/* * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com) * Copyright 2003 PathScale, Inc. * Licensed under the GPL */ #include "linux/config.h" #include "linux/kernel.h" #include "linux/sched.h" #include "linux/interrupt.h" #include "linux/string.h" #include "linux/mm.h" #include "linux/slab.h" #include "linux/utsname.h" #include "linux/fs.h" #include "linux/utime.h" #include "linux/smp_lock.h" #include "linux/module.h" #include "linux/init.h" #include "linux/capability.h" #include "linux/vmalloc.h" #include "linux/spinlock.h" #include "linux/proc_fs.h" #include "linux/ptrace.h" #include "linux/random.h" #include "asm/unistd.h" #include "asm/mman.h" #include "asm/segment.h" #include "asm/stat.h" #include "asm/pgtable.h" #include "asm/processor.h" #include "asm/tlbflush.h" #include "asm/uaccess.h" #include "asm/user.h" #include "user_util.h" #include "kern_util.h" #include "kern.h" #include "signal_kern.h" #include "signal_user.h" #include "init.h" #include "irq_user.h" #include "mem_user.h" #include "time_user.h" #include "tlb.h" #include "frame_kern.h" #include "sigcontext.h" #include "os.h" #include "mode.h" #include "mode_kern.h" #include "choose-mode.h" /* This is a per-cpu array. A processor only modifies its entry and it only * cares about its entry, so it's OK if another processor is modifying its * entry. */ struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; int external_pid(void *t) { struct task_struct *task = t ? t : current; return(CHOOSE_MODE_PROC(external_pid_tt, external_pid_skas, task)); } int pid_to_processor_id(int pid) { int i; for(i = 0; i < ncpus; i++){ if(cpu_tasks[i].pid == pid) return(i); } return(-1); } void free_stack(unsigned long stack, int order) { free_pages(stack, order); } unsigned long alloc_stack(int order, int atomic) { unsigned long page; int flags = GFP_KERNEL; if(atomic) flags |= GFP_ATOMIC; page = __get_free_pages(flags, order); if(page == 0) return(0); stack_protections(page); return(page); } int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { int pid; current->thread.request.u.thread.proc = fn; current->thread.request.u.thread.arg = arg; pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0, ¤t->thread.regs, 0, NULL, NULL); if(pid < 0) panic("do_fork failed in kernel_thread, errno = %d", pid); return(pid); } void set_current(void *t) { struct task_struct *task = t; cpu_tasks[task->thread_info->cpu] = ((struct cpu_task) { external_pid(task), task }); } void *_switch_to(void *prev, void *next, void *last) { return(CHOOSE_MODE(switch_to_tt(prev, next), switch_to_skas(prev, next))); } void interrupt_end(void) { if(need_resched()) schedule(); if(test_tsk_thread_flag(current, TIF_SIGPENDING)) do_signal(); } void release_thread(struct task_struct *task) { CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task)); } void exit_thread(void) { unprotect_stack((unsigned long) current_thread); } void *get_current(void) { return(current); } int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, unsigned long stack_top, struct task_struct * p, struct pt_regs *regs) { p->thread = (struct thread_struct) INIT_THREAD; return(CHOOSE_MODE_PROC(copy_thread_tt, copy_thread_skas, nr, clone_flags, sp, stack_top, p, regs)); } void initial_thread_cb(void (*proc)(void *), void *arg) { int save_kmalloc_ok = kmalloc_ok; kmalloc_ok = 0; CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc, arg); kmalloc_ok = save_kmalloc_ok; } unsigned long stack_sp(unsigned long page) { return(page + PAGE_SIZE - sizeof(void *)); } int current_pid(void) { return(current->pid); } void default_idle(void) { uml_idle_timer(); atomic_inc(&init_mm.mm_count); current->mm = &init_mm; current->active_mm = &init_mm; while(1){ /* endless idle loop with no priority at all */ /* * although we are an idle CPU, we do not want to * get into the scheduler unnecessarily. */ if(need_resched()) schedule(); idle_sleep(10); } } void cpu_idle(void) { CHOOSE_MODE(init_idle_tt(), init_idle_skas()); } int page_size(void) { return(PAGE_SIZE); } void *um_virt_to_phys(struct task_struct *task, unsigned long addr, pte_t *pte_out) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; if(task->mm == NULL) return(ERR_PTR(-EINVAL)); pgd = pgd_offset(task->mm, addr); if(!pgd_present(*pgd)) return(ERR_PTR(-EINVAL)); pud = pud_offset(pgd, addr); if(!pud_present(*pud)) return(ERR_PTR(-EINVAL)); pmd = pmd_offset(pud, addr); if(!pmd_present(*pmd)) return(ERR_PTR(-EINVAL)); pte = pte_offset_kernel(pmd, addr); if(!pte_present(*pte)) return(ERR_PTR(-EINVAL)); if(pte_out != NULL) *pte_out = *pte; return((void *) (pte_val(*pte) & PAGE_MASK) + (addr & ~PAGE_MASK)); } char *current_cmd(void) { #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM) return("(Unknown)"); #else void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL); return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr); #endif } void force_sigbus(void) { printk(KERN_ERR "Killing pid %d because of a lack of memory\n", current->pid); lock_kernel(); sigaddset(¤t->pending.signal, SIGBUS); recalc_sigpending(); current->flags |= PF_SIGNALED; do_exit(SIGBUS | 0x80); } void dump_thread(struct pt_regs *regs, struct user *u) { } void enable_hlt(void) { panic("enable_hlt"); } EXPORT_SYMBOL(enable_hlt); void disable_hlt(void) { panic("disable_hlt"); } EXPORT_SYMBOL(disable_hlt); void *um_kmalloc(int size) { return(kmalloc(size, GFP_KERNEL)); } void *um_kmalloc_atomic(int size) { return(kmalloc(size, GFP_ATOMIC)); } void *um_vmalloc(int size) { return(vmalloc(size)); } unsigned long get_fault_addr(void) { return((unsigned long) current->thread.fault_addr); } EXPORT_SYMBOL(get_fault_addr); void not_implemented(void) { printk(KERN_DEBUG "Something isn't implemented in here\n"); } EXPORT_SYMBOL(not_implemented); int user_context(unsigned long sp) { unsigned long stack; stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); return(stack != (unsigned long) current_thread); } extern void remove_umid_dir(void); __uml_exitcall(remove_umid_dir); extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; void do_uml_exitcalls(void) { exitcall_t *call; call = &__uml_exitcall_end; while (--call >= &__uml_exitcall_begin) (*call)(); } char *uml_strdup(char *string) { return kstrdup(string, GFP_KERNEL); } int copy_to_user_proc(void __user *to, void *from, int size) { return(copy_to_user(to, from, size)); } int copy_from_user_proc(void *to, void __user *from, int size) { return(copy_from_user(to, from, size)); } int clear_user_proc(void __user *buf, int size) { return(clear_user(buf, size)); } int strlen_user_proc(char __user *str) { return(strlen_user(str)); } int smp_sigio_handler(void) { #ifdef CONFIG_SMP int cpu = current_thread->cpu; IPI_handler(cpu); if(cpu != 0) return(1); #endif return(0); } int um_in_interrupt(void) { return(in_interrupt()); } int cpu(void) { return(current_thread->cpu); } static atomic_t using_sysemu = ATOMIC_INIT(0); int sysemu_supported; void set_using_sysemu(int value) { if (value > sysemu_supported) return; atomic_set(&using_sysemu, value); } int get_using_sysemu(void) { return atomic_read(&using_sysemu); } static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data) { if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) /*No overflow*/ *eof = 1; return strlen(buf); } static int proc_write_sysemu(struct file *file,const char *buf, unsigned long count,void *data) { char tmp[2]; if (copy_from_user(tmp, buf, 1)) return -EFAULT; if (tmp[0] >= '0' && tmp[0] <= '2') set_using_sysemu(tmp[0] - '0'); return count; /*We use the first char, but pretend to write everything*/ } int __init make_proc_sysemu(void) { struct proc_dir_entry *ent; if (!sysemu_supported) return 0; ent = create_proc_entry("sysemu", 0600, &proc_root); if (ent == NULL) { printk("Failed to register /proc/sysemu\n"); return(0); } ent->read_proc = proc_read_sysemu; ent->write_proc = proc_write_sysemu; return 0; } late_initcall(make_proc_sysemu); int singlestepping(void * t) { struct task_struct *task = t ? t : current; if ( ! (task->ptrace & PT_DTRACE) ) return(0); if (task->thread.singlestep_syscall) return(1); return 2; } /* * Only x86 and x86_64 have an arch_align_stack(). * All other arches have "#define arch_align_stack(x) (x)" * in their asm/system.h * As this is included in UML from asm-um/system-generic.h, * we can use it to behave as the subarch does. */ #ifndef arch_align_stack unsigned long arch_align_stack(unsigned long sp) { if (randomize_va_space) sp -= get_random_int() % 8192; return sp & ~0xf; } #endif