/* $Id: sbus.c,v 1.19 2002/01/23 11:27:32 davem Exp $ * sbus.c: UltraSparc SBUS controller support. * * Copyright (C) 1999 David S. Miller (davem@redhat.com) */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/interrupt.h> #include <asm/page.h> #include <asm/sbus.h> #include <asm/io.h> #include <asm/upa.h> #include <asm/cache.h> #include <asm/dma.h> #include <asm/irq.h> #include <asm/prom.h> #include <asm/starfire.h> #include "iommu_common.h" /* These should be allocated on an SMP_CACHE_BYTES * aligned boundary for optimal performance. * * On SYSIO, using an 8K page size we have 1GB of SBUS * DMA space mapped. We divide this space into equally * sized clusters. We allocate a DMA mapping from the * cluster that matches the order of the allocation, or * if the order is greater than the number of clusters, * we try to allocate from the last cluster. */ #define NCLUSTERS 8UL #define ONE_GIG (1UL * 1024UL * 1024UL * 1024UL) #define CLUSTER_SIZE (ONE_GIG / NCLUSTERS) #define CLUSTER_MASK (CLUSTER_SIZE - 1) #define CLUSTER_NPAGES (CLUSTER_SIZE >> IO_PAGE_SHIFT) #define MAP_BASE ((u32)0xc0000000) struct sbus_iommu { /*0x00*/spinlock_t lock; /*0x08*/iopte_t *page_table; /*0x10*/unsigned long strbuf_regs; /*0x18*/unsigned long iommu_regs; /*0x20*/unsigned long sbus_control_reg; /*0x28*/volatile unsigned long strbuf_flushflag; /* If NCLUSTERS is ever decresed to 4 or lower, * you must increase the size of the type of * these counters. You have been duly warned. -DaveM */ /*0x30*/struct { u16 next; u16 flush; } alloc_info[NCLUSTERS]; /* The lowest used consistent mapping entry. Since * we allocate consistent maps out of cluster 0 this * is relative to the beginning of closter 0. */ /*0x50*/u32 lowest_consistent_map; }; /* Offsets from iommu_regs */ #define SYSIO_IOMMUREG_BASE 0x2400UL #define IOMMU_CONTROL (0x2400UL - 0x2400UL) /* IOMMU control register */ #define IOMMU_TSBBASE (0x2408UL - 0x2400UL) /* TSB base address register */ #define IOMMU_FLUSH (0x2410UL - 0x2400UL) /* IOMMU flush register */ #define IOMMU_VADIAG (0x4400UL - 0x2400UL) /* SBUS virtual address diagnostic */ #define IOMMU_TAGCMP (0x4408UL - 0x2400UL) /* TLB tag compare diagnostics */ #define IOMMU_LRUDIAG (0x4500UL - 0x2400UL) /* IOMMU LRU queue diagnostics */ #define IOMMU_TAGDIAG (0x4580UL - 0x2400UL) /* TLB tag diagnostics */ #define IOMMU_DRAMDIAG (0x4600UL - 0x2400UL) /* TLB data RAM diagnostics */ #define IOMMU_DRAM_VALID (1UL << 30UL) static void __iommu_flushall(struct sbus_iommu *iommu) { unsigned long tag = iommu->iommu_regs + IOMMU_TAGDIAG; int entry; for (entry = 0; entry < 16; entry++) { upa_writeq(0, tag); tag += 8UL; } upa_readq(iommu->sbus_control_reg); for (entry = 0; entry < NCLUSTERS; entry++) { iommu->alloc_info[entry].flush = iommu->alloc_info[entry].next; } } static void iommu_flush(struct sbus_iommu *iommu, u32 base, unsigned long npages) { while (npages--) upa_writeq(base + (npages << IO_PAGE_SHIFT), iommu->iommu_regs + IOMMU_FLUSH); upa_readq(iommu->sbus_control_reg); } /* Offsets from strbuf_regs */ #define SYSIO_STRBUFREG_BASE 0x2800UL #define STRBUF_CONTROL (0x2800UL - 0x2800UL) /* Control */ #define STRBUF_PFLUSH (0x2808UL - 0x2800UL) /* Page flush/invalidate */ #define STRBUF_FSYNC (0x2810UL - 0x2800UL) /* Flush synchronization */ #define STRBUF_DRAMDIAG (0x5000UL - 0x2800UL) /* data RAM diagnostic */ #define STRBUF_ERRDIAG (0x5400UL - 0x2800UL) /* error status diagnostics */ #define STRBUF_PTAGDIAG (0x5800UL - 0x2800UL) /* Page tag diagnostics */ #define STRBUF_LTAGDIAG (0x5900UL - 0x2800UL) /* Line tag diagnostics */ #define STRBUF_TAG_VALID 0x02UL static void sbus_strbuf_flush(struct sbus_iommu *iommu, u32 base, unsigned long npages, int direction) { unsigned long n; int limit; n = npages; while (n--) upa_writeq(base + (n << IO_PAGE_SHIFT), iommu->strbuf_regs + STRBUF_PFLUSH); /* If the device could not have possibly put dirty data into * the streaming cache, no flush-flag synchronization needs * to be performed. */ if (direction == SBUS_DMA_TODEVICE) return; iommu->strbuf_flushflag = 0UL; /* Whoopee cushion! */ upa_writeq(__pa(&iommu->strbuf_flushflag), iommu->strbuf_regs + STRBUF_FSYNC); upa_readq(iommu->sbus_control_reg); limit = 100000; while (iommu->strbuf_flushflag == 0UL) { limit--; if (!limit) break; udelay(1); rmb(); } if (!limit) printk(KERN_WARNING "sbus_strbuf_flush: flushflag timeout " "vaddr[%08x] npages[%ld]\n", base, npages); } static iopte_t *alloc_streaming_cluster(struct sbus_iommu *iommu, unsigned long npages) { iopte_t *iopte, *limit, *first, *cluster; unsigned long cnum, ent, nent, flush_point, found; cnum = 0; nent = 1; while ((1UL << cnum) < npages) cnum++; if(cnum >= NCLUSTERS) { nent = 1UL << (cnum - NCLUSTERS); cnum = NCLUSTERS - 1; } iopte = iommu->page_table + (cnum * CLUSTER_NPAGES); if (cnum == 0) limit = (iommu->page_table + iommu->lowest_consistent_map); else limit = (iopte + CLUSTER_NPAGES); iopte += ((ent = iommu->alloc_info[cnum].next) << cnum); flush_point = iommu->alloc_info[cnum].flush; first = iopte; cluster = NULL; found = 0; for (;;) { if (iopte_val(*iopte) == 0UL) { found++; if (!cluster) cluster = iopte; } else { /* Used cluster in the way */ cluster = NULL; found = 0; } if (found == nent) break; iopte += (1 << cnum); ent++; if (iopte >= limit) { iopte = (iommu->page_table + (cnum * CLUSTER_NPAGES)); ent = 0; /* Multiple cluster allocations must not wrap */ cluster = NULL; found = 0; } if (ent == flush_point) __iommu_flushall(iommu); if (iopte == first) goto bad; } /* ent/iopte points to the last cluster entry we're going to use, * so save our place for the next allocation. */ if ((iopte + (1 << cnum)) >= limit) ent = 0; else ent = ent + 1; iommu->alloc_info[cnum].next = ent; if (ent == flush_point) __iommu_flushall(iommu); /* I've got your streaming cluster right here buddy boy... */ return cluster; bad: printk(KERN_EMERG "sbus: alloc_streaming_cluster of npages(%ld) failed!