/* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $ * time.c: UltraSparc timer and TOD clock support. * * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) * * Based largely on code which is: * * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu) */ #include <linux/errno.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/mc146818rtc.h> #include <linux/delay.h> #include <linux/profile.h> #include <linux/bcd.h> #include <linux/jiffies.h> #include <linux/cpufreq.h> #include <linux/percpu.h> #include <linux/profile.h> #include <linux/miscdevice.h> #include <linux/rtc.h> #include <linux/kernel_stat.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <asm/oplib.h> #include <asm/mostek.h> #include <asm/timer.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/prom.h> #include <asm/of_device.h> #include <asm/starfire.h> #include <asm/smp.h> #include <asm/sections.h> #include <asm/cpudata.h> #include <asm/uaccess.h> #include <asm/prom.h> #include <asm/irq_regs.h> DEFINE_SPINLOCK(mostek_lock); DEFINE_SPINLOCK(rtc_lock); void __iomem *mstk48t02_regs = NULL; #ifdef CONFIG_PCI unsigned long ds1287_regs = 0UL; static void __iomem *bq4802_regs; #endif static void __iomem *mstk48t08_regs; static void __iomem *mstk48t59_regs; static int set_rtc_mmss(unsigned long); #define TICK_PRIV_BIT (1UL << 63) #define TICKCMP_IRQ_BIT (1UL << 63) #ifdef CONFIG_SMP unsigned long profile_pc(struct pt_regs *regs) { unsigned long pc = instruction_pointer(regs); if (in_lock_functions(pc)) return regs->u_regs[UREG_RETPC]; return pc; } EXPORT_SYMBOL(profile_pc); #endif static void tick_disable_protection(void) { /* Set things up so user can access tick register for profiling * purposes. Also workaround BB_ERRATA_1 by doing a dummy * read back of %tick after writing it. */ __asm__ __volatile__( " ba,pt %%xcc, 1f\n" " nop\n" " .align 64\n" "1: rd %%tick, %%g2\n" " add %%g2, 6, %%g2\n" " andn %%g2, %0, %%g2\n" " wrpr %%g2, 0, %%tick\n" " rdpr %%tick, %%g0" : /* no outputs */ : "r" (TICK_PRIV_BIT) : "g2"); } static void tick_disable_irq(void) { __asm__ __volatile__( " ba,pt %%xcc, 1f\n" " nop\n" " .align 64\n" "1: wr %0, 0x0, %%tick_cmpr\n" " rd %%tick_cmpr, %%g0" : /* no outputs */ : "r" (TICKCMP_IRQ_BIT)); } static void tick_init_tick(void) { tick_disable_protection(); tick_disable_irq(); } static unsigned long tick_get_tick(void) { unsigned long ret; __asm__ __volatile__("rd %%tick, %0\n\t" "mov %0, %0" : "=r" (ret)); return ret & ~TICK_PRIV_BIT; } static int tick_add_compare(unsigned long adj) { unsigned long orig_tick, new_tick, new_compare; __asm__ __volatile__("rd %%tick, %0" : "=r" (orig_tick)); orig_tick &= ~TICKCMP_IRQ_BIT; /* Workaround for Spitfire Errata (#54 I think??), I discovered * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch * number 103640. * * On Blackbird writes to %tick_cmpr can fail, the * workaround seems to be to execute the wr instruction * at the start of an I-cache line, and perform a dummy * read back from %tick_cmpr right after writing to it. -DaveM */ __asm__ __volatile__("ba,pt %%xcc, 1f\n\t" " add %1, %2, %0\n\t" ".align 64\n" "1:\n\t" "wr %0, 0, %%tick_cmpr\n\t" "rd %%tick_cmpr, %%g0\n\t" : "=r" (new_compare) : "r" (orig_tick), "r" (adj)); __asm__ __volatile__("rd %%tick, %0" : "=r" (new_tick)); new_tick &= ~TICKCMP_IRQ_BIT; return ((long)(new_tick - (orig_tick+adj))) > 0L; } static unsigned long tick_add_tick(unsigned long adj) { unsigned long new_tick; /* Also need to handle Blackbird bug here too. */ __asm__ __volatile__("rd %%tick, %0\n\t" "add %0, %1, %0\n\t" "wrpr %0, 0, %%tick\n\t" : "=&r" (new_tick) : "r" (adj)); return new_tick; } static struct sparc64_tick_ops tick_operations __read_mostly = { .name = "tick", .init_tick = tick_init_tick, .disable_irq = tick_disable_irq, .get_tick = tick_get_tick, .add_tick = tick_add_tick, .add_compare = tick_add_compare, .softint_mask = 1UL << 0, }; struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations; static void stick_disable_irq(void) { __asm__ __volatile__( "wr %0, 0x0, %%asr25" : /* no outputs */ : "r" (TICKCMP_IRQ_BIT)); } static void stick_init_tick(void) { /* Writes to the %tick and %stick register are not * allowed on sun4v. The Hypervisor controls that * bit, per-strand. */ if (tlb_type != hypervisor) { tick_disable_protection(); tick_disable_irq(); /* Let the user get at STICK too. */ __asm__ __volatile__( " rd %%asr24, %%g2\n" " andn %%g2, %0, %%g2\n" " wr %%g2, 0, %%asr24" : /* no outputs */ : "r" (TICK_PRIV_BIT) : "g1", "g2"); } stick_disable_irq(); } static unsigned long stick_get_tick(void) { unsigned long ret; __asm__ __volatile__("rd %%asr24, %0" : "=r" (ret)); return