/* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $ * time.c: UltraSparc timer and TOD clock support. * * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) * * Based largely on code which is: * * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu) */ #include <linux/config.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/mc146818rtc.h> #include <linux/delay.h> #include <linux/profile.h> #include <linux/bcd.h> #include <linux/jiffies.h> #include <linux/cpufreq.h> #include <linux/percpu.h> #include <linux/profile.h> #include <linux/miscdevice.h> #include <linux/rtc.h> #include <asm/oplib.h> #include <asm/mostek.h> #include <asm/timer.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/sbus.h> #include <asm/fhc.h> #include <asm/pbm.h> #include <asm/ebus.h> #include <asm/isa.h> #include <asm/starfire.h> #include <asm/smp.h> #include <asm/sections.h> #include <asm/cpudata.h> #include <asm/uaccess.h> DEFINE_SPINLOCK(mostek_lock); DEFINE_SPINLOCK(rtc_lock); void __iomem *mstk48t02_regs = NULL; #ifdef CONFIG_PCI unsigned long ds1287_regs = 0UL; #endif extern unsigned long wall_jiffies; static void __iomem *mstk48t08_regs; static void __iomem *mstk48t59_regs; static int set_rtc_mmss(unsigned long); #define TICK_PRIV_BIT (1UL << 63) #ifdef CONFIG_SMP unsigned long profile_pc(struct pt_regs *regs) { unsigned long pc = instruction_pointer(regs); if (in_lock_functions(pc)) return regs->u_regs[UREG_RETPC]; return pc; } EXPORT_SYMBOL(profile_pc); #endif static void tick_disable_protection(void) { /* Set things up so user can access tick register for profiling * purposes. Also workaround BB_ERRATA_1 by doing a dummy * read back of %tick after writing it. */ __asm__ __volatile__( " ba,pt %%xcc, 1f\n" " nop\n" " .align 64\n" "1: rd %%tick, %%g2\n" " add %%g2, 6, %%g2\n" " andn %%g2, %0, %%g2\n" " wrpr %%g2, 0, %%tick\n" " rdpr %%tick, %%g0" : /* no outputs */ : "r" (TICK_PRIV_BIT) : "g2"); } static void tick_init_tick(unsigned long offset) { tick_disable_protection(); __asm__ __volatile__( " rd %%tick, %%g1\n" " andn %%g1, %1, %%g1\n" " ba,pt %%xcc, 1f\n" " add %%g1, %0, %%g1\n" " .align 64\n" "1: wr %%g1, 0x0, %%tick_cmpr\n" " rd %%tick_cmpr, %%g0" : /* no outputs */ : "r" (offset), "r" (TICK_PRIV_BIT) : "g1"); } static unsigned long tick_get_tick(void) { unsigned long ret; __asm__ __volatile__("rd %%tick, %0\n\t" "mov %0, %0" : "=r" (ret)); return ret & ~TICK_PRIV_BIT; } static unsigned long tick_get_compare(void) { unsigned long ret; __asm__ __volatile__("rd %%tick_cmpr, %0\n\t" "mov %0, %0" : "=r" (ret)); return ret; } static unsigned long tick_add_compare(unsigned long adj) { unsigned long new_compare; /* Workaround for Spitfire Errata (#54 I think??), I discovered * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch * number 103640. * * On Blackbird writes to %tick_cmpr can fail, the * workaround seems to be to execute the wr instruction * at the start of an I-cache line, and perform a dummy * read back from %tick_cmpr right after writing to it. -DaveM */ __asm__ __volatile__("rd %%tick_cmpr, %0\n\t" "ba,pt %%xcc, 1f\n\t" " add %0, %1, %0\n\t" ".align 64\n" "1:\n\t" "wr %0, 0, %%tick_cmpr\n\t" "rd %%tick_cmpr, %%g0" : "=&r" (new_compare) : "r" (adj)); return new_compare; } static unsigned long tick_add_tick(unsigned long adj, unsigned long offset) { unsigned long new_tick, tmp; /* Also need to handle Blackbird bug here too. */ __asm__ __volatile__("rd %%tick, %0\n\t" "add %0, %2, %0\n\t" "wrpr %0, 0, %%tick\n\t" "andn %0, %4, %1\n\t" "ba,pt %%xcc, 1f\n\t" " add %1, %3, %1\n\t" ".align 64\n" "1:\n\t" "wr %1, 0, %%tick_cmpr\n\t" "rd %%tick_cmpr, %%g0" : "=&r" (new_tick), "=&r" (tmp) : "r" (adj), "r" (offset), "r" (TICK_PRIV_BIT)); return new_tick; } static struct sparc64_tick_ops tick_operations __read_mostly = { .init_tick = tick_init_tick, .get_tick = tick_get_tick, .get_compare = tick_get_compare, .add_tick = tick_add_tick, .add_compare = tick_add_compare, .softint_mask = 1UL << 0, }; struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations; static