/* * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com) * Licensed under the GPL */ #include <linux/stddef.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/tty.h> #include <linux/string.h> #include <linux/tty_flip.h> #include <asm/irq.h> #include "chan_kern.h" #include "user_util.h" #include "kern.h" #include "irq_user.h" #include "sigio.h" #include "line.h" #include "os.h" #ifdef CONFIG_NOCONFIG_CHAN /* The printk's here are wrong because we are complaining that there is no * output device, but printk is printing to that output device. The user will * never see the error. printf would be better, except it can't run on a * kernel stack because it will overflow it. * Use printk for now since that will avoid crashing. */ static void *not_configged_init(char *str, int device, struct chan_opts *opts) { printk(KERN_ERR "Using a channel type which is configured out of " "UML\n"); return(NULL); } static int not_configged_open(int input, int output, int primary, void *data, char **dev_out) { printk(KERN_ERR "Using a channel type which is configured out of " "UML\n"); return(-ENODEV); } static void not_configged_close(int fd, void *data) { printk(KERN_ERR "Using a channel type which is configured out of " "UML\n"); } static int not_configged_read(int fd, char *c_out, void *data) { printk(KERN_ERR "Using a channel type which is configured out of " "UML\n"); return(-EIO); } static int not_configged_write(int fd, const char *buf, int len, void *data) { printk(KERN_ERR "Using a channel type which is configured out of " "UML\n"); return(-EIO); } static int not_configged_console_write(int fd, const char *buf, int len, void *data) { printk(KERN_ERR "Using a channel type which is configured out of " "UML\n"); return(-EIO); } static int not_configged_window_size(int fd, void *data, unsigned short *rows, unsigned short *cols) { printk(KERN_ERR "Using a channel type which is configured out of " "UML\n"); return(-ENODEV); } static void not_configged_free(void *data) { printf(KERN_ERR "Using a channel type which is configured out of " "UML\n"); } static struct chan_ops not_configged_ops = { .init = not_configged_init, .open = not_configged_open, .close = not_configged_close, .read = not_configged_read, .write = not_configged_write, .console_write = not_configged_console_write, .window_size = not_configged_window_size, .free = not_configged_free, .winch = 0, }; #endif /* CONFIG_NOCONFIG_CHAN */ void generic_close(int fd, void *unused) { os_close_file(fd); } int generic_read(int fd, char *c_out, void *unused) { int n; n = os_read_file(fd, c_out, sizeof(*c_out)); if(n == -EAGAIN) return(0); else if(n == 0) return(-EIO); return(n); } /* XXX Trivial wrapper around os_write_file */ int generic_write(int fd, const char *buf, int n, void *unused) { return(os_write_file(fd, buf, n)); } int generic_window_size(int fd, void *unused, unsigned short *rows_out, unsigned short *cols_out) { int rows, cols; int ret; ret = os_window_size(fd, &rows, &cols); if(ret < 0) return(ret); ret = ((*rows_out != rows) || (*cols_out != cols)); *rows_out = rows; *cols_out = cols; return(ret); } void generic_free(void *data) { kfree(data); } static void tty_receive_char(struct tty_struct *tty, char ch) { if(tty == NULL) return; if(I_IXON(tty) && !I_IXOFF(tty) && !tty->raw) { if(ch == STOP_CHAR(tty)){ stop_tty(tty); return; } else if(ch == START_CHAR(tty)){ start_tty(tty); return; } } if((tty->flip.flag_buf_ptr == NULL) || (tty->flip.char_buf_ptr == NULL)) return; tty_insert_flip_char(tty, ch, TTY_NORMAL); } static int open_one_chan(struct chan *chan, int input, int output, int primary) { int fd; if(chan->opened) return(0); if(chan->ops->open == NULL) fd = 0; else fd = (*chan->ops->open)(input, output, primary, chan->data, &chan->dev); if(fd < 0) return(fd); chan->fd = fd; chan->opened = 1; return(0); } int open_chan(struct list_head *chans) { struct list_head *ele; struct chan *chan; int ret, err = 0; list_for_each(ele, chans){ chan = list_entry(ele, struct