/* $Id: sbus.c,v 1.19 2002/01/23 11:27:32 davem Exp $ * sbus.c: UltraSparc SBUS controller support. * * Copyright (C) 1999 David S. Miller (davem@redhat.com) */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/interrupt.h> #include <asm/page.h> #include <asm/sbus.h> #include <asm/io.h> #include <asm/upa.h> #include <asm/cache.h> #include <asm/dma.h> #include <asm/irq.h> #include <asm/prom.h> #include <asm/starfire.h> #include "iommu_common.h" #define MAP_BASE ((u32)0xc0000000) struct sbus_info { struct iommu iommu; struct strbuf strbuf; }; /* Offsets from iommu_regs */ #define SYSIO_IOMMUREG_BASE 0x2400UL #define IOMMU_CONTROL (0x2400UL - 0x2400UL) /* IOMMU control register */ #define IOMMU_TSBBASE (0x2408UL - 0x2400UL) /* TSB base address register */ #define IOMMU_FLUSH (0x2410UL - 0x2400UL) /* IOMMU flush register */ #define IOMMU_VADIAG (0x4400UL - 0x2400UL) /* SBUS virtual address diagnostic */ #define IOMMU_TAGCMP (0x4408UL - 0x2400UL) /* TLB tag compare diagnostics */ #define IOMMU_LRUDIAG (0x4500UL - 0x2400UL) /* IOMMU LRU queue diagnostics */ #define IOMMU_TAGDIAG (0x4580UL - 0x2400UL) /* TLB tag diagnostics */ #define IOMMU_DRAMDIAG (0x4600UL - 0x2400UL) /* TLB data RAM diagnostics */ #define IOMMU_DRAM_VALID (1UL << 30UL) static void __iommu_flushall(struct iommu *iommu) { unsigned long tag; int entry; tag = iommu->iommu_control + (IOMMU_TAGDIAG - IOMMU_CONTROL); for (entry = 0; entry < 16; entry++) { upa_writeq(0, tag); tag += 8UL; } upa_readq(iommu->write_complete_reg); } /* Offsets from strbuf_regs */ #define SYSIO_STRBUFREG_BASE 0x2800UL #define STRBUF_CONTROL (0x2800UL - 0x2800UL) /* Control */ #define STRBUF_PFLUSH (0x2808UL - 0x2800UL) /* Page flush/invalidate */ #define STRBUF_FSYNC (0x2810UL - 0x2800UL) /* Flush synchronization */ #define STRBUF_DRAMDIAG (0x5000UL - 0x2800UL) /* data RAM diagnostic */ #define STRBUF_ERRDIAG (0x5400UL - 0x2800UL) /* error status diagnostics */ #define STRBUF_PTAGDIAG (0x5800UL - 0x2800UL) /* Page tag diagnostics */ #define STRBUF_LTAGDIAG (0x5900UL - 0x2800UL) /* Line tag diagnostics */ #define STRBUF_TAG_VALID 0x02UL static void sbus_strbuf_flush(struct iommu *iommu, struct strbuf *strbuf, u32 base, unsigned long npages, int direction) { unsigned long n; int limit; n = npages; while (n--) upa_writeq(base + (n << IO_PAGE_SHIFT), strbuf->strbuf_pflush); /* If the device could not have possibly put dirty data into * the streaming cache, no flush-flag synchronization needs * to be performed. */ if (direction == SBUS_DMA_TODEVICE) return; *(strbuf->strbuf_flushflag) = 0UL; /* Whoopee cushion! */ upa_writeq(strbuf->strbuf_flushflag_pa, strbuf->strbuf_fsync); upa_readq(iommu->write_complete_reg); limit = 100000; while (*(strbuf->strbuf_flushflag) == 0UL) { limit--; if (!limit) break; udelay(1); rmb(); } if (!limit) printk(KERN_WARNING "sbus_strbuf_flush: flushflag timeout " "vaddr[%08x] npages[%ld]\n", base, npages); } /* Based largely upon the ppc64 iommu allocator. */ static long sbus_arena_alloc(struct iommu *iommu, unsigned long npages) { struct iommu_arena *arena = &iommu->arena; unsigned long n, i, start, end, limit; int pass; limit = arena->limit; start = arena->hint; pass = 0; again: n = find_next_zero_bit(arena->map, limit, start); end = n + npages; if (unlikely(end >= limit)) { if (likely(pass < 1)) { limit = start; start = 0; __iommu_flushall(iommu); pass++; goto again; } else { /* Scanned the whole thing, give up. */ return -1; } } for (i = n; i < end; i++) { if (test_bit(i, arena->map)) { start = i + 1; goto again; } } for (i = n; i < end; i++) __set_bit(i, arena->map); arena->hint = end; return n; } static void sbus_arena_free(struct iommu_arena *arena, unsigned long base, unsigned long npages) { unsigned long i; for (i = base; i < (base + npages); i++) __clear_bit(i, arena->map); } static void sbus_iommu_table_init(struct iommu *iommu, unsigned int tsbsize) { unsigned long tsbbase, order, sz, num_tsb_entries; num_tsb_entries = tsbsize / sizeof(iopte_t); /* Setup initial software IOMMU state. */ spin_lock_init(&iommu->lock); iommu->page_table_map_base = MAP_BASE; /* Allocate and initialize the free area map. */ sz = num_tsb_entries / 8; sz = (sz + 7UL) & ~7UL; iommu->arena.map = kzalloc(sz, GFP_KERNEL); if (!iommu->arena.map) { prom_printf("SBUS_IOMMU: Error, kmalloc(arena.map) failed.