void stick_init_tick(unsigned long offset) { /* Writes to the %tick and %stick register are not * allowed on sun4v. The Hypervisor controls that * bit, per-strand. */ if (tlb_type != hypervisor) { tick_disable_protection(); /* Let the user get at STICK too. */ __asm__ __volatile__( " rd %%asr24, %%g2\n" " andn %%g2, %0, %%g2\n" " wr %%g2, 0, %%asr24" : /* no outputs */ : "r" (TICK_PRIV_BIT) : "g1", "g2"); } __asm__ __volatile__( " rd %%asr24, %%g1\n" " andn %%g1, %1, %%g1\n" " add %%g1, %0, %%g1\n" " wr %%g1, 0x0, %%asr25" : /* no outputs */ : "r" (offset), "r" (TICK_PRIV_BIT) : "g1"); } static unsigned long stick_get_tick(void) { unsigned long ret; __asm__ __volatile__("rd %%asr24, %0" : "=r" (ret)); return ret & ~TICK_PRIV_BIT; } static unsigned long stick_get_compare(void) { unsigned long ret; __asm__ __volatile__("rd %%asr25, %0" : "=r" (ret)); return ret; } static unsigned long stick_add_tick(unsigned long adj, unsigned long offset) { unsigned long new_tick, tmp; __asm__ __volatile__("rd %%asr24, %0\n\t" "add %0, %2, %0\n\t" "wr %0, 0, %%asr24\n\t" "andn %0, %4, %1\n\t" "add %1, %3, %1\n\t" "wr %1, 0, %%asr25" : "=&r" (new_tick), "=&r" (tmp) : "r" (adj), "r" (offset), "r" (TICK_PRIV_BIT)); return new_tick; } static unsigned long stick_add_compare(unsigned long adj) { unsigned long new_compare; __asm__ __volatile__("rd %%asr25, %0\n\t" "add %0, %1, %0\n\t" "wr %0, 0, %%asr25" : "=&r" (new_compare) : "r" (adj)); return new_compare; } static struct sparc64_tick_ops stick_operations __read_mostly = { .init_tick = stick_init_tick, .get_tick = stick_get_tick, .get_compare = stick_get_compare, .add_tick = stick_add_tick, .add_compare = stick_add_compare, .softint_mask = 1UL << 16, }; /* On Hummingbird the STICK/STICK_CMPR register is implemented * in I/O space. There are two 64-bit registers each, the * first holds the low 32-bits of the value and the second holds * the high 32-bits. * * Since STICK is constantly updating, we have to access it carefully. * * The sequence we use to read is: * 1) read high * 2) read low * 3) read high again, if it rolled re-read both low and high again. * * Writing STICK safely is also tricky: * 1) write low to zero * 2) write high * 3) write low */ #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL #define HBIRD_STICK_ADDR 0x1fe0000f070UL static unsigned long __hbird_read_stick(void) { unsigned long ret, tmp1, tmp2, tmp3; unsigned long addr = HBIRD_STICK_ADDR+8; __asm__ __volatile__("ldxa [%1] %5, %2\n" "1:\n\t" "sub %1, 0x8, %1\n\t" "ldxa [%1] %5, %3\n\t" "add %1, 0x8, %1\n\t" "ldxa [%1] %5, %4\n\t" "cmp %4, %2\n\t" "bne,a,pn %%xcc, 1b\n\t" " mov %4, %2\n\t" "sllx %4, 32, %4\n\t" "or %3, %4, %0\n\t" : "=&r" (ret), "=&r" (addr), "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3) : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr)); return ret; } static unsigned long __hbird_read_compare(void) { unsigned long low, high; unsigned long addr = HBIRD_STICKCMP_ADDR; __asm__ __volatile__("ldxa [%2] %3, %0\n\t" "add %2, 0x8, %2\n\t" "ldxa [%2] %3, %1" : "=&r" (low), "=&r" (high), "=&r" (addr) : "i" (ASI_PHYS_BYPASS_EC_E), "2" (addr)); return (high << 32UL) | low; } static void __hbird_write_stick(unsigned long val) { unsigned long low = (val & 0xffffffffUL); unsigned long high = (val >> 32UL); unsigned long addr = HBIRD_STICK_ADDR; __asm__ __volatile__("stxa %%g0, [%0] %4\n\t" "add %0, 0x8, %0\n\t" "stxa %3, [%0] %4\n\t" "sub %0, 0x8, %0\n\t" "stxa %2, [%0] %4" : "=&r" (addr) : "0" (addr), "r" (low), "r" (high), "i" (ASI_PHYS_BYPASS_EC_E)); } static void __hbird_write_compare(unsigned long val) { unsigned long low = (val & 0xffffffffUL); unsigned long high = (val >> 32UL); unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL; __asm__ __volatile__("stxa %3, [%0] %4\n\t" "sub %0, 0x8, %0\n\t" "stxa %2, [%0] %4" : "=&r" (addr) : "0" (addr), "r" (low), "r" (high), "i" (ASI_PHYS_BYPASS_EC_E)); } static void hbtick_init_tick(unsigned long offset) { unsigned long val; tick_disable_protection(); /* XXX This seems to be