chan, list); ret = open_one_chan(chan, chan->input, chan->output, chan->primary); if(chan->primary) err = ret; } return(err); } void chan_enable_winch(struct list_head *chans, struct tty_struct *tty) { struct list_head *ele; struct chan *chan; list_for_each(ele, chans){ chan = list_entry(ele, struct chan, list); if(chan->primary && chan->output && chan->ops->winch){ register_winch(chan->fd, tty); return; } } } void enable_chan(struct list_head *chans, struct tty_struct *tty) { struct list_head *ele; struct chan *chan; list_for_each(ele, chans){ chan = list_entry(ele, struct chan, list); if(!chan->opened) continue; line_setup_irq(chan->fd, chan->input, chan->output, tty); } } void close_chan(struct list_head *chans) { struct chan *chan; /* Close in reverse order as open in case more than one of them * refers to the same device and they save and restore that device's * state. Then, the first one opened will have the original state, * so it must be the last closed. */ list_for_each_entry_reverse(chan, chans, list) { if(!chan->opened) continue; if(chan->ops->close != NULL) (*chan->ops->close)(chan->fd, chan->data); chan->opened = 0; chan->fd = -1; } } int write_chan(struct list_head *chans, const char *buf, int len, int write_irq) { struct list_head *ele; struct chan *chan = NULL; int n, ret = 0; list_for_each(ele, chans) { chan = list_entry(ele, struct chan, list); if (!chan->output || (chan->ops->write == NULL)) continue; n = chan->ops->write(chan->fd, buf, len, chan->data); if (chan->primary) { ret = n; if ((ret == -EAGAIN) || ((ret >= 0) && (ret < len))) reactivate_fd(chan->fd, write_irq); } } return(ret); } int console_write_chan(struct list_head *chans, const char *buf, int len) { struct list_head *ele; struct chan *chan; int n, ret = 0; list_for_each(ele, chans){ chan = list_entry(ele, struct chan, list); if(!chan->output || (chan->ops->console_write == NULL)) continue; n = chan->ops->console_write(chan->fd, buf, len, chan->data); if(chan->primary) ret = n; } return(ret); } int console_open_chan(struct line *line, struct console *co, struct chan_opts *opts) { if (!list_empty(&line->chan_list)) return 0; if (0 != parse_chan_pair(line->init_str, &line->chan_list, line->init_pri, co->index, opts)) return -1; if (0 != open_chan(&line->chan_list)) return -1; printk("Console initialized on /dev/%s%d\n",co->name,co->index); return 0; } int chan_window_size(struct list_head *chans, unsigned short *rows_out, unsigned short *cols_out) { struct list_head *ele; struct chan *chan; list_for_each(ele, chans){ chan = list_entry(ele, struct chan, list); if(chan->primary){ if(chan->ops->window_size == NULL) return(0); return(chan->ops->window_size(chan->fd, chan->data, rows_out, cols_out)); } } return(0); } void free_one_chan(struct chan *chan) { list_del(&chan->list); if(chan->ops->free != NULL) (*chan->ops->free)(chan->data); free_irq_by_fd(chan->fd); if(chan->primary && chan->output) ignore_sigio_fd(chan->fd); kfree(chan); } void free_chan(struct list_head *chans) { struct list_head *ele, *next; struct chan *chan; list_for_each_safe(ele, next, chans){ chan = list_entry(ele, struct chan, list); free_one_chan(chan); } } static int one_chan_config_string(struct chan *chan, char *str, int size, char **error_out) { int n = 0; if(chan == NULL){ CONFIG_CHUNK(str, size, n, "none", 1); return(n); } CONFIG_CHUNK(str, size, n, chan->ops->type, 0); if(chan->dev == NULL){ CONFIG_CHUNK(str, size, n, "", 1); return(n); } CONFIG_CHUNK(str, size, n, ":", 0); CONFIG_CHUNK(str, size, n, chan->dev, 0); return(n); } static int chan_pair_config_string(struct chan *in, struct chan *out, char *str, int size, char **error_out) { int n; n = one_chan_config_string(in, str, size, error_out); str += n; size -= n; if(in == out){ CONFIG_CHUNK(str, size, n, "", 1); return(n); } CONFIG_CHUNK(str, size, n, ",", 1); n = one_chan_config_string(out, str, size, error_out); str += n; size -= n; CONFIG_CHUNK(str, size, n, "", 1); return(n); } int