\n"); prom_halt(); } iommu->arena.limit = num_tsb_entries; /* Now allocate and setup the IOMMU page table itself. */ order = get_order(tsbsize); tsbbase = __get_free_pages(GFP_KERNEL, order); if (!tsbbase) { prom_printf("IOMMU: Error, gfp(tsb) failed.\n"); prom_halt(); } iommu->page_table = (iopte_t *)tsbbase; memset(iommu->page_table, 0, tsbsize); } static inline iopte_t *alloc_npages(struct iommu *iommu, unsigned long npages) { long entry; entry = sbus_arena_alloc(iommu, npages); if (unlikely(entry < 0)) return NULL; return iommu->page_table + entry; } static inline void free_npages(struct iommu *iommu, dma_addr_t base, unsigned long npages) { sbus_arena_free(&iommu->arena, base >> IO_PAGE_SHIFT, npages); } void *sbus_alloc_consistent(struct sbus_dev *sdev, size_t size, dma_addr_t *dvma_addr) { struct sbus_info *info; struct iommu *iommu; iopte_t *iopte; unsigned long flags, order, first_page; void *ret; int npages; size = IO_PAGE_ALIGN(size); order = get_order(size); if (order >= 10) return NULL; first_page = __get_free_pages(GFP_KERNEL|__GFP_COMP, order); if (first_page == 0UL) return NULL; memset((char *)first_page, 0, PAGE_SIZE << order); info = sdev->bus->iommu; iommu = &info->iommu; spin_lock_irqsave(&iommu->lock, flags); iopte = alloc_npages(iommu, size >> IO_PAGE_SHIFT); spin_unlock_irqrestore(&iommu->lock, flags); if (unlikely(iopte == NULL)) { free_pages(first_page, order); return NULL; } *dvma_addr = (iommu->page_table_map_base + ((iopte - iommu->page_table) << IO_PAGE_SHIFT)); ret = (void *) first_page; npages = size >> IO_PAGE_SHIFT; first_page = __pa(first_page); while (npages--) { iopte_val(*iopte) = (IOPTE_VALID | IOPTE_CACHE | IOPTE_WRITE | (first_page & IOPTE_PAGE)); iopte++; first_page += IO_PAGE_SIZE; } return ret; } void sbus_free_consistent(struct sbus_dev *sdev, size_t size, void *cpu, dma_addr_t dvma) { struct sbus_info *info; struct iommu *iommu; iopte_t *iopte; unsigned long flags, order, npages; npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT; info = sdev->bus->iommu; iommu = &info->iommu; iopte = iommu->page_table + ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT); spin_lock_irqsave(&iommu->lock, flags); free_npages(iommu, dvma - iommu->page_table_map_base, npages); spin_unlock_irqrestore(&iommu->lock, flags); order = get_order(size); if (order < 10) free_pages((unsigned long)cpu, order); } dma_addr_t sbus_map_single(struct sbus_dev *sdev, void *ptr, size_t sz, int direction) { struct sbus_info *info; struct iommu *iommu; iopte_t *base; unsigned long flags, npages, oaddr; unsigned long i, base_paddr; u32 bus_addr, ret; unsigned long iopte_protection; info = sdev->bus->iommu; iommu = &info->iommu; if (unlikely(direction == SBUS_DMA_NONE)) BUG(); oaddr = (unsigned long)ptr; npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK); npages >>= IO_PAGE_SHIFT; spin_lock_irqsave(&iommu->lock, flags); base = alloc_npages(iommu, npages); spin_unlock_irqrestore(&iommu->lock, flags); if (unlikely(!base)) BUG(); bus_addr = (iommu->page_table_map_base + ((base - iommu->page_table) << IO_PAGE_SHIFT)); ret = bus_addr | (oaddr & ~IO_PAGE_MASK); base_paddr = __pa(oaddr & IO_PAGE_MASK); iopte_protection = IOPTE_VALID | IOPTE_STBUF | IOPTE_CACHE; if (direction != SBUS_DMA_TODEVICE) iopte_protection |= IOPTE_WRITE; for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE) iopte_val(*base) = iopte_protection | base_paddr; return ret; } void sbus_unmap_single(struct sbus_dev *sdev, dma_addr_t bus_addr, size_t sz, int direction) { struct sbus_info *info = sdev->bus->iommu; struct iommu *iommu = &info->iommu; struct strbuf *strbuf = &info->strbuf; iopte_t *base; unsigned long flags, npages, i; if (unlikely(direction == SBUS_DMA_NONE)) BUG(); npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK); npages >>= IO_PAGE_SHIFT; base = iommu->page_table + ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT); bus_addr &= IO_PAGE_MASK; spin_lock_irqsave(&iommu->lock, flags); sbus_strbuf_flush(iommu, strbuf, bus_addr, npages, direction); for (i = 0; i < npages; i++) iopte_val(base[i]) = 0UL; free_npages(iommu, bus_addr - iommu->page_table_map_base, npages); spin_unlock_irqrestore(&iommu->lock, flags); } #define SG_ENT_PHYS_ADDRESS(SG) \ (__pa(page_address((SG)->page)) + (SG)->offset) static inline void fill_sg(iopte_t *iopte, struct scatterlist *sg, int nused, int nelems, unsigned long iopte_protection) { struct scatterlist *dma_sg = sg; struct scatterlist *sg_end = sg + nelems; int i; for (i = 0; i < nused; i++) { unsigned long pteval = ~0UL; u32 dma_npages; dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) + dma_sg->dma_length + ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT; do { unsigned long offset; signed int len; /* If we are here, we know we have at least one * more page to map. So walk forward until we * hit a page crossing, and begin creating new * mappings from that spot. */ for (;;) { unsigned long tmp; tmp = SG_ENT_PHYS_ADDRESS(sg); len = sg->length; if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) { pteval = tmp & IO_PAGE_MASK; offset = tmp & (IO_PAGE_SIZE - 1UL); break; } if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) { pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK; offset = 0UL; len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL))); break; } sg++; } pteval = iopte_protection | (pteval & IOPTE_PAGE); while (len > 0) { *iopte++ = __iopte(pteval); pteval += IO_PAGE_SIZE; len -= (IO_PAGE_SIZE - offset); offset = 0; dma_npages--; } pteval = (pteval & IOPTE_PAGE) + len; sg++; /* Skip over any tail mappings we've fully mapped, * adjusting pteval along the way. Stop when we * detect a page crossing event. */ while (sg < sg_end && (pteval << (64 - IO_PAGE_SHIFT)) != 0UL && (pteval == SG_ENT_PHYS_ADDRESS(sg)) && ((pteval ^ (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) { pteval += sg->length; sg++; } if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL) pteval = ~0UL; } while (dma_npages != 0); dma_sg++; } } int sbus_map_sg(struct sbus_dev *sdev, struct scatterlist *sglist, int nelems, int direction) { struct sbus_info *info; struct iommu *iommu; unsigned long flags, npages, iopte_protection; iopte_t *base; u32 dma_base; struct scatterlist *sgtmp; int used; /* Fast path single entry scatterlists. */ if (nelems == 1) { sglist->dma_address = sbus_map_single(sdev, (page_address(sglist->page) + sglist->offset), sglist->length, direction); sglist->dma_length = sglist->length; return 1; } info = sdev->bus->iommu; iommu = &info->iommu; if (unlikely(direction == SBUS_DMA_NONE)) BUG(); npages = prepare_sg(sglist, nelems); spin_lock_irqsave(&iommu->lock, flags); base = alloc_npages(iommu, npages); spin_unlock_irqrestore(&iommu->lock, flags); if (unlikely(base == NULL)) BUG(); dma_base = iommu->page_table_map_base + ((base - iommu->page_table) << IO_PAGE_SHIFT); /* Normalize DVMA addresses. */ used = nelems; sgtmp = sglist; while (used && sgtmp->dma_length) { sgtmp->dma_address += dma_base; sgtmp++; used--; } used = nelems - used; iopte_protection = IOPTE_VALID | IOPTE_STBUF | IOPTE_CACHE; if (direction != SBUS_DMA_TODEVICE) iopte_protection |= IOPTE_WRITE; fill_sg(base, sglist, used, nelems, iopte_protection); #ifdef VERIFY_SG