necessary to 'jumpstart' Hummingbird * XXX into actually sending STICK interrupts. I think because * XXX of how we store %tick_cmpr in head.S this somehow resets the * XXX {TICK + STICK} interrupt mux. -DaveM */ __hbird_write_stick(__hbird_read_stick()); val = __hbird_read_stick() & ~TICK_PRIV_BIT; __hbird_write_compare(val + offset); } static unsigned long hbtick_get_tick(void) { return __hbird_read_stick() & ~TICK_PRIV_BIT; } static unsigned long hbtick_get_compare(void) { return __hbird_read_compare(); } static unsigned long hbtick_add_tick(unsigned long adj, unsigned long offset) { unsigned long val; val = __hbird_read_stick() + adj; __hbird_write_stick(val); val &= ~TICK_PRIV_BIT; __hbird_write_compare(val + offset); return val; } static unsigned long hbtick_add_compare(unsigned long adj) { unsigned long val = __hbird_read_compare() + adj; val &= ~TICK_PRIV_BIT; __hbird_write_compare(val); return val; } static struct sparc64_tick_ops hbtick_operations __read_mostly = { .init_tick = hbtick_init_tick, .get_tick = hbtick_get_tick, .get_compare = hbtick_get_compare, .add_tick = hbtick_add_tick, .add_compare = hbtick_add_compare, .softint_mask = 1UL << 0, }; /* timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick * * NOTE: On SUN5 systems the ticker interrupt comes in using 2 * interrupts, one at level14 and one with softint bit 0. */ unsigned long timer_tick_offset __read_mostly; static unsigned long timer_ticks_per_nsec_quotient __read_mostly; #define TICK_SIZE (tick_nsec / 1000) static inline void timer_check_rtc(void) { /* last time the cmos clock got updated */ static long last_rtc_update; /* Determine when to update the Mostek clock. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ } } static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs * regs) { unsigned long ticks, compare, pstate; write_seqlock(&xtime_lock); do { #ifndef CONFIG_SMP profile_tick(CPU_PROFILING, regs); update_process_times(user_mode(regs)); #endif do_timer(regs); /* Guarantee that the following sequences execute * uninterrupted. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); compare = tick_ops->add_compare(timer_tick_offset); ticks = tick_ops->get_tick(); /* Restore PSTATE_IE. */ __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : /* no outputs */ : "r" (pstate)); } while (time_after_eq(ticks, compare)); timer_check_rtc(); write_sequnlock(&xtime_lock); return IRQ_HANDLED; } #ifdef CONFIG_SMP void timer_tick_interrupt(struct pt_regs *regs) { write_seqlock(&xtime_lock); do_timer(regs); timer_check_rtc(); write_sequnlock(&xtime_lock); } #endif /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */ static void __init kick_start_clock(void) { void __iomem *regs = mstk48t02_regs; u8 sec, tmp; int i, count; prom_printf("CLOCK: Clock was stopped. Kick start "); spin_lock_irq(&mostek_lock); /* Turn on the kick start bit to start the oscillator. */ tmp = mostek_read(regs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); tmp = mostek_read(regs + MOSTEK_SEC); tmp &= ~MSTK_STOP; mostek_write(regs + MOSTEK_SEC, tmp); tmp = mostek_read(regs + MOSTEK_HOUR); tmp |= MSTK_KICK_START; mostek_write(regs + MOSTEK_HOUR, tmp); tmp = mostek_read(regs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); /* Delay to allow the clock oscillator to start. */ sec = MSTK_REG_SEC(regs); for (i = 0; i < 3; i++) { while (sec == MSTK_REG_SEC(regs)) for (count = 0; count < 100000; count++) /* nothing */ ; prom_printf("."); sec = MSTK_REG_SEC(regs); } prom_printf("\n"); spin_lock_irq(&mostek_lock); /* Turn off kick start and set a "valid" time and date. */ tmp = mostek_read(regs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); tmp = mostek_read(regs + MOSTEK_HOUR); tmp &= ~MSTK_KICK_START; mostek_write(regs + MOSTEK_HOUR, tmp); MSTK_SET_REG_SEC(regs,0); MSTK_SET_REG_MIN(regs,0); MSTK_SET_REG_HOUR(regs,0); MSTK_SET_REG_DOW(regs,5); MSTK_SET_REG_DOM(regs,1); MSTK_SET_REG_MONTH(regs,8); MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO); tmp = mostek_read(regs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); /* Ensure the kick start bit is off. If it isn't, turn it off. */ while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) { prom_printf("CLOCK: Kick start still on!