\n", npages); return NULL; } static void free_streaming_cluster(struct sbus_iommu *iommu, u32 base, unsigned long npages) { unsigned long cnum, ent, nent; iopte_t *iopte; cnum = 0; nent = 1; while ((1UL << cnum) < npages) cnum++; if(cnum >= NCLUSTERS) { nent = 1UL << (cnum - NCLUSTERS); cnum = NCLUSTERS - 1; } ent = (base & CLUSTER_MASK) >> (IO_PAGE_SHIFT + cnum); iopte = iommu->page_table + ((base - MAP_BASE) >> IO_PAGE_SHIFT); do { iopte_val(*iopte) = 0UL; iopte += 1 << cnum; } while(--nent); /* If the global flush might not have caught this entry, * adjust the flush point such that we will flush before * ever trying to reuse it. */ #define between(X,Y,Z) (((Z) - (Y)) >= ((X) - (Y))) if (between(ent, iommu->alloc_info[cnum].next, iommu->alloc_info[cnum].flush)) iommu->alloc_info[cnum].flush = ent; #undef between } /* We allocate consistent mappings from the end of cluster zero. */ static iopte_t *alloc_consistent_cluster(struct sbus_iommu *iommu, unsigned long npages) { iopte_t *iopte; iopte = iommu->page_table + (1 * CLUSTER_NPAGES); while (iopte > iommu->page_table) { iopte--; if (!(iopte_val(*iopte) & IOPTE_VALID)) { unsigned long tmp = npages; while (--tmp) { iopte--; if (iopte_val(*iopte) & IOPTE_VALID) break; } if (tmp == 0) { u32 entry = (iopte - iommu->page_table); if (entry < iommu->lowest_consistent_map) iommu->lowest_consistent_map = entry; return iopte; } } } return NULL; } static void free_consistent_cluster(struct sbus_iommu *iommu, u32 base, unsigned long npages) { iopte_t *iopte = iommu->page_table + ((base - MAP_BASE) >> IO_PAGE_SHIFT); if ((iopte - iommu->page_table) == iommu->lowest_consistent_map) { iopte_t *walk = iopte + npages; iopte_t *limit; limit = iommu->page_table + CLUSTER_NPAGES; while (walk < limit) { if (iopte_val(*walk) != 0UL) break; walk++; } iommu->lowest_consistent_map = (walk - iommu->page_table); } while (npages--) *iopte++ = __iopte(0UL); } void *sbus_alloc_consistent(struct sbus_dev *sdev, size_t size, dma_addr_t *dvma_addr) { unsigned long order, first_page, flags; struct sbus_iommu *iommu; iopte_t *iopte; void *ret; int npages; if (size <= 0 || sdev == NULL || dvma_addr == NULL) return NULL; size = IO_PAGE_ALIGN(size); order = get_order(size); if (order >= 10) return NULL; first_page = __get_free_pages(GFP_KERNEL|__GFP_COMP, order); if (first_page == 0UL) return NULL; memset((char *)first_page, 0, PAGE_SIZE << order); iommu = sdev->bus->iommu; spin_lock_irqsave(&iommu->lock, flags); iopte = alloc_consistent_cluster(iommu, size >> IO_PAGE_SHIFT); if (iopte == NULL) { spin_unlock_irqrestore(&iommu->lock, flags); free_pages(first_page, order); return NULL; } /* Ok, we're committed at this point. */ *dvma_addr = MAP_BASE + ((iopte - iommu->page_table) << IO_PAGE_SHIFT); ret = (void *) first_page; npages = size >> IO_PAGE_SHIFT; while (npages--) { *iopte++ = __iopte(IOPTE_VALID | IOPTE_CACHE | IOPTE_WRITE | (__pa(first_page) & IOPTE_PAGE)); first_page += IO_PAGE_SIZE; } iommu_flush(iommu, *dvma_addr, size >> IO_PAGE_SHIFT); spin_unlock_irqrestore(&iommu->lock, flags); return ret; } void sbus_free_consistent(struct sbus_dev *sdev, size_t size, void *cpu, dma_addr_t dvma) { unsigned long order, npages; struct sbus_iommu *iommu; if (size <= 0 || sdev == NULL || cpu == NULL) return; npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT; iommu = sdev->bus->iommu; spin_lock_irq(&iommu->lock); free_consistent_cluster(iommu, dvma, npages); iommu_flush(iommu, dvma, npages); spin_unlock_irq(&iommu->lock); order = get_order(size); if (order < 10) free_pages((unsigned long)cpu, order); } dma_addr_t