verify_sglist(sglist, nelems, base, npages); #endif return used; } void sbus_unmap_sg(struct sbus_dev *sdev, struct scatterlist *sglist, int nelems, int direction) { struct sbus_info *info; struct iommu *iommu; struct strbuf *strbuf; iopte_t *base; unsigned long flags, i, npages; u32 bus_addr; if (unlikely(direction == SBUS_DMA_NONE)) BUG(); info = sdev->bus->iommu; iommu = &info->iommu; strbuf = &info->strbuf; bus_addr = sglist->dma_address & IO_PAGE_MASK; for (i = 1; i < nelems; i++) if (sglist[i].dma_length == 0) break; i--; npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) - bus_addr) >> IO_PAGE_SHIFT; base = iommu->page_table + ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT); spin_lock_irqsave(&iommu->lock, flags); sbus_strbuf_flush(iommu, strbuf, bus_addr, npages, direction); for (i = 0; i < npages; i++) iopte_val(base[i]) = 0UL; free_npages(iommu, bus_addr - iommu->page_table_map_base, npages); spin_unlock_irqrestore(&iommu->lock, flags); } void sbus_dma_sync_single_for_cpu(struct sbus_dev *sdev, dma_addr_t bus_addr, size_t sz, int direction) { struct sbus_info *info; struct iommu *iommu; struct strbuf *strbuf; unsigned long flags, npages; info = sdev->bus->iommu; iommu = &info->iommu; strbuf = &info->strbuf; npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK); npages >>= IO_PAGE_SHIFT; bus_addr &= IO_PAGE_MASK; spin_lock_irqsave(&iommu->lock, flags); sbus_strbuf_flush(iommu, strbuf, bus_addr, npages, direction); spin_unlock_irqrestore(&iommu->lock, flags); } void sbus_dma_sync_single_for_device(struct sbus_dev *sdev, dma_addr_t base, size_t size, int direction) { } void sbus_dma_sync_sg_for_cpu(struct sbus_dev *sdev, struct scatterlist *sglist, int nelems, int direction) { struct sbus_info *info; struct iommu *iommu; struct strbuf *strbuf; unsigned long flags, npages, i; u32 bus_addr; info = sdev->bus->iommu; iommu = &info->iommu; strbuf = &info->strbuf; bus_addr = sglist[0].dma_address & IO_PAGE_MASK; for (i = 0; i < nelems; i++) { if (!sglist[i].dma_length) break; } i--; npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) - bus_addr) >> IO_PAGE_SHIFT; spin_lock_irqsave(&iommu->lock, flags); sbus_strbuf_flush(iommu, strbuf, bus_addr, npages, direction); spin_unlock_irqrestore(&iommu->lock, flags); } void sbus_dma_sync_sg_for_device(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int direction) { } /* Enable 64-bit DVMA mode for the given device. */ void sbus_set_sbus64(struct sbus_dev *sdev, int bursts) { struct sbus_info *info = sdev->bus->iommu; struct iommu *iommu = &info->iommu; int slot = sdev->slot; unsigned long cfg_reg; u64 val; cfg_reg = iommu->write_complete_reg; switch (slot) { case 0: cfg_reg += 0x20UL; break; case 1: cfg_reg += 0x28UL; break; case 2: cfg_reg += 0x30UL; break; case 3: cfg_reg += 0x38UL; break; case 13: cfg_reg += 0x40UL; break; case 14: cfg_reg += 0x48UL; break; case 15: cfg_reg += 0x50UL; break; default: return; }; val = upa_readq(cfg_reg); if (val & (1UL << 14UL)) { /* Extended transfer mode already enabled. */ return; } val |= (1UL << 14UL); if (bursts & DMA_BURST8) val |= (1UL << 1UL); if (bursts & DMA_BURST16) val |= (1UL << 2UL); if (bursts & DMA_BURST32) val |= (1UL << 3UL); if (bursts & DMA_BURST64) val |= (1UL << 4UL); upa_writeq(val, cfg_reg); } /* INO number to IMAP register offset for SYSIO external IRQ's. * This should conform to both Sunfire/Wildfire server and Fusion * desktop designs. */ #define SYSIO_IMAP_SLOT0 0x2c00UL #define SYSIO_IMAP_SLOT1 0x2c08UL #define SYSIO_IMAP_SLOT2 0x2c10UL #define SYSIO_IMAP_SLOT3 0x2c18UL #define SYSIO_IMAP_SCSI 0x3000UL #define SYSIO_IMAP_ETH 0x3008UL #define SYSIO_IMAP_BPP 0x3010UL #define SYSIO_IMAP_AUDIO 0x3018UL #define SYSIO_IMAP_PFAIL 0x3020UL #define SYSIO_IMAP_KMS 0x3028UL #define SYSIO_IMAP_FLPY 0x3030UL #define SYSIO_IMAP_SHW 0x3038UL #define SYSIO_IMAP_KBD 