\n"); spin_lock_irq(&mostek_lock); tmp = mostek_read(regs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); tmp = mostek_read(regs + MOSTEK_HOUR); tmp &= ~MSTK_KICK_START; mostek_write(regs + MOSTEK_HOUR, tmp); tmp = mostek_read(regs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); } prom_printf("CLOCK: Kick start procedure successful.\n"); } /* Return nonzero if the clock chip battery is low. */ static int __init has_low_battery(void) { void __iomem *regs = mstk48t02_regs; u8 data1, data2; spin_lock_irq(&mostek_lock); data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */ mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */ data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */ mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */ spin_unlock_irq(&mostek_lock); return (data1 == data2); /* Was the write blocked? */ } /* Probe for the real time clock chip. */ static void __init set_system_time(void) { unsigned int year, mon, day, hour, min, sec; void __iomem *mregs = mstk48t02_regs; #ifdef CONFIG_PCI unsigned long dregs = ds1287_regs; #else unsigned long dregs = 0UL; #endif u8 tmp; if (!mregs && !dregs) { prom_printf("Something wrong, clock regs not mapped yet.\n"); prom_halt(); } if (mregs) { spin_lock_irq(&mostek_lock); /* Traditional Mostek chip. */ tmp = mostek_read(mregs + MOSTEK_CREG); tmp |= MSTK_CREG_READ; mostek_write(mregs + MOSTEK_CREG, tmp); sec = MSTK_REG_SEC(mregs); min = MSTK_REG_MIN(mregs); hour = MSTK_REG_HOUR(mregs); day = MSTK_REG_DOM(mregs); mon = MSTK_REG_MONTH(mregs); year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) ); } else { int i; /* Dallas 12887 RTC chip. */ /* Stolen from arch/i386/kernel/time.c, see there for * credits and descriptive comments. */ for (i = 0; i < 1000000; i++) { if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) break; udelay(10); } for (i = 0; i < 1000000; i++) { if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)) break; udelay(10); } do { sec = CMOS_READ(RTC_SECONDS); min = CMOS_READ(RTC_MINUTES); hour = CMOS_READ(RTC_HOURS); day = CMOS_READ(RTC_DAY_OF_MONTH); mon = CMOS_READ(RTC_MONTH); year = CMOS_READ(RTC_YEAR); } while (sec != CMOS_READ(RTC_SECONDS)); if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); } if ((year += 1900) < 1970) year += 100; } xtime.tv_sec = mktime(year, mon, day, hour, min, sec); xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); if (mregs) { tmp = mostek_read(mregs + MOSTEK_CREG); tmp &= ~MSTK_CREG_READ; mostek_write(mregs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); } } /* davem suggests we keep this within the 4M locked kernel image */ static u32 starfire_get_time(void) { static char obp_gettod[32]; static u32 unix_tod; sprintf(obp_gettod, "h# %08x unix-gettod", (unsigned int) (long) &unix_tod); prom_feval(obp_gettod); return unix_tod; } static int starfire_set_time(u32 val) { /* Do nothing, time is set using the service processor * console on this platform. */ return 0; } static u32 hypervisor_get_time(void) { register unsigned long func asm("%o5"); register unsigned long arg0 asm("%o0"); register unsigned long arg1 asm("%o1"); int retries = 10000; retry: func = HV_FAST_TOD_GET; arg0 = 0; arg1 = 0; __asm__ __volatile__("ta %6" : "=&r" (func), "=&r" (arg0), "=&r" (arg1) : "0" (func), "1" (arg0), "2" (arg1), "i" (HV_FAST_TRAP)); if (arg0 == HV_EOK) return arg1; if (arg0 == HV_EWOULDBLOCK) { if (--retries > 0) { udelay(100); goto retry; } printk(KERN_WARNING "SUN4V: tod_get() timed out.\n"); return 0; } printk(KERN_WARNING "SUN4V: tod_get() not supported.\n"); return 0; } static int hypervisor_set_time(u32 secs) { register unsigned long func asm("%o5"); register unsigned long arg0 asm("%o0"); int retries = 10000; retry: func = HV_FAST_TOD_SET; arg0 = secs; __asm__ __volatile__("ta %4" : "=&r" (func), "=&r" (arg0) : "0" (func), "1" (arg0), "i" (HV_FAST_TRAP)); if (arg0 == HV_EOK) return 0; if (arg0 == HV_EWOULDBLOCK) { if (--retries > 0) { udelay(100); goto retry; } printk(KERN_WARNING "SUN4V: tod_set() timed out.