ret & ~TICK_PRIV_BIT; } static unsigned long stick_add_tick(unsigned long adj) { unsigned long new_tick; __asm__ __volatile__("rd %%asr24, %0\n\t" "add %0, %1, %0\n\t" "wr %0, 0, %%asr24\n\t" : "=&r" (new_tick) : "r" (adj)); return new_tick; } static int stick_add_compare(unsigned long adj) { unsigned long orig_tick, new_tick; __asm__ __volatile__("rd %%asr24, %0" : "=r" (orig_tick)); orig_tick &= ~TICKCMP_IRQ_BIT; __asm__ __volatile__("wr %0, 0, %%asr25" : /* no outputs */ : "r" (orig_tick + adj)); __asm__ __volatile__("rd %%asr24, %0" : "=r" (new_tick)); new_tick &= ~TICKCMP_IRQ_BIT; return ((long)(new_tick - (orig_tick+adj))) > 0L; } static struct sparc64_tick_ops stick_operations __read_mostly = { .name = "stick", .init_tick = stick_init_tick, .disable_irq = stick_disable_irq, .get_tick = stick_get_tick, .add_tick = stick_add_tick, .add_compare = stick_add_compare, .softint_mask = 1UL << 16, }; /* On Hummingbird the STICK/STICK_CMPR register is implemented * in I/O space. There are two 64-bit registers each, the * first holds the low 32-bits of the value and the second holds * the high 32-bits. * * Since STICK is constantly updating, we have to access it carefully. * * The sequence we use to read is: * 1) read high * 2) read low * 3) read high again, if it rolled re-read both low and high again. * * Writing STICK safely is also tricky: * 1) write low to zero * 2) write high * 3) write low */ #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL #define HBIRD_STICK_ADDR 0x1fe0000f070UL static unsigned long __hbird_read_stick(void) { unsigned long ret, tmp1, tmp2, tmp3; unsigned long addr = HBIRD_STICK_ADDR+8; __asm__ __volatile__("ldxa [%1] %5, %2\n" "1:\n\t" "sub %1, 0x8, %1\n\t" "ldxa [%1] %5, %3\n\t" "add %1, 0x8, %1\n\t" "ldxa [%1] %5, %4\n\t" "cmp %4, %2\n\t" "bne,a,pn %%xcc, 1b\n\t" " mov %4, %2\n\t" "sllx %4, 32, %4\n\t" "or %3, %4, %0\n\t" : "=&r" (ret), "=&r" (addr), "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3) : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr)); return ret; } static void __hbird_write_stick(unsigned long val) { unsigned long low = (val & 0xffffffffUL); unsigned long high = (val >> 32UL); unsigned long addr = HBIRD_STICK_ADDR; __asm__ __volatile__("stxa %%g0, [%0] %4\n\t" "add %0, 0x8, %0\n\t" "stxa %3, [%0] %4\n\t" "sub %0, 0x8, %0\n\t" "stxa %2, [%0] %4" : "=&r" (addr) : "0" (addr), "r" (low), "r" (high), "i" (ASI_PHYS_BYPASS_EC_E)); } static void __hbird_write_compare(unsigned long val) { unsigned long low = (val & 0xffffffffUL); unsigned long high = (val >> 32UL); unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL; __asm__ __volatile__("stxa %3, [%0] %4\n\t" "sub %0, 0x8, %0\n\t" "stxa %2, [%0] %4" : "=&r" (addr) : "0" (addr), "r" (low), "r" (high), "i" (ASI_PHYS_BYPASS_EC_E)); } static void hbtick_disable_irq(void) { __hbird_write_compare(TICKCMP_IRQ_BIT); } static void hbtick_init_tick(void) { tick_disable_protection(); /* XXX This seems to be necessary to 'jumpstart' Hummingbird * XXX into actually sending STICK interrupts. I think because * XXX of how we store %tick_cmpr in head.S this somehow resets the * XXX {TICK + STICK} interrupt mux. -DaveM */ __hbird_write_stick(__hbird_read_stick()); hbtick_disable_irq(); } static unsigned long hbtick_get_tick(void) { return __hbird_read_stick() & ~TICK_PRIV_BIT; } static unsigned long hbtick_add_tick(unsigned long adj) { unsigned long val; val = __hbird_read_stick() + adj; __hbird_write_stick(val); return val; } static int hbtick_add_compare(unsigned long adj) { unsigned long val = __hbird_read_stick(); unsigned long val2; val &= ~TICKCMP_IRQ_BIT; val += adj; __hbird_write_compare(val); val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT; return ((long)(val2 - val)) > 0L; } static struct sparc64_tick_ops hbtick_operations __read_mostly = { .name = "hbtick", .init_tick = hbtick_init_tick, .disable_irq = hbtick_disable_irq, .get_tick = hbtick_get_tick, .add_tick = hbtick_add_tick, .add_compare = hbtick_add_compare, .softint_mask = 1UL << 0, }; static unsigned long timer_ticks_per_nsec_quotient __read_mostly; int update_persistent_clock(struct timespec now) { return set_rtc_mmss(now.tv_sec); } /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */ static void __init kick_start_clock(void) { void __iomem *regs = mstk48t02_regs; u8 sec, tmp; int i, count; prom_printf("CLOCK: Clock was stopped. Kick start "); spin_lock_irq(&mostek_lock); /* Turn on the kick start bit to start the oscillator. */ tmp = mostek_read(regs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); tmp = mostek_read(regs + MOSTEK_SEC); tmp &= ~MSTK_STOP; mostek_write(regs + MOSTEK_SEC, tmp); tmp = mostek_read(regs + MOSTEK_HOUR); tmp |= MSTK_KICK_START; mostek_write(regs + MOSTEK_HOUR, tmp); tmp = mostek_read(regs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); /* Delay to allow the clock oscillator to start. */ sec = MSTK_REG_SEC(regs); for (i = 0; i < 3; i++) { while (sec == MSTK_REG_SEC(regs)) for (count = 0; count < 100000; count++) /* nothing */ ; prom_printf("."); sec = MSTK_REG_SEC(regs); } prom_printf("\n"); spin_lock_irq(&mostek_lock); /* Turn off kick start and set a "valid" time and date. */ tmp = mostek_read(regs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); tmp = mostek_read(regs + MOSTEK_HOUR); tmp &= ~MSTK_KICK_START; mostek_write(regs + MOSTEK_HOUR, tmp); MSTK_SET_REG_SEC(regs,0); MSTK_SET_REG_MIN(regs,0); MSTK_SET_REG_HOUR(regs,0); MSTK_SET_REG_DOW(regs,5); MSTK_SET_REG_DOM(regs,1); MSTK_SET_REG_MONTH(regs,8); MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO); tmp = mostek_read(regs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); /* Ensure the kick start bit is off. If it isn't, turn it off. */ while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) { prom_printf("CLOCK: Kick start still on!\n"); spin_lock_irq(&mostek_lock); tmp = mostek_read(regs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); tmp = mostek_read(regs + MOSTEK_HOUR); tmp &= ~MSTK_KICK_START; mostek_write(regs + MOSTEK_HOUR, tmp); tmp = mostek_read(regs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); } prom_printf("CLOCK: Kick start procedure successful.\n"); } /* Return nonzero if the clock chip battery is low. */ static int __init has_low_battery(void) { void __iomem *regs = mstk48t02_regs; u8 data1, data2; spin_lock_irq(&mostek_lock); data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */ mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */ data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */ mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */ spin_unlock_irq(&mostek_lock); return (data1 == data2); /* Was the write blocked? */ } /* Probe for the real time clock chip. */ static void __init set_system_time(void) { unsigned int year, mon, day, hour, min, sec; void __iomem *mregs = mstk48t02_regs; #ifdef CONFIG_PCI unsigned long dregs = ds1287_regs; void __iomem *bregs = bq4802_regs; #else unsigned long dregs = 0UL; void __iomem *bregs = 0UL; #endif u8 tmp; if (!mregs && !dregs && !bregs) { prom_printf("Something wrong, clock regs not mapped yet.\n"); prom_halt(); } if (mregs) { spin_lock_irq(&mostek_lock); /* Traditional Mostek chip. */ tmp = mostek_read(mregs + MOSTEK_CREG); tmp |= MSTK_CREG_READ; mostek_write(mregs + MOSTEK_CREG, tmp); sec = MSTK_REG_SEC(mregs); min = MSTK_REG_MIN(mregs); hour = MSTK_REG_HOUR(mregs); day = MSTK_REG_DOM(mregs); mon = MSTK_REG_MONTH(mregs); year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) ); } else if (bregs) { unsigned char val = readb(bregs + 0x0e); unsigned int century; /* BQ4802 RTC chip. */ writeb(val | 0x08, bregs + 0x0e); sec = readb(bregs + 0x00); min = readb(bregs + 0x02); hour = readb(bregs + 0x04); day = readb(bregs + 0x06); mon = readb(bregs + 0x09); year = readb(bregs + 0x0a); century = readb(bregs + 0x0f); writeb(val, bregs + 0x0e); BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); BCD_TO_BIN(century); year += (century * 100); } else { /* Dallas 12887 RTC chip. */ do { sec = CMOS_READ(RTC_SECONDS); min = CMOS_READ(RTC_MINUTES); hour = CMOS_READ(RTC_HOURS); day = CMOS_READ(RTC_DAY_OF_MONTH); mon = CMOS_READ(RTC_MONTH); year = CMOS_READ(RTC_YEAR); } while (sec != CMOS_READ(RTC_SECONDS)); if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); } if ((year += 1900) < 1970) year += 100; } xtime.tv_sec = mktime(year, mon, day, hour, min, sec); xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); if (mregs) { tmp = mostek_read(mregs + MOSTEK_CREG); tmp &= ~MSTK_CREG_READ; mostek_write(mregs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); } } /* davem suggests we keep this within the 4M locked kernel image */ static u32 starfire_get_time(void) { static char obp_gettod[32]; static u32 unix_tod; sprintf(obp_gettod, "h# %08x unix-gettod", (unsigned int) (long) &unix_tod); prom_feval(obp_gettod); return unix_tod; } static int starfire_set_time(u32 val) { /* Do nothing, time is set using the service processor * console on this platform. */ return 0; } static u32 hypervisor_get_time(void) { unsigned long ret, time; int retries = 10000; retry: ret = sun4v_tod_get(&time); if (ret == HV_EOK) return time; if (ret == HV_EWOULDBLOCK) { if (--retries > 0) { udelay(100); goto retry; } printk(KERN_WARNING "SUN4V: tod_get() timed out.