chan_config_string(struct list_head *chans, char *str, int size, char **error_out) { struct list_head *ele; struct chan *chan, *in = NULL, *out = NULL; list_for_each(ele, chans){ chan = list_entry(ele, struct chan, list); if(!chan->primary) continue; if(chan->input) in = chan; if(chan->output) out = chan; } return(chan_pair_config_string(in, out, str, size, error_out)); } struct chan_type { char *key; struct chan_ops *ops; }; struct chan_type chan_table[] = { { "fd", &fd_ops }, #ifdef CONFIG_NULL_CHAN { "null", &null_ops }, #else { "null", ¬_configged_ops }, #endif #ifdef CONFIG_PORT_CHAN { "port", &port_ops }, #else { "port", ¬_configged_ops }, #endif #ifdef CONFIG_PTY_CHAN { "pty", &pty_ops }, { "pts", &pts_ops }, #else { "pty", ¬_configged_ops }, { "pts", ¬_configged_ops }, #endif #ifdef CONFIG_TTY_CHAN { "tty", &tty_ops }, #else { "tty", ¬_configged_ops }, #endif #ifdef CONFIG_XTERM_CHAN { "xterm", &xterm_ops }, #else { "xterm", ¬_configged_ops }, #endif }; static struct chan *parse_chan(char *str, int pri, int device, struct chan_opts *opts) { struct chan_type *entry; struct chan_ops *ops; struct chan *chan; void *data; int i; ops = NULL; data = NULL; for(i = 0; i < sizeof(chan_table)/sizeof(chan_table[0]); i++){ entry = &chan_table[i]; if(!strncmp(str, entry->key, strlen(entry->key))){ ops = entry->ops; str += strlen(entry->key); break; } } if(ops == NULL){ printk(KERN_ERR "parse_chan couldn't parse \"%s\"\n", str); return(NULL); } if(ops->init == NULL) return(NULL); data = (*ops->init)(str, device, opts); if(data == NULL) return(NULL); chan = kmalloc(sizeof(*chan), GFP_KERNEL); if(chan == NULL) return(NULL); *chan = ((struct chan) { .list = LIST_HEAD_INIT(chan->list), .primary = 1, .input = 0, .output = 0, .opened = 0, .fd = -1, .pri = pri, .ops = ops, .data = data }); return(chan); } int parse_chan_pair(char *str, struct list_head *chans, int pri, int device, struct chan_opts *opts) { struct chan *new, *chan; char *in, *out; if(!list_empty(chans)){ chan = list_entry(chans->next, struct chan, list); if(chan->pri >= pri) return(0); free_chan(chans); INIT_LIST_HEAD(chans); } out = strchr(str, ','); if(out != NULL){ in = str; *out = '\0'; out++; new = parse_chan(in, pri, device, opts); if(new == NULL) return(-1); new->input = 1; list_add(&new->list, chans); new = parse_chan(out, pri, device, opts); if(new == NULL) return(-1); list_add(&new->list, chans); new->output = 1; } else { new = parse_chan(str, pri, device, opts); if(new == NULL) return(-1); list_add(&new->list, chans); new->input = 1; new->output = 1; } return(0); } int chan_out_fd(struct list_head *chans) { struct list_head *ele; struct chan *chan; list_for_each(ele, chans){ chan = list_entry(ele, struct chan, list); if(chan->primary && chan->output) return(chan->fd); } return(-1); } void chan_interrupt(struct list_head *chans, struct work_struct *task, struct tty_struct *tty, int irq) { struct list_head *ele, *next; struct chan *chan; int err; char c; list_for_each_safe(ele, next, chans){ chan = list_entry(ele, struct chan, list); if(!chan->input || (chan->ops->read == NULL)) continue; do { if((tty != NULL) && (tty->flip.count >= TTY_FLIPBUF_SIZE)){ schedule_work(task); goto out; } err = chan->ops->read(chan->fd, &c, chan->data); if(err > 0) tty_receive_char(tty, c); } while(err > 0); if(err == 0) reactivate_fd(chan->fd, irq); if(err == -EIO){ if(chan->primary){ if(tty != NULL) tty_hangup(tty); line_disable(tty, irq); close_chan(chans); free_chan(chans); return; } else { if(chan->ops->close != NULL) chan->ops->close(chan->fd, chan->data); free_one_chan(chan); } } } out: if(tty) tty_flip_buffer_push(tty); } /* * Overrides for Emacs so that we follow Linus's tabbing style. * Emacs will notice this stuff at the end of the file and automatically * adjust the settings for this buffer only. This must remain at the end * of the file. * --------------------------------------------------------------------------- * Local variables: * c-file-style: "linux" * End: */