\n"); return -EAGAIN; } printk(KERN_WARNING "SUN4V: tod_set() not supported.\n"); return -EOPNOTSUPP; } void __init clock_probe(void) { struct linux_prom_registers clk_reg[2]; char model[128]; int node, busnd = -1, err; unsigned long flags; struct linux_central *cbus; #ifdef CONFIG_PCI struct linux_ebus *ebus = NULL; struct sparc_isa_bridge *isa_br = NULL; #endif static int invoked; if (invoked) return; invoked = 1; if (this_is_starfire) { xtime.tv_sec = starfire_get_time(); xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); return; } if (tlb_type == hypervisor) { xtime.tv_sec = hypervisor_get_time(); xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); return; } local_irq_save(flags); cbus = central_bus; if (cbus != NULL) busnd = central_bus->child->prom_node; /* Check FHC Central then EBUSs then ISA bridges then SBUSs. * That way we handle the presence of multiple properly. * * As a special case, machines with Central must provide the * timer chip there. */ #ifdef CONFIG_PCI if (ebus_chain != NULL) { ebus = ebus_chain; if (busnd == -1) busnd = ebus->prom_node; } if (isa_chain != NULL) { isa_br = isa_chain; if (busnd == -1) busnd = isa_br->prom_node; } #endif if (sbus_root != NULL && busnd == -1) busnd = sbus_root->prom_node; if (busnd == -1) { prom_printf("clock_probe: problem, cannot find bus to search.\n"); prom_halt(); } node = prom_getchild(busnd); while (1) { if (!node) model[0] = 0; else prom_getstring(node, "model", model, sizeof(model)); if (strcmp(model, "mk48t02") && strcmp(model, "mk48t08") && strcmp(model, "mk48t59") && strcmp(model, "m5819") && strcmp(model, "m5819p") && strcmp(model, "m5823") && strcmp(model, "ds1287")) { if (cbus != NULL) { prom_printf("clock_probe: Central bus lacks timer chip.\n"); prom_halt(); } if (node != 0) node = prom_getsibling(node); #ifdef CONFIG_PCI while ((node == 0) && ebus != NULL) { ebus = ebus->next; if (ebus != NULL) { busnd = ebus->prom_node; node = prom_getchild(busnd); } } while ((node == 0) && isa_br != NULL) { isa_br = isa_br->next; if (isa_br != NULL) { busnd = isa_br->prom_node; node = prom_getchild(busnd); } } #endif if (node == 0) { prom_printf("clock_probe: Cannot find timer chip\n"); prom_halt(); } continue; } err = prom_getproperty(node, "reg", (char *)clk_reg, sizeof(clk_reg)); if(err == -1) { prom_printf("clock_probe: Cannot get Mostek reg property\n"); prom_halt(); } if (cbus != NULL) { apply_fhc_ranges(central_bus->child, clk_reg, 1); apply_central_ranges(central_bus, clk_reg, 1); } #ifdef CONFIG_PCI else if (ebus != NULL) { struct linux_ebus_device *edev; for_each_ebusdev(edev, ebus) if (edev->prom_node == node) break; if (edev == NULL) { if (isa_chain != NULL) goto try_isa_clock; prom_printf("%s: Mostek not probed by EBUS\n", __FUNCTION__); prom_halt(); } if (!strcmp(model, "ds1287") || !strcmp(model, "m5819") || !strcmp(model, "m5819p") || !strcmp(model, "m5823")) { ds1287_regs = edev->resource[0].start; } else { mstk48t59_regs = (void __iomem *) edev->resource[0].start; mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02; } break; } else if (isa_br != NULL) { struct sparc_isa_device *isadev; try_isa_clock: for_each_isadev(isadev, isa_br) if (isadev->prom_node == node) break; if (isadev == NULL) { prom_printf("%s: Mostek not probed by ISA\n"); prom_halt(); } if (!strcmp(model, "ds1287") || !strcmp(model, "m5819") || !strcmp(model, "m5819p") || !strcmp(model, "m5823")) { ds1287_regs = isadev->resource.start; } else { mstk48t59_regs = (void __iomem *) isadev->resource.start; mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02; } break; } #endif else { if (sbus_root->num_sbus_ranges) { int nranges = sbus_root->num_sbus_ranges; int rngc; for (rngc = 0; rngc < nranges; rngc++) if (clk_reg[0].which_io == sbus_root->sbus_ranges[rngc].ot_child_space) break; if (rngc == nranges) { prom_printf("clock_probe: Cannot find ranges for " "clock regs.