0x3040UL #define SYSIO_IMAP_MS 0x3048UL #define SYSIO_IMAP_SER 0x3050UL #define SYSIO_IMAP_TIM0 0x3060UL #define SYSIO_IMAP_TIM1 0x3068UL #define SYSIO_IMAP_UE 0x3070UL #define SYSIO_IMAP_CE 0x3078UL #define SYSIO_IMAP_SBERR 0x3080UL #define SYSIO_IMAP_PMGMT 0x3088UL #define SYSIO_IMAP_GFX 0x3090UL #define SYSIO_IMAP_EUPA 0x3098UL #define bogon ((unsigned long) -1) static unsigned long sysio_irq_offsets[] = { /* SBUS Slot 0 --> 3, level 1 --> 7 */ SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, /* Onboard devices (not relevant/used on SunFire). */ SYSIO_IMAP_SCSI, SYSIO_IMAP_ETH, SYSIO_IMAP_BPP, bogon, SYSIO_IMAP_AUDIO, SYSIO_IMAP_PFAIL, bogon, bogon, SYSIO_IMAP_KMS, SYSIO_IMAP_FLPY, SYSIO_IMAP_SHW, SYSIO_IMAP_KBD, SYSIO_IMAP_MS, SYSIO_IMAP_SER, bogon, bogon, SYSIO_IMAP_TIM0, SYSIO_IMAP_TIM1, bogon, bogon, SYSIO_IMAP_UE, SYSIO_IMAP_CE, SYSIO_IMAP_SBERR, SYSIO_IMAP_PMGMT, }; #undef bogon #define NUM_SYSIO_OFFSETS ARRAY_SIZE(sysio_irq_offsets) /* Convert Interrupt Mapping register pointer to associated * Interrupt Clear register pointer, SYSIO specific version. */ #define SYSIO_ICLR_UNUSED0 0x3400UL #define SYSIO_ICLR_SLOT0 0x3408UL #define SYSIO_ICLR_SLOT1 0x3448UL #define SYSIO_ICLR_SLOT2 0x3488UL #define SYSIO_ICLR_SLOT3 0x34c8UL static unsigned long sysio_imap_to_iclr(unsigned long imap) { unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0; return imap + diff; } unsigned int sbus_build_irq(void *buscookie, unsigned int ino) { struct sbus_bus *sbus = (struct sbus_bus *)buscookie; struct sbus_info *info = sbus->iommu; struct iommu *iommu = &info->iommu; unsigned long reg_base = iommu->write_complete_reg - 0x2000UL; unsigned long imap, iclr; int sbus_level = 0; imap = sysio_irq_offsets[ino]; if (imap == ((unsigned long)-1)) { prom_printf("get_irq_translations: Bad SYSIO INO[%x]\n", ino); prom_halt(); } imap += reg_base; /* SYSIO inconsistency. For external SLOTS, we have to select * the right ICLR register based upon the lower SBUS irq level * bits. */ if (ino >= 0x20) { iclr = sysio_imap_to_iclr(imap); } else { int sbus_slot = (ino & 0x18)>>3; sbus_level = ino & 0x7; switch(sbus_slot) { case 0: iclr = reg_base + SYSIO_ICLR_SLOT0; break; case 1: iclr = reg_base + SYSIO_ICLR_SLOT1; break; case 2: iclr = reg_base + SYSIO_ICLR_SLOT2; break; default: case 3: iclr = reg_base + SYSIO_ICLR_SLOT3; break; }; iclr += ((unsigned long)sbus_level - 1UL) * 8UL; } return build_irq(sbus_level, iclr, imap); } /* Error interrupt handling. */ #define SYSIO_UE_AFSR 0x0030UL #define SYSIO_UE_AFAR 0x0038UL #define SYSIO_UEAFSR_PPIO 0x8000000000000000UL /* Primary PIO cause */ #define SYSIO_UEAFSR_PDRD 0x4000000000000000UL /* Primary DVMA read cause */ #define SYSIO_UEAFSR_PDWR 0x2000000000000000UL /* Primary DVMA write cause */ #define SYSIO_UEAFSR_SPIO 0x1000000000000000UL /* Secondary PIO is cause */ #define SYSIO_UEAFSR_SDRD 0x0800000000000000UL /* Secondary DVMA read cause */ #define SYSIO_UEAFSR_SDWR 0x0400000000000000UL /* Secondary DVMA write cause*/ #define SYSIO_UEAFSR_RESV1 0x03ff000000000000UL /* Reserved */ #define SYSIO_UEAFSR_DOFF 0x0000e00000000000UL /* Doubleword Offset */ #define SYSIO_UEAFSR_SIZE 0x00001c0000000000UL /* Bad transfer size 2^SIZE */ #define SYSIO_UEAFSR_MID 0x000003e000000000UL /* UPA MID causing the fault */ #define SYSIO_UEAFSR_RESV2 0x0000001fffffffffUL /* Reserved */ static irqreturn_t sysio_ue_handler(int irq, void *dev_id) { struct sbus_bus *sbus = dev_id; struct sbus_info *info = sbus->iommu; struct iommu *iommu = &info->iommu; unsigned long reg_base = iommu->write_complete_reg - 0x2000UL; unsigned long afsr_reg, afar_reg; unsigned long afsr, afar, error_bits; int reported; afsr_reg = reg_base + SYSIO_UE_AFSR; afar_reg = reg_base + SYSIO_UE_AFAR; /* Latch error status. */ afsr = upa_readq(afsr_reg); afar = upa_readq(afar_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SYSIO_UEAFSR_PPIO | SYSIO_UEAFSR_PDRD | SYSIO_UEAFSR_PDWR | SYSIO_UEAFSR_SPIO | SYSIO_UEAFSR_SDRD | SYSIO_UEAFSR_SDWR); upa_writeq(error_bits, afsr_reg); /* Log the error. */ printk("SYSIO[%x]: Uncorrectable ECC Error, primary error type[%s]\n", sbus->portid, (((error_bits & SYSIO_UEAFSR_PPIO) ? "PIO" : ((error_bits & SYSIO_UEAFSR_PDRD) ? "DVMA Read" : ((error_bits & SYSIO_UEAFSR_PDWR) ? "DVMA Write" : "???"))))); printk("SYSIO[%x]: DOFF[%lx] SIZE[%lx] MID[%lx]\n", sbus->portid, (afsr & SYSIO_UEAFSR_DOFF) >> 45UL, (afsr & SYSIO_UEAFSR_SIZE) >> 42UL, (afsr & SYSIO_UEAFSR_MID) >> 37UL); printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar); printk("SYSIO[%x]: Secondary UE errors [", sbus->portid); reported = 0; if (afsr & SYSIO_UEAFSR_SPIO) { reported++; printk("(PIO)"); } if (afsr & SYSIO_UEAFSR_SDRD) { reported++; printk("(DVMA Read)"); } if (afsr & SYSIO_UEAFSR_SDWR) { reported++; printk("(DVMA Write)"); } if (!reported) printk("(none)"); printk("]\n"); return IRQ_HANDLED; } #define SYSIO_CE_AFSR 0x0040UL #define SYSIO_CE_AFAR 0x0048UL #define SYSIO_CEAFSR_PPIO 0x8000000000000000UL /* Primary PIO cause */ #define SYSIO_CEAFSR_PDRD 0x4000000000000000UL /* Primary DVMA read cause */ #define SYSIO_CEAFSR_PDWR 0x2000000000000000UL /* Primary DVMA write cause */ #define SYSIO_CEAFSR_SPIO 0x1000000000000000UL /* Secondary PIO cause */ #define SYSIO_CEAFSR_SDRD 0x0800000000000000UL /* Secondary DVMA read cause */ #define SYSIO_CEAFSR_SDWR 0x0400000000000000UL /* Secondary DVMA write cause*/ #define SYSIO_CEAFSR_RESV1 0x0300000000000000UL /* Reserved */ #define SYSIO_CEAFSR_ESYND 0x00ff000000000000UL /* Syndrome Bits */ #define SYSIO_CEAFSR_DOFF 0x0000e00000000000UL /* Double Offset */ #define SYSIO_CEAFSR_SIZE 0x00001c0000000000UL /* Bad transfer size 2^SIZE */ #define SYSIO_CEAFSR_MID 0x000003e000000000UL /* UPA MID causing the fault */ #define SYSIO_CEAFSR_RESV2 0x0000001fffffffffUL /* Reserved */ static irqreturn_t sysio_ce_handler(int irq, void *dev_id) { struct sbus_bus *sbus = dev_id; struct sbus_info *info = sbus->iommu; struct iommu *iommu = &info->iommu; unsigned long reg_base = iommu->write_complete_reg - 0x2000UL; unsigned long afsr_reg, afar_reg; unsigned long afsr, afar, error_bits; int reported; afsr_reg = reg_base + SYSIO_CE_AFSR; afar_reg = reg_base + SYSIO_CE_AFAR; /* Latch error status. */ afsr = upa_readq(afsr_reg); afar = upa_readq(afar_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SYSIO_CEAFSR_PPIO | SYSIO_CEAFSR_PDRD | SYSIO_CEAFSR_PDWR | SYSIO_CEAFSR_SPIO | SYSIO_CEAFSR_SDRD | SYSIO_CEAFSR_SDWR); upa_writeq(error_bits, afsr_reg); printk("SYSIO[%x]: Correctable ECC Error, primary error type[%s]\n", sbus->portid, (((error_bits & SYSIO_CEAFSR_PPIO) ? "PIO" : ((error_bits & SYSIO_CEAFSR_PDRD) ? "DVMA Read" : ((error_bits & SYSIO_CEAFSR_PDWR) ? "DVMA Write" : "???"))))); /* XXX Use syndrome and afar to print out module string just like * XXX UDB CE trap handler does... -DaveM */ printk("SYSIO[%x]: DOFF[%lx] ECC Syndrome[%lx] Size[%lx] MID[%lx]\n", sbus->portid, (afsr & SYSIO_CEAFSR_DOFF) >> 45UL, (afsr & SYSIO_CEAFSR_ESYND) >> 48UL, (afsr & SYSIO_CEAFSR_SIZE) >> 42UL, (afsr & SYSIO_CEAFSR_MID) >> 37UL); printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar); printk("SYSIO[%x]: Secondary CE errors [", sbus->portid); reported = 0; if (afsr & SYSIO_CEAFSR_SPIO) { reported++; printk("(PIO)"); } if (afsr & SYSIO_CEAFSR_SDRD) { reported++; printk("(DVMA Read)"); } if (afsr & SYSIO_CEAFSR_SDWR) { reported++; printk("(DVMA Write)"); } if (!reported) printk("(none)"); printk("]\n"); return IRQ_HANDLED; } #define SYSIO_SBUS_AFSR 0x2010UL #define SYSIO_SBUS_AFAR 0x2018UL #define SYSIO_SBAFSR_PLE 0x8000000000000000UL /* Primary Late PIO Error */ #define SYSIO_SBAFSR_PTO 0x4000000000000000UL /* Primary SBUS Timeout */ #define SYSIO_SBAFSR_PBERR 