\n"); return 0; } printk(KERN_WARNING "SUN4V: tod_get() not supported.\n"); return 0; } static int hypervisor_set_time(u32 secs) { unsigned long ret; int retries = 10000; retry: ret = sun4v_tod_set(secs); if (ret == HV_EOK) return 0; if (ret == HV_EWOULDBLOCK) { if (--retries > 0) { udelay(100); goto retry; } printk(KERN_WARNING "SUN4V: tod_set() timed out.\n"); return -EAGAIN; } printk(KERN_WARNING "SUN4V: tod_set() not supported.\n"); return -EOPNOTSUPP; } static int __init clock_model_matches(const char *model) { if (strcmp(model, "mk48t02") && strcmp(model, "mk48t08") && strcmp(model, "mk48t59") && strcmp(model, "m5819") && strcmp(model, "m5819p") && strcmp(model, "m5823") && strcmp(model, "ds1287") && strcmp(model, "bq4802")) return 0; return 1; } static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match) { struct device_node *dp = op->node; const char *model = of_get_property(dp, "model", NULL); const char *compat = of_get_property(dp, "compatible", NULL); unsigned long size, flags; void __iomem *regs; if (!model) model = compat; if (!model || !clock_model_matches(model)) return -ENODEV; /* On an Enterprise system there can be multiple mostek clocks. * We should only match the one that is on the central FHC bus. */ if (!strcmp(dp->parent->name, "fhc") && strcmp(dp->parent->parent->name, "central") != 0) return -ENODEV; size = (op->resource[0].end - op->resource[0].start) + 1; regs = of_ioremap(&op->resource[0], 0, size, "clock"); if (!regs) return -ENOMEM; #ifdef CONFIG_PCI if (!strcmp(model, "ds1287") || !strcmp(model, "m5819") || !strcmp(model, "m5819p") || !strcmp(model, "m5823")) { ds1287_regs = (unsigned long) regs; } else if (!strcmp(model, "bq4802")) { bq4802_regs = regs; } else #endif if (model[5] == '0' && model[6] == '2') { mstk48t02_regs = regs; } else if(model[5] == '0' && model[6] == '8') { mstk48t08_regs = regs; mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02; } else { mstk48t59_regs = regs; mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02; } printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs); local_irq_save(flags); if (mstk48t02_regs != NULL) { /* Report a low battery voltage condition. */ if (has_low_battery()) prom_printf("NVRAM: Low battery voltage!\n"); /* Kick start the clock if it is completely stopped. */ if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP) kick_start_clock(); } set_system_time(); local_irq_restore(flags); return 0; } static struct of_device_id clock_match[] = { { .name = "eeprom", }, { .name = "rtc", }, {}, }; static struct of_platform_driver clock_driver = { .match_table = clock_match, .probe = clock_probe, .driver = { .name = "clock", }, }; static int __init clock_init(void) { if (this_is_starfire) { xtime.tv_sec = starfire_get_time(); xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); return 0; } if (tlb_type == hypervisor) { xtime.tv_sec = hypervisor_get_time(); xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); return 0; } return of_register_driver(&clock_driver, &of_platform_bus_type); } /* Must be after subsys_initcall() so that busses are probed. Must * be before device_initcall() because things like the RTC driver * need to see the clock registers. */ fs_initcall(clock_init); /* This is gets the master TICK_INT timer going. */ static unsigned long sparc64_init_timers(void) { struct device_node *dp; unsigned long clock; dp = of_find_node_by_path("/"); if (tlb_type == spitfire) { unsigned long ver, manuf, impl; __asm__ __volatile__ ("rdpr %%ver, %0" : "=&r" (ver)); manuf = ((ver >> 48) & 0xffff); impl = ((ver >> 32) & 0xffff); if (manuf == 0x17 && impl == 0x13) { /* Hummingbird, aka Ultra-IIe */ tick_ops = &hbtick_operations; clock = of_getintprop_default(dp, "stick-frequency", 0); } else { tick_ops = &tick_operations; clock = local_cpu_data().clock_tick; } } else { tick_ops = &stick_operations; clock = of_getintprop_default(dp, "stick-frequency", 0); } return clock; } struct freq_table { unsigned long clock_tick_ref; unsigned int ref_freq; }; static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 }; unsigned long sparc64_get_clock_tick(unsigned int cpu) { struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu); if (ft->clock_tick_ref) return ft->clock_tick_ref; return cpu_data(cpu).clock_tick; } #ifdef CONFIG_CPU_FREQ static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; unsigned int cpu = freq->cpu; struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu); if (!ft->ref_freq) { ft->ref_freq = freq->old; ft->clock_tick_ref = cpu_data(cpu).clock_tick; } if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || (val == CPUFREQ_RESUMECHANGE)) { cpu_data(cpu).clock_tick = cpufreq_scale(ft->clock_tick_ref, ft->ref_freq, freq->new); } return 0; } static struct notifier_block sparc64_cpufreq_notifier_block = { .notifier_call = sparc64_cpufreq_notifier }; #endif /* CONFIG_CPU_FREQ */ static int sparc64_next_event(unsigned long delta, struct clock_event_device *evt) { return tick_ops->add_compare(delta) ? -ETIME : 0; } static void sparc64_timer_setup(enum clock_event_mode mode, struct clock_event_device *evt) { switch (mode) { case CLOCK_EVT_MODE_ONESHOT: case CLOCK_EVT_MODE_RESUME: break; case CLOCK_EVT_MODE_SHUTDOWN: tick_ops->disable_irq(); break; case CLOCK_EVT_MODE_PERIODIC: case CLOCK_EVT_MODE_UNUSED: WARN_ON(1); break; }; } static struct clock_event_device sparc64_clockevent = { .features = CLOCK_EVT_FEAT_ONESHOT, .set_mode = sparc64_timer_setup, .set_next_event = sparc64_next_event, .rating = 100, .shift = 30, .irq = -1, }; static DEFINE_PER_CPU(struct clock_event_device, sparc64_events); void timer_interrupt(int irq, struct pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs(regs); unsigned long tick_mask = tick_ops->softint_mask; int cpu = smp_processor_id(); struct clock_event_device *evt = &per_cpu(sparc64_events, cpu); clear_softint(tick_mask); irq_enter(); kstat_this_cpu.irqs[0]++; if (unlikely(!evt->event_handler)) { printk(KERN_WARNING "Spurious SPARC64 timer interrupt on cpu %d\n", cpu); } else evt->event_handler(evt); irq_exit(); set_irq_regs(old_regs); } void __devinit setup_sparc64_timer(void) { struct clock_event_device *sevt; unsigned long pstate; /* Guarantee that the following sequences execute * uninterrupted. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); tick_ops->init_tick(); /* Restore PSTATE_IE. */ __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : /* no outputs */ : "r" (pstate)); sevt = &__get_cpu_var(sparc64_events); memcpy(sevt, &sparc64_clockevent, sizeof(*sevt)); sevt->cpumask = cpumask_of_cpu(smp_processor_id()); clockevents_register_device(sevt); } #define SPARC64_NSEC_PER_CYC_SHIFT 10UL static struct clocksource clocksource_tick = { .rating = 100, .mask = CLOCKSOURCE_MASK(64), .shift = 16, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static void __init setup_clockevent_multiplier(unsigned long hz) { unsigned long mult, shift = 32; while (1) { mult = div_sc(hz, NSEC_PER_SEC, shift); if (mult && (mult >> 32UL) == 0UL) break; shift--; } sparc64_clockevent.shift = shift; sparc64_clockevent.mult = mult; } static unsigned long tb_ticks_per_usec __read_mostly; void __delay(unsigned long loops) { unsigned long bclock, now; bclock = tick_ops->get_tick(); do { now = tick_ops->get_tick(); } while ((now-bclock) < loops); } EXPORT_SYMBOL(__delay); void udelay(unsigned long usecs) { __delay(tb_ticks_per_usec * usecs); } EXPORT_SYMBOL(udelay); void __init time_init(void) { unsigned long clock = sparc64_init_timers(); tb_ticks_per_usec = clock / USEC_PER_SEC; timer_ticks_per_nsec_quotient = clocksource_hz2mult(clock, SPARC64_NSEC_PER_CYC_SHIFT); clocksource_tick.name = tick_ops->name; clocksource_tick.mult = clocksource_hz2mult(clock, clocksource_tick.shift); clocksource_tick.read = tick_ops->get_tick; printk("clocksource: mult[%x] shift[%d]\n", clocksource_tick.mult, clocksource_tick.shift); clocksource_register(&clocksource_tick); sparc64_clockevent.name = tick_ops->name; setup_clockevent_multiplier(clock); sparc64_clockevent.max_delta_ns = clockevent_delta2ns(0x7fffffffffffffff, &sparc64_clockevent); sparc64_clockevent.min_delta_ns = clockevent_delta2ns(0xF, &sparc64_clockevent); printk("clockevent: mult[%lx] shift[%d]\n", sparc64_clockevent.mult, sparc64_clockevent.shift); setup_sparc64_timer(); #ifdef CONFIG_CPU_FREQ cpufreq_register_notifier(&sparc64_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); #endif } unsigned long long sched_clock(void) { unsigned long ticks = tick_ops->get_tick(); return (ticks * timer_ticks_per_nsec_quotient) >> SPARC64_NSEC_PER_CYC_SHIFT; } static int set_rtc_mmss(unsigned long nowtime) { int real_seconds, real_minutes, chip_minutes; void __iomem *mregs = mstk48t02_regs; #ifdef CONFIG_PCI unsigned long dregs = ds1287_regs; void __iomem *bregs = bq4802_regs; #else unsigned long dregs = 0UL; void __iomem *bregs = 0UL; #endif unsigned long flags; u8 tmp; /* * Not having a register set can lead to trouble. * Also starfire doesn't have a tod clock. */ if (!mregs && !dregs & !bregs) return -1; if (mregs) { spin_lock_irqsave(&mostek_lock, flags); /* Read the current RTC minutes. */ tmp = mostek_read(mregs + MOSTEK_CREG); tmp |= MSTK_CREG_READ; mostek_write(mregs + MOSTEK_CREG, tmp); chip_minutes = MSTK_REG_MIN(mregs); tmp = mostek_read(mregs + MOSTEK_CREG); tmp &= ~MSTK_CREG_READ; mostek_write(mregs + MOSTEK_CREG, tmp); /* * since we're only adjusting minutes and seconds, * don't interfere with hour overflow. This avoids * messing with unknown time zones but requires your * RTC not to be off by more than 15 minutes */ real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - chip_minutes) + 15)/30) & 1) real_minutes += 30; /* correct for half hour time zone */ real_minutes %= 60; if (abs(real_minutes - chip_minutes) < 30) { tmp = mostek_read(mregs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(mregs + MOSTEK_CREG, tmp); MSTK_SET_REG_SEC(mregs,real_seconds); MSTK_SET_REG_MIN(mregs,real_minutes); tmp = mostek_read(mregs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(mregs + MOSTEK_CREG, tmp); spin_unlock_irqrestore(&mostek_lock, flags); return 0; } else { spin_unlock_irqrestore(&mostek_lock, flags); return -1; } } else if (bregs) { int retval = 0; unsigned char val = readb(bregs + 0x0e); /* BQ4802 RTC chip. */ writeb(val | 0x08, bregs + 0x0e); chip_minutes = readb(bregs + 0x02); BCD_TO_BIN(chip_minutes); real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - chip_minutes) + 15)/30) & 1) real_minutes += 30; real_minutes %= 60; if (abs(real_minutes - chip_minutes) < 30) { BIN_TO_BCD(real_seconds); BIN_TO_BCD(real_minutes); writeb(real_seconds, bregs + 0x00); writeb(real_minutes, bregs + 0x02); } else { printk(KERN_WARNING "set_rtc_mmss: can't update from %d to %d\n", chip_minutes, real_minutes); retval = -1; } writeb(val, bregs + 0x0e); return retval; } else { int retval = 0; unsigned char save_control, save_freq_select; /* Stolen from arch/i386/kernel/time.c, see there for * credits and descriptive comments. */ spin_lock_irqsave(&rtc_lock, flags); save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */ CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */ CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); chip_minutes = CMOS_READ(RTC_MINUTES); if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) BCD_TO_BIN(chip_minutes); real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - chip_minutes) + 15)/30) & 1) real_minutes += 30; real_minutes %= 60; if (abs(real_minutes - chip_minutes) < 30) { if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BIN_TO_BCD(real_seconds); BIN_TO_BCD(real_minutes); } CMOS_WRITE(real_seconds,RTC_SECONDS); CMOS_WRITE(real_minutes,RTC_MINUTES); } else { printk(KERN_WARNING "set_rtc_mmss: can't update from %d to %d\n", chip_minutes, real_minutes); retval = -1; } CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); spin_unlock_irqrestore(&rtc_lock, flags); return retval; } } #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */ static unsigned char mini_rtc_status; /* bitmapped status byte. */ #define FEBRUARY 2 #define STARTOFTIME 1970 #define SECDAY 86400L #define SECYR (SECDAY * 365) #define leapyear(year) ((year) % 4 == 0 && \ ((year) % 100 != 0 || (year) % 400 == 0)) #define days_in_year(a) (leapyear(a) ? 366 : 365) #define days_in_month(a) (month_days[(a) - 1]) static int month_days[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; /* * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) */ static void GregorianDay(struct rtc_time * tm) { int leapsToDate; int lastYear; int day; int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; lastYear = tm->tm_year - 1; /* * Number of leap corrections to apply up to end of last year */ leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; /* * This year is a leap year if it is divisible by 4 except when it is * divisible by 100 unless it is divisible by 400 * * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was */ day = tm->tm_mon > 2 && leapyear(tm->tm_year); day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + tm->tm_mday; tm->tm_wday = day % 7; } static void to_tm(int tim, struct rtc_time *tm) { register int i; register long hms, day; day = tim / SECDAY; hms = tim % SECDAY; /* Hours, minutes, seconds are easy */ tm->tm_hour = hms / 3600; tm->tm_min = (hms % 3600) / 60; tm->tm_sec = (hms % 3600) % 60; /* Number of years in days */ for (i = STARTOFTIME; day >= days_in_year(i); i++) day -= days_in_year(i); tm->tm_year = i; /* Number of months in days left */ if (leapyear(tm->tm_year)) days_in_month(FEBRUARY) = 29; for (i = 1; day >= days_in_month(i); i++) day -= days_in_month(i); days_in_month(FEBRUARY) = 28; tm->tm_mon = i; /* Days are what is left over (+1) from all that. */ tm->tm_mday = day + 1; /* * Determine the day of week */ GregorianDay(tm); } /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970, * aka