sbus_map_single(struct sbus_dev *sdev, void *ptr, size_t size, int dir) { struct sbus_iommu *iommu = sdev->bus->iommu; unsigned long npages, pbase, flags; iopte_t *iopte; u32 dma_base, offset; unsigned long iopte_bits; if (dir == SBUS_DMA_NONE) BUG(); pbase = (unsigned long) ptr; offset = (u32) (pbase & ~IO_PAGE_MASK); size = (IO_PAGE_ALIGN(pbase + size) - (pbase & IO_PAGE_MASK)); pbase = (unsigned long) __pa(pbase & IO_PAGE_MASK); spin_lock_irqsave(&iommu->lock, flags); npages = size >> IO_PAGE_SHIFT; iopte = alloc_streaming_cluster(iommu, npages); if (iopte == NULL) goto bad; dma_base = MAP_BASE + ((iopte - iommu->page_table) << IO_PAGE_SHIFT); npages = size >> IO_PAGE_SHIFT; iopte_bits = IOPTE_VALID | IOPTE_STBUF | IOPTE_CACHE; if (dir != SBUS_DMA_TODEVICE) iopte_bits |= IOPTE_WRITE; while (npages--) { *iopte++ = __iopte(iopte_bits | (pbase & IOPTE_PAGE)); pbase += IO_PAGE_SIZE; } npages = size >> IO_PAGE_SHIFT; spin_unlock_irqrestore(&iommu->lock, flags); return (dma_base | offset); bad: spin_unlock_irqrestore(&iommu->lock, flags); BUG(); return 0; } void sbus_unmap_single(struct sbus_dev *sdev, dma_addr_t dma_addr, size_t size, int direction) { struct sbus_iommu *iommu = sdev->bus->iommu; u32 dma_base = dma_addr & IO_PAGE_MASK; unsigned long flags; size = (IO_PAGE_ALIGN(dma_addr + size) - dma_base); spin_lock_irqsave(&iommu->lock, flags); free_streaming_cluster(iommu, dma_base, size >> IO_PAGE_SHIFT); sbus_strbuf_flush(iommu, dma_base, size >> IO_PAGE_SHIFT, direction); spin_unlock_irqrestore(&iommu->lock, flags); } #define SG_ENT_PHYS_ADDRESS(SG) \ (__pa(page_address((SG)->page)) + (SG)->offset) static inline void fill_sg(iopte_t *iopte, struct scatterlist *sg, int nused, int nelems, unsigned long iopte_bits) { struct scatterlist *dma_sg = sg; struct scatterlist *sg_end = sg + nelems; int i; for (i = 0; i < nused; i++) { unsigned long pteval = ~0UL; u32 dma_npages; dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) + dma_sg->dma_length + ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT; do { unsigned long offset; signed int len; /* If we are here, we know we have at least one * more page to map. So walk forward until we * hit a page crossing, and begin creating new * mappings from that spot. */ for (;;) { unsigned long tmp; tmp = (unsigned long) SG_ENT_PHYS_ADDRESS(sg); len = sg->length; if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) { pteval = tmp & IO_PAGE_MASK; offset = tmp & (IO_PAGE_SIZE - 1UL); break; } if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) { pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK; offset = 0UL; len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL))); break; } sg++; } pteval = ((pteval & IOPTE_PAGE) | iopte_bits); while (len > 0) { *iopte++ = __iopte(pteval); pteval += IO_PAGE_SIZE; len -= (IO_PAGE_SIZE - offset); offset = 0; dma_npages--; } pteval = (pteval & IOPTE_PAGE) + len; sg++; /* Skip over any tail mappings we've fully mapped, * adjusting pteval along the way. Stop when we * detect a page crossing event. */ while (sg < sg_end && (pteval << (64 - IO_PAGE_SHIFT)) != 0UL && (pteval == SG_ENT_PHYS_ADDRESS(sg)) && ((pteval ^ (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) { pteval += sg->length; sg++; } if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL) pteval = ~0UL; } while (dma_npages != 0); dma_sg++; } } int sbus_map_sg(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int dir) { struct sbus_iommu *iommu = sdev->bus->iommu; unsigned long flags, npages; iopte_t *iopte; u32 dma_base; struct scatterlist *sgtmp; int used; unsigned long iopte_bits; if (dir == SBUS_DMA_NONE) BUG(); /* Fast path single entry scatterlists. */ if (nents == 1) { sg->dma_address = sbus_map_single(sdev, (page_address(sg->page) + sg->offset), sg->length, dir); sg->dma_length = sg->length; return 1; } npages = prepare_sg(sg, nents); spin_lock_irqsave(&iommu->lock, flags); iopte = alloc_streaming_cluster(iommu, npages); if (iopte == NULL) goto bad; dma_base = MAP_BASE + ((iopte - iommu->page_table) << IO_PAGE_SHIFT); /* Normalize DVMA addresses. */ sgtmp = sg; used = nents; while (used && sgtmp->dma_length) { sgtmp->dma_address += dma_base; sgtmp++; used--; } used = nents - used; iopte_bits = IOPTE_VALID | IOPTE_STBUF | IOPTE_CACHE; if (dir != SBUS_DMA_TODEVICE) iopte_bits |= IOPTE_WRITE; fill_sg(iopte, sg, used, nents, iopte_bits); #ifdef VERIFY_SG verify_sglist(sg, nents, iopte, npages); #endif spin_unlock_irqrestore(&iommu->lock, flags); return used; bad: spin_unlock_irqrestore(&iommu->lock, flags); BUG(); return 0; } void sbus_unmap_sg(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int direction) { unsigned long size, flags; struct sbus_iommu *iommu; u32 dvma_base; int i; /* Fast path single entry scatterlists. */ if (nents == 1) { sbus_unmap_single(sdev, sg->dma_address, sg->dma_length, direction); return; } dvma_base = sg[0].dma_address & IO_PAGE_MASK; for (i = 0; i < nents; i++) { if (sg[i].dma_length == 0) break; } i--; size = IO_PAGE_ALIGN(sg[i].dma_address + sg[i].dma_length) - dvma_base; iommu = sdev->bus->iommu; spin_lock_irqsave(&iommu->lock, flags); free_streaming_cluster(iommu, dvma_base, size >> IO_PAGE_SHIFT); sbus_strbuf_flush(iommu, dvma_base, size >> IO_PAGE_SHIFT, direction); spin_unlock_irqrestore(&iommu->lock, flags); } void sbus_dma_sync_single_for_cpu(struct sbus_dev *sdev, dma_addr_t base, size_t size, int direction) { struct sbus_iommu *iommu = sdev->bus->iommu; unsigned long flags; size = (IO_PAGE_ALIGN(base + size) - (base & IO_PAGE_MASK)); spin_lock_irqsave(&iommu->lock, flags); sbus_strbuf_flush(iommu, base & IO_PAGE_MASK, size >> IO_PAGE_SHIFT, direction); spin_unlock_irqrestore(&iommu->lock, flags); } void sbus_dma_sync_single_for_device(struct sbus_dev *sdev, dma_addr_t base, size_t size, int direction) { } void sbus_dma_sync_sg_for_cpu(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int direction) { struct sbus_iommu *iommu = sdev->bus->iommu; unsigned long flags, size; u32 base; int i; base = sg[0].dma_address & IO_PAGE_MASK; for (i = 0; i < nents; i++) { if (sg[i].dma_length == 0) break; } i--; size = IO_PAGE_ALIGN(sg[i].dma_address + sg[i].dma_length) - base; spin_lock_irqsave(&iommu->lock, flags); sbus_strbuf_flush(iommu, base, size >> IO_PAGE_SHIFT, direction); spin_unlock_irqrestore(&iommu->lock, flags