0x2000000000000000UL /* Primary SBUS Error ACK */ #define SYSIO_SBAFSR_SLE 0x1000000000000000UL /* Secondary Late PIO Error */ #define SYSIO_SBAFSR_STO 0x0800000000000000UL /* Secondary SBUS Timeout */ #define SYSIO_SBAFSR_SBERR 0x0400000000000000UL /* Secondary SBUS Error ACK */ #define SYSIO_SBAFSR_RESV1 0x03ff000000000000UL /* Reserved */ #define SYSIO_SBAFSR_RD 0x0000800000000000UL /* Primary was late PIO read */ #define SYSIO_SBAFSR_RESV2 0x0000600000000000UL /* Reserved */ #define SYSIO_SBAFSR_SIZE 0x00001c0000000000UL /* Size of transfer */ #define SYSIO_SBAFSR_MID 0x000003e000000000UL /* MID causing the error */ #define SYSIO_SBAFSR_RESV3 0x0000001fffffffffUL /* Reserved */ static irqreturn_t sysio_sbus_error_handler(int irq, void *dev_id) { struct sbus_bus *sbus = dev_id; struct sbus_info *info = sbus->iommu; struct iommu *iommu = &info->iommu; unsigned long afsr_reg, afar_reg, reg_base; unsigned long afsr, afar, error_bits; int reported; reg_base = iommu->write_complete_reg - 0x2000UL; afsr_reg = reg_base + SYSIO_SBUS_AFSR; afar_reg = reg_base + SYSIO_SBUS_AFAR; afsr = upa_readq(afsr_reg); afar = upa_readq(afar_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SYSIO_SBAFSR_PLE | SYSIO_SBAFSR_PTO | SYSIO_SBAFSR_PBERR | SYSIO_SBAFSR_SLE | SYSIO_SBAFSR_STO | SYSIO_SBAFSR_SBERR); upa_writeq(error_bits, afsr_reg); /* Log the error. */ printk("SYSIO[%x]: SBUS Error, primary error type[%s] read(%d)\n", sbus->portid, (((error_bits & SYSIO_SBAFSR_PLE) ? "Late PIO Error" : ((error_bits & SYSIO_SBAFSR_PTO) ? "Time Out" : ((error_bits & SYSIO_SBAFSR_PBERR) ? "Error Ack" : "???")))), (afsr & SYSIO_SBAFSR_RD) ? 1 : 0); printk("SYSIO[%x]: size[%lx] MID[%lx]\n", sbus->portid, (afsr & SYSIO_SBAFSR_SIZE) >> 42UL, (afsr & SYSIO_SBAFSR_MID) >> 37UL); printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar); printk("SYSIO[%x]: Secondary SBUS errors [", sbus->portid); reported = 0; if (afsr & SYSIO_SBAFSR_SLE) { reported++; printk("(Late PIO Error)"); } if (afsr & SYSIO_SBAFSR_STO) { reported++; printk("(Time Out)"); } if (afsr & SYSIO_SBAFSR_SBERR) { reported++; printk("(Error Ack)"); } if (!reported) printk("(none)"); printk("]\n"); /* XXX check iommu/strbuf for further error status XXX */ return IRQ_HANDLED; } #define ECC_CONTROL 0x0020UL #define SYSIO_ECNTRL_ECCEN 0x8000000000000000UL /* Enable ECC Checking */ #define SYSIO_ECNTRL_UEEN 0x4000000000000000UL /* Enable UE Interrupts */ #define SYSIO_ECNTRL_CEEN 0x2000000000000000UL /* Enable CE Interrupts */ #define SYSIO_UE_INO 0x34 #define SYSIO_CE_INO 0x35 #define SYSIO_SBUSERR_INO 0x36 static void __init sysio_register_error_handlers(struct sbus_bus *sbus) { struct sbus_info *info = sbus->iommu; struct iommu *iommu = &info->iommu; unsigned long reg_base = iommu->write_complete_reg - 0x2000UL; unsigned int irq; u64 control; irq = sbus_build_irq(sbus, SYSIO_UE_INO); if (request_irq(irq, sysio_ue_handler, 0, "SYSIO_UE", sbus) < 0) { prom_printf("SYSIO[%x]: Cannot register UE interrupt.\n", sbus->portid); prom_halt(); } irq = sbus_build_irq(sbus, SYSIO_CE_INO); if (request_irq(irq, sysio_ce_handler, 0, "SYSIO_CE", sbus) < 0) { prom_printf("SYSIO[%x]: Cannot register CE interrupt.\n", sbus->portid); prom_halt(); } irq = sbus_build_irq(sbus, SYSIO_SBUSERR_INO); if (request_irq(irq, sysio_sbus_error_handler, 0, "SYSIO_SBERR", sbus) < 0) { prom_printf("SYSIO[%x]: Cannot register SBUS Error interrupt.\n", sbus->portid); prom_halt(); } /* Now turn the error interrupts on and also enable ECC checking. */ upa_writeq((SYSIO_ECNTRL_ECCEN | SYSIO_ECNTRL_UEEN | SYSIO_ECNTRL_CEEN), reg_base + ECC_CONTROL); control = upa_readq(iommu->write_complete_reg); control |= 0x100UL; /* SBUS Error Interrupt Enable */ upa_writeq(control, iommu->write_complete_reg); } /* Boot time initialization. */ static void __init sbus_iommu_init(int __node, struct sbus_bus *sbus) { const struct linux_prom64_registers *pr; struct device_node *dp; struct sbus_info *info; struct iommu *iommu; struct strbuf *strbuf; unsigned long regs, reg_base; u64 control; int i; dp = of_find_node_by_phandle(__node); sbus->portid = of_getintprop_default(dp, "upa-portid", -1); pr = of_get_property(dp, "reg", NULL); if (!pr) { prom_printf("sbus_iommu_init: Cannot map SYSIO control registers.