Unix time. So we have to convert to/from rtc_time. */ static void starfire_get_rtc_time(struct rtc_time *time) { u32 seconds = starfire_get_time(); to_tm(seconds, time); time->tm_year -= 1900; time->tm_mon -= 1; } static int starfire_set_rtc_time(struct rtc_time *time) { u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday, time->tm_hour, time->tm_min, time->tm_sec); return starfire_set_time(seconds); } static void hypervisor_get_rtc_time(struct rtc_time *time) { u32 seconds = hypervisor_get_time(); to_tm(seconds, time); time->tm_year -= 1900; time->tm_mon -= 1; } static int hypervisor_set_rtc_time(struct rtc_time *time) { u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday, time->tm_hour, time->tm_min, time->tm_sec); return hypervisor_set_time(seconds); } #ifdef CONFIG_PCI static void bq4802_get_rtc_time(struct rtc_time *time) { unsigned char val = readb(bq4802_regs + 0x0e); unsigned int century; writeb(val | 0x08, bq4802_regs + 0x0e); time->tm_sec = readb(bq4802_regs + 0x00); time->tm_min = readb(bq4802_regs + 0x02); time->tm_hour = readb(bq4802_regs + 0x04); time->tm_mday = readb(bq4802_regs + 0x06); time->tm_mon = readb(bq4802_regs + 0x09); time->tm_year = readb(bq4802_regs + 0x0a); time->tm_wday = readb(bq4802_regs + 0x08); century = readb(bq4802_regs + 0x0f); writeb(val, bq4802_regs + 0x0e); BCD_TO_BIN(time->tm_sec); BCD_TO_BIN(time->tm_min); BCD_TO_BIN(time->tm_hour); BCD_TO_BIN(time->tm_mday); BCD_TO_BIN(time->tm_mon); BCD_TO_BIN(time->tm_year); BCD_TO_BIN(time->tm_wday); BCD_TO_BIN(century); time->tm_year += (century * 100); time->tm_year -= 1900; time->tm_mon--; } static int bq4802_set_rtc_time(struct rtc_time *time) { unsigned char val = readb(bq4802_regs + 0x0e); unsigned char sec, min, hrs, day, mon, yrs, century; unsigned int year; year = time->tm_year + 1900; century = year / 100; yrs = year % 100; mon = time->tm_mon + 1; /* tm_mon starts at zero */ day = time->tm_mday; hrs = time->tm_hour; min = time->tm_min; sec = time->tm_sec; BIN_TO_BCD(sec); BIN_TO_BCD(min); BIN_TO_BCD(hrs); BIN_TO_BCD(day); BIN_TO_BCD(mon); BIN_TO_BCD(yrs); BIN_TO_BCD(century); writeb(val | 0x08, bq4802_regs + 0x0e); writeb(sec, bq4802_regs + 0x00); writeb(min, bq4802_regs + 0x02); writeb(hrs, bq4802_regs + 0x04); writeb(day, bq4802_regs + 0x06); writeb(mon, bq4802_regs + 0x09); writeb(yrs, bq4802_regs + 0x0a); writeb(century, bq4802_regs + 0x0f); writeb(val, bq4802_regs + 0x0e); return 0; } static void cmos_get_rtc_time(struct rtc_time *rtc_tm) { unsigned char ctrl; rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS); rtc_tm->tm_min = CMOS_READ(RTC_MINUTES); rtc_tm->tm_hour = CMOS_READ(RTC_HOURS); rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH); rtc_tm->tm_mon = CMOS_READ(RTC_MONTH); rtc_tm->tm_year = CMOS_READ(RTC_YEAR); rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK); ctrl = CMOS_READ(RTC_CONTROL); if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BCD_TO_BIN(rtc_tm->tm_sec); BCD_TO_BIN(rtc_tm->tm_min); BCD_TO_BIN(rtc_tm->tm_hour); BCD_TO_BIN(rtc_tm->tm_mday); BCD_TO_BIN(rtc_tm->tm_mon); BCD_TO_BIN(rtc_tm->tm_year); BCD_TO_BIN(rtc_tm->tm_wday); } if (rtc_tm->tm_year <= 69) rtc_tm->tm_year += 100; rtc_tm->tm_mon--; } static int cmos_set_rtc_time(struct rtc_time *rtc_tm) { unsigned char mon, day, hrs, min, sec; unsigned char save_control, save_freq_select; unsigned int yrs; yrs = rtc_tm->tm_year; mon = rtc_tm->tm_mon + 1; day = rtc_tm->tm_mday; hrs = rtc_tm->tm_hour; min = rtc_tm->tm_min; sec = rtc_tm->tm_sec; if (yrs >= 100) yrs -= 100; if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BIN_TO_BCD(sec); BIN_TO_BCD(min); BIN_TO_BCD(hrs); BIN_TO_BCD(day); BIN_TO_BCD(mon); BIN_TO_BCD(yrs); } save_control = CMOS_READ(RTC_CONTROL); CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); save_freq_select = CMOS_READ(RTC_FREQ_SELECT); CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); CMOS_WRITE(yrs, RTC_YEAR); CMOS_WRITE(mon, RTC_MONTH); CMOS_WRITE(day, RTC_DAY_OF_MONTH); CMOS_WRITE(hrs, RTC_HOURS); CMOS_WRITE(min, RTC_MINUTES); CMOS_WRITE(sec, RTC_SECONDS); CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); return 0; } #endif /* CONFIG_PCI */ static void mostek_get_rtc_time(struct rtc_time *rtc_tm) { void __iomem *regs = mstk48t02_regs; u8 tmp; spin_lock_irq(&mostek_lock); tmp = mostek_read(regs + MOSTEK_CREG); tmp |= MSTK_CREG_READ; mostek_write(regs + MOSTEK_CREG, tmp); rtc_tm->tm_sec = MSTK_REG_SEC(regs); rtc_tm->tm_min = MSTK_REG_MIN(regs); rtc_tm->tm_hour = MSTK_REG_HOUR(regs); rtc_tm->tm_mday = MSTK_REG_DOM(regs); rtc_tm->tm_mon = MSTK_REG_MONTH(regs); rtc_tm->tm_year = MSTK_CVT_YEAR( MSTK_REG_YEAR(regs) ); rtc_tm->tm_wday = MSTK_REG_DOW(regs); tmp = mostek_read(regs + MOSTEK_CREG); tmp &= ~MSTK_CREG_READ; mostek_write(regs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); rtc_tm->tm_mon--; rtc_tm->tm_wday--; rtc_tm->tm_year -= 1900; } static int mostek_set_rtc_time(struct rtc_time *rtc_tm) { unsigned char mon, day, hrs, min, sec, wday; void __iomem *regs = mstk48t02_regs; unsigned int yrs; u8 tmp; yrs = rtc_tm->tm_year + 1900; mon = rtc_tm->tm_mon + 1; day = rtc_tm->tm_mday; wday = rtc_tm->tm_wday + 1; hrs = rtc_tm->tm_hour; min = rtc_tm->tm_min; sec = rtc_tm->tm_sec; spin_lock_irq(&mostek_lock); tmp = mostek_read(regs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); MSTK_SET_REG_SEC(regs, sec); MSTK_SET_REG_MIN(regs, min); MSTK_SET_REG_HOUR(regs, hrs); MSTK_SET_REG_DOW(regs, wday); MSTK_SET_REG_DOM(regs, day); MSTK_SET_REG_MONTH(regs, mon); MSTK_SET_REG_YEAR(regs, yrs - MSTK_YEAR_ZERO); tmp = mostek_read(regs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); return 0; } struct mini_rtc_ops { void (*get_rtc_time)(struct rtc_time *); int (*set_rtc_time)(struct rtc_time *); }; static struct mini_rtc_ops starfire_rtc_ops = { .get_rtc_time = starfire_get_rtc_time, .set_rtc_time = starfire_set_rtc_time, }; static struct mini_rtc_ops hypervisor_rtc_ops = { .get_rtc_time = hypervisor_get_rtc_time, .set_rtc_time = hypervisor_set_rtc_time, }; #ifdef CONFIG_PCI static struct mini_rtc_ops bq4802_rtc_ops = { .get_rtc_time = bq4802_get_rtc_time, .set_rtc_time = bq4802_set_rtc_time, }; static struct mini_rtc_ops cmos_rtc_ops = { .get_rtc_time = cmos_get_rtc_time, .set_rtc_time = cmos_set_rtc_time, }; #endif /* CONFIG_PCI */ static struct mini_rtc_ops mostek_rtc_ops = { .get_rtc_time = mostek_get_rtc_time, .set_rtc_time = mostek_set_rtc_time, }; static struct mini_rtc_ops *mini_rtc_ops; static inline void mini_get_rtc_time(struct rtc_time *time) { unsigned long flags; spin_lock_irqsave(&rtc_lock, flags); mini_rtc_ops->get_rtc_time(time); spin_unlock_irqrestore(&rtc_lock, flags); } static inline int mini_set_rtc_time(struct rtc_time *time) { unsigned long flags; int err; spin_lock_irqsave(&rtc_lock, flags); err = mini_rtc_ops->set_rtc_time(time); spin_unlock_irqrestore(&rtc_lock, flags); return err; } static int mini_rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct rtc_time wtime; void __user *argp = (void __user *)arg; switch (cmd) { case RTC_PLL_GET: return -EINVAL; case RTC_PLL_SET: return -EINVAL; case RTC_UIE_OFF: /* disable ints from RTC updates. */ return 0; case RTC_UIE_ON: /* enable ints for RTC updates. */ return -EINVAL; case RTC_RD_TIME: /* Read the time/date from RTC */ /* this doesn't get week-day, who cares */ memset(&wtime, 0, sizeof(wtime)); mini_get_rtc_time(&wtime); return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0; case RTC_SET_TIME: /* Set the RTC */ { int year, days; if (!capable(CAP_SYS_TIME)) return -EACCES; if (copy_from_user(&wtime, argp, sizeof(wtime))) return -EFAULT; year = wtime.tm_year + 1900; days = month_days[wtime.tm_mon] + ((wtime.tm_mon == 1) && leapyear(year)); if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) || (wtime.tm_mday < 1)) return -EINVAL; if (wtime.tm_mday < 0 || wtime.tm_mday > days) return -EINVAL; if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 || wtime.tm_min < 0 || wtime.tm_min >= 60 || wtime.tm_sec < 0 || wtime.tm_sec >= 60) return -EINVAL; return mini_set_rtc_time(&wtime); } } return -EINVAL; } static int mini_rtc_open(struct inode *inode, struct file *file) { if (mini_rtc_status & RTC_IS_OPEN) return -EBUSY; mini_rtc_status |= RTC_IS_OPEN; return 0; } static int mini_rtc_release(struct inode *inode, struct file *file) { mini_rtc_status &= ~RTC_IS_OPEN; return 0; } static const struct file_operations mini_rtc_fops = { .owner = THIS_MODULE, .ioctl = mini_rtc_ioctl, .open = mini_rtc_open, .release = mini_rtc_release, }; static struct miscdevice rtc_mini_dev = { .minor = RTC_MINOR, .name = "rtc", .fops = &mini_rtc_fops, }; static int __init rtc_mini_init(void) { int retval; if (tlb_type == hypervisor) mini_rtc_ops = &hypervisor_rtc_ops; else if (this_is_starfire) mini_rtc_ops = &starfire_rtc_ops; #ifdef CONFIG_PCI else if (bq4802_regs) mini_rtc_ops = &bq4802_rtc_ops; else if (ds1287_regs) mini_rtc_ops = &cmos_rtc_ops; #endif /* CONFIG_PCI */ else if (mstk48t02_regs) mini_rtc_ops = &mostek_rtc_ops; else return -ENODEV; printk(KERN_INFO "Mini RTC Driver\n"); retval = misc_register(&rtc_mini_dev); if (retval < 0) return retval; return 0; } static void __exit rtc_mini_exit(void) { misc_deregister(&rtc_mini_dev); } module_init(rtc_mini_init); module_exit(rtc_mini_exit);