sub leaves. */ if (LEAFB_SUBTYPE(ecx) == CORE_TYPE) { core_level_siblings = LEVEL_MAX_SIBLINGS(ebx); core_plus_mask_width = BITS_SHIFT_NEXT_LEVEL(eax); break; } sub_index++; } while (LEAFB_SUBTYPE(ecx) != INVALID_TYPE); core_select_mask = (~(-1 << core_plus_mask_width)) >> ht_mask_width; #ifdef CONFIG_X86_32 c->cpu_core_id = phys_pkg_id(c->initial_apicid, ht_mask_width) & core_select_mask; c->phys_proc_id = phys_pkg_id(c->initial_apicid, core_plus_mask_width); #else c->cpu_core_id = phys_pkg_id(ht_mask_width) & core_select_mask; c->phys_proc_id = phys_pkg_id(core_plus_mask_width); #endif c->x86_max_cores = (core_level_siblings / smp_num_siblings); printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id); if (c->x86_max_cores > 1) printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id); return; } #ifdef CONFIG_X86_PAT void __cpuinit validate_pat_support(struct cpuinfo_x86 *c) { if (!cpu_has_pat) pat_disable("PAT not supported by CPU."); switch (c->x86_vendor) { case X86_VENDOR_INTEL: if (c->x86 == 0xF || (c->x86 == 6 && c->x86_model >= 15)) return; break; case X86_VENDOR_AMD: case X86_VENDOR_CENTAUR: case X86_VENDOR_TRANSMETA: return; } pat_disable("PAT disabled. Not yet verified on this CPU type."); } #endif