\n"); prom_halt(); } clk_reg[0].which_io = sbus_root->sbus_ranges[rngc].ot_parent_space; clk_reg[0].phys_addr += sbus_root->sbus_ranges[rngc].ot_parent_base; } } if(model[5] == '0' && model[6] == '2') { mstk48t02_regs = (void __iomem *) (((u64)clk_reg[0].phys_addr) | (((u64)clk_reg[0].which_io)<<32UL)); } else if(model[5] == '0' && model[6] == '8') { mstk48t08_regs = (void __iomem *) (((u64)clk_reg[0].phys_addr) | (((u64)clk_reg[0].which_io)<<32UL)); mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02; } else { mstk48t59_regs = (void __iomem *) (((u64)clk_reg[0].phys_addr) | (((u64)clk_reg[0].which_io)<<32UL)); mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02; } break; } if (mstk48t02_regs != NULL) { /* Report a low battery voltage condition. */ if (has_low_battery()) prom_printf("NVRAM: Low battery voltage!\n"); /* Kick start the clock if it is completely stopped. */ if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP) kick_start_clock(); } set_system_time(); local_irq_restore(flags); } /* This is gets the master TICK_INT timer going. */ static unsigned long sparc64_init_timers(void) { unsigned long clock; int node; #ifdef CONFIG_SMP extern void smp_tick_init(void); #endif if (tlb_type == spitfire) { unsigned long ver, manuf, impl; __asm__ __volatile__ ("rdpr %%ver, %0" : "=&r" (ver)); manuf = ((ver >> 48) & 0xffff); impl = ((ver >> 32) & 0xffff); if (manuf == 0x17 && impl == 0x13) { /* Hummingbird, aka Ultra-IIe */ tick_ops = &hbtick_operations; node = prom_root_node; clock = prom_getint(node, "stick-frequency"); } else { tick_ops = &tick_operations; cpu_find_by_instance(0, &node, NULL); clock = prom_getint(node, "clock-frequency"); } } else { tick_ops = &stick_operations; node = prom_root_node; clock = prom_getint(node, "stick-frequency"); } timer_tick_offset = clock / HZ; #ifdef CONFIG_SMP smp_tick_init(); #endif return clock; } static void sparc64_start_timers(irqreturn_t (*cfunc)(int, void *, struct pt_regs *)) { unsigned long pstate; int err; /* Register IRQ handler. */ err = request_irq(build_irq(0, 0, 0UL, 0UL), cfunc, 0, "timer", NULL); if (err) { prom_printf("Serious problem, cannot register TICK_INT\n"); prom_halt(); } /* Guarantee that the following sequences execute * uninterrupted. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); tick_ops->init_tick(timer_tick_offset); /* Restore PSTATE_IE. */ __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : /* no outputs */ : "r" (pstate)); local_irq_enable(); } struct freq_table { unsigned long clock_tick_ref; unsigned int ref_freq; }; static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 }; unsigned long sparc64_get_clock_tick(unsigned int cpu) { struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu); if (ft->clock_tick_ref) return ft->clock_tick_ref; return cpu_data(cpu).clock_tick; } #ifdef CONFIG_CPU_FREQ static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; unsigned int cpu = freq->cpu; struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu); if (!ft->ref_freq) { ft->ref_freq = freq->old; ft->clock_tick_ref = cpu_data(cpu).clock_tick; } if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || (val == CPUFREQ_RESUMECHANGE)) { cpu_data(cpu).clock_tick = cpufreq_scale(ft->clock_tick_ref, ft->ref_freq, freq->new); } return 0; } static struct notifier_block sparc64_cpufreq_notifier_block = { .notifier_call = sparc64_cpufreq_notifier }; #endif /* CONFIG_CPU_FREQ */ static struct time_interpolator sparc64_cpu_interpolator = { .source = TIME_SOURCE_CPU, .shift = 16, .mask = 0xffffffffffffffffLL }; /* The quotient formula is taken from the IA64 port. */ #define SPARC64_NSEC_PER_CYC_SHIFT 30UL void __init time_init(void) { unsigned long clock = sparc64_init_timers(); sparc64_cpu_interpolator.frequency = clock; register_time_interpolator(&sparc64_cpu_interpolator); /* Now that the interpolator is registered, it is * safe to start the timer ticking. */ sparc64_start_timers(timer_interrupt); timer_ticks_per_nsec_quotient = (((NSEC_PER_SEC << SPARC64_NSEC_PER_CYC_SHIFT) + (clock / 2)) / clock); #ifdef CONFIG_CPU_FREQ cpufreq_register_notifier(&sparc64_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); #endif } unsigned long long sched_clock(void) { unsigned long ticks = tick_ops->get_tick(); return (ticks * timer_ticks_per_nsec_quotient) >> SPARC64_NSEC_PER_CYC_SHIFT; } static int set_rtc_mmss(unsigned long nowtime) { int real_seconds, real_minutes, chip_minutes; void __iomem *mregs = mstk48t02_regs; #ifdef CONFIG_PCI unsigned long dregs = ds1287_regs; #else unsigned long dregs = 0UL; #endif unsigned long flags; u8 tmp; /* * Not having a register set can lead to trouble. * Also starfire doesn't have a tod clock. */ if (!mregs && !dregs) return -1; if (mregs) { spin_lock_irqsave(&mostek_lock, flags); /* Read the current RTC minutes. */ tmp = mostek_read(mregs + MOSTEK_CREG); tmp |= MSTK_CREG_READ; mostek_write(mregs + MOSTEK_CREG, tmp); chip_minutes = MSTK_REG_MIN(mregs); tmp = mostek_read(mregs + MOSTEK_CREG); tmp &= ~MSTK_CREG_READ; mostek_write(mregs + MOSTEK_CREG, tmp); /* * since we're only adjusting minutes and seconds, * don't interfere with hour overflow. This avoids * messing with unknown time zones but requires your * RTC not to be off by more than 15 minutes */ real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - chip_minutes) + 15)/30) & 1) real_minutes += 30; /* correct for half hour time zone */ real_minutes %= 60; if (abs(real_minutes - chip_minutes) < 30) { tmp = mostek_read(mregs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(mregs + MOSTEK_CREG, tmp); MSTK_SET_REG_SEC(mregs,real_seconds); MSTK_SET_REG_MIN(mregs,real_minutes); tmp = mostek_read(mregs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(mregs + MOSTEK_CREG, tmp); spin_unlock_irqrestore(&mostek_lock, flags); return 0; } else { spin_unlock_irqrestore(&mostek_lock, flags); return -1; } } else { int retval = 0; unsigned char save_control, save_freq_select; /* Stolen from arch/i386/kernel/time.c, see there for * credits and descriptive comments. */ spin_lock_irqsave(&rtc_lock, flags); save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */ CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */ CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); chip_minutes = CMOS_READ(RTC_MINUTES); if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) BCD_TO_BIN(chip_minutes); real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - chip_minutes) + 15)/30) & 1) real_minutes += 30; real_minutes %= 60; if (abs(real_minutes - chip_minutes) < 30) { if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BIN_TO_BCD(real_seconds); BIN_TO_BCD(real_minutes); } CMOS_WRITE(real_seconds,RTC_SECONDS); CMOS_WRITE(real_minutes,RTC_MINUTES); } else { printk(KERN_WARNING "set_rtc_mmss: can't update from %d to %d\n", chip_minutes, real_minutes); retval = -1; } CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); spin_unlock_irqrestore(&rtc_lock, flags); return retval; } } #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */ static unsigned char mini_rtc_status; /* bitmapped status byte. */ /* months start at 0 now */ static unsigned char days_in_mo[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; #define FEBRUARY 2 #define STARTOFTIME 1970 #define SECDAY 86400L #define SECYR (SECDAY * 365) #define leapyear(year) ((year) % 4 == 0 && \ ((year) % 100 != 0 || (year) % 400 == 0)) #define days_in_year(a) (leapyear(a) ? 