\n"); prom_halt(); } regs = pr->phys_addr; info = kzalloc(sizeof(*info), GFP_ATOMIC); if (info == NULL) { prom_printf("sbus_iommu_init: Fatal error, " "kmalloc(info) failed\n"); prom_halt(); } iommu = &info->iommu; strbuf = &info->strbuf; reg_base = regs + SYSIO_IOMMUREG_BASE; iommu->iommu_control = reg_base + IOMMU_CONTROL; iommu->iommu_tsbbase = reg_base + IOMMU_TSBBASE; iommu->iommu_flush = reg_base + IOMMU_FLUSH; reg_base = regs + SYSIO_STRBUFREG_BASE; strbuf->strbuf_control = reg_base + STRBUF_CONTROL; strbuf->strbuf_pflush = reg_base + STRBUF_PFLUSH; strbuf->strbuf_fsync = reg_base + STRBUF_FSYNC; strbuf->strbuf_enabled = 1; strbuf->strbuf_flushflag = (volatile unsigned long *) ((((unsigned long)&strbuf->__flushflag_buf[0]) + 63UL) & ~63UL); strbuf->strbuf_flushflag_pa = (unsigned long) __pa(strbuf->strbuf_flushflag); /* The SYSIO SBUS control register is used for dummy reads * in order to ensure write completion. */ iommu->write_complete_reg = regs + 0x2000UL; /* Link into SYSIO software state. */ sbus->iommu = info; printk("SYSIO: UPA portID %x, at %016lx\n", sbus->portid, regs); /* Setup for TSB_SIZE=7, TBW_SIZE=0, MMU_DE=1, MMU_EN=1 */ sbus_iommu_table_init(iommu, IO_TSB_SIZE); control = upa_readq(iommu->iommu_control); control = ((7UL << 16UL) | (0UL << 2UL) | (1UL << 1UL) | (1UL << 0UL)); upa_writeq(control, iommu->iommu_control); /* Clean out any cruft in the IOMMU using * diagnostic accesses. */ for (i = 0; i < 16; i++) { unsigned long dram, tag; dram = iommu->iommu_control + (IOMMU_DRAMDIAG - IOMMU_CONTROL); tag = iommu->iommu_control + (IOMMU_TAGDIAG - IOMMU_CONTROL); dram += (unsigned long)i * 8UL; tag += (unsigned long)i * 8UL; upa_writeq(0, dram); upa_writeq(0, tag); } upa_readq(iommu->write_complete_reg); /* Give the TSB to SYSIO. */ upa_writeq(__pa(iommu->page_table), iommu->iommu_tsbbase); /* Setup streaming buffer, DE=1 SB_EN=1 */ control = (1UL << 1UL) | (1UL << 0UL); upa_writeq(control, strbuf->strbuf_control); /* Clear out the tags using diagnostics. */ for (i = 0; i < 16; i++) { unsigned long ptag, ltag; ptag = strbuf->strbuf_control + (STRBUF_PTAGDIAG - STRBUF_CONTROL); ltag = strbuf->strbuf_control + (STRBUF_LTAGDIAG - STRBUF_CONTROL); ptag += (unsigned long)i * 8UL; ltag += (unsigned long)i * 8UL; upa_writeq(0UL, ptag); upa_writeq(0UL, ltag); } /* Enable DVMA arbitration for all devices/slots. */ control = upa_readq(iommu->write_complete_reg); control |= 0x3fUL; upa_writeq(control, iommu->write_complete_reg); /* Now some Xfire specific grot... */ if (this_is_starfire) starfire_hookup(sbus->portid); sysio_register_error_handlers(sbus); } void sbus_fill_device_irq(struct sbus_dev *sdev) { struct device_node *dp = of_find_node_by_phandle(sdev->prom_node); const struct linux_prom_irqs *irqs; irqs = of_get_property(dp, "interrupts", NULL); if (!irqs) { sdev->irqs[0] = 0; sdev->num_irqs = 0; } else { unsigned int pri = irqs[0].pri; sdev->num_irqs = 1; if (pri < 0x20) pri += sdev->slot * 8; sdev->irqs[0] = sbus_build_irq(sdev->bus, pri); } } void __init sbus_arch_bus_ranges_init(struct device_node *pn, struct sbus_bus *sbus) { } void __init sbus_setup_iommu(struct sbus_bus *sbus, struct device_node *dp) { sbus_iommu_init(dp->node, sbus); } void __init sbus_setup_arch_props(struct sbus_bus *sbus, struct device_node *dp) { } int __init sbus_arch_preinit(void) { return 0; } void __init sbus_arch_postinit(void) { extern void firetruck_init(void); firetruck_init(); }