366 : 365) #define days_in_month(a) (month_days[(a) - 1]) static int month_days[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; /* * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) */ static void GregorianDay(struct rtc_time * tm) { int leapsToDate; int lastYear; int day; int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; lastYear = tm->tm_year - 1; /* * Number of leap corrections to apply up to end of last year */ leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; /* * This year is a leap year if it is divisible by 4 except when it is * divisible by 100 unless it is divisible by 400 * * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was */ day = tm->tm_mon > 2 && leapyear(tm->tm_year); day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + tm->tm_mday; tm->tm_wday = day % 7; } static void to_tm(int tim, struct rtc_time *tm) { register int i; register long hms, day; day = tim / SECDAY; hms = tim % SECDAY; /* Hours, minutes, seconds are easy */ tm->tm_hour = hms / 3600; tm->tm_min = (hms % 3600) / 60; tm->tm_sec = (hms % 3600) % 60; /* Number of years in days */ for (i = STARTOFTIME; day >= days_in_year(i); i++) day -= days_in_year(i); tm->tm_year = i; /* Number of months in days left */ if (leapyear(tm->tm_year)) days_in_month(FEBRUARY) = 29; for (i = 1; day >= days_in_month(i); i++) day -= days_in_month(i); days_in_month(FEBRUARY) = 28; tm->tm_mon = i; /* Days are what is left over (+1) from all that. */ tm->tm_mday = day + 1; /* * Determine the day of week */ GregorianDay(tm); } /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970, * aka Unix time. So we have to convert to/from rtc_time. */ static inline void mini_get_rtc_time(struct rtc_time *time) { unsigned long flags; u32 seconds; spin_lock_irqsave(&rtc_lock, flags); seconds = 0; if (this_is_starfire) seconds = starfire_get_time(); else if (tlb_type == hypervisor) seconds = hypervisor_get_time(); spin_unlock_irqrestore(&rtc_lock, flags); to_tm(seconds, time); time->tm_year -= 1900; time->tm_mon -= 1; } static inline int mini_set_rtc_time(struct rtc_time *time) { u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday, time->tm_hour, time->tm_min, time->tm_sec); unsigned long flags; int err; spin_lock_irqsave(&rtc_lock, flags); err = -ENODEV; if (this_is_starfire) err = starfire_set_time(seconds); else if (tlb_type == hypervisor) err = hypervisor_set_time(seconds); spin_unlock_irqrestore(&rtc_lock, flags); return err; } static int mini_rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct rtc_time wtime; void __user *argp = (void __user *)arg; switch (cmd) { case RTC_PLL_GET: return -EINVAL; case RTC_PLL_SET: return -EINVAL; case RTC_UIE_OFF: /* disable ints from RTC updates. */ return 0; case RTC_UIE_ON: /* enable ints for RTC updates. */ return -EINVAL; case RTC_RD_TIME: /* Read the time/date from RTC */ /* this doesn't get week-day, who cares */ memset(&wtime, 0, sizeof(wtime)); mini_get_rtc_time(&wtime); return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0; case RTC_SET_TIME: /* Set the RTC */ { int year; unsigned char leap_yr; if (!capable(CAP_SYS_TIME)) return -EACCES; if (copy_from_user(&wtime, argp, sizeof(wtime))) return -EFAULT; year = wtime.tm_year + 1900; leap_yr = ((!(year % 4) && (year % 100)) || !(year % 400)); if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) || (wtime.tm_mday < 1)) return -EINVAL; if (wtime.tm_mday < 0 || wtime.tm_mday > (days_in_mo[wtime.tm_mon] + ((wtime.tm_mon == 1) && leap_yr))) return -EINVAL; if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 || wtime.tm_min < 0 || wtime.tm_min >= 60 || wtime.tm_sec < 0 || wtime.tm_sec >= 60) return -EINVAL; return mini_set_rtc_time(&wtime); } } return -EINVAL; } static int mini_rtc_open(struct inode *inode, struct file *file) { if (mini_rtc_status & RTC_IS_OPEN) return -EBUSY; mini_rtc_status |= RTC_IS_OPEN; return 0; } static int mini_rtc_release(struct inode *inode, struct file *file) { mini_rtc_status &= ~RTC_IS_OPEN; return 0; } static struct file_operations mini_rtc_fops = { .owner = THIS_MODULE, .ioctl = mini_rtc_ioctl, .open = mini_rtc_open, .release = mini_rtc_release, }; static struct miscdevice rtc_mini_dev = { .minor = RTC_MINOR, .name = "rtc", .fops = &mini_rtc_fops, }; static int __init rtc_mini_init(void) { int retval; if (tlb_type != hypervisor && !this_is_starfire) return -ENODEV; printk(KERN_INFO "Mini RTC Driver\n"); retval = misc_register(&rtc_mini_dev); if (retval < 0) return retval; return 0; } static void __exit rtc_mini_exit(void) { misc_deregister(&rtc_mini_dev); } module_init(rtc_mini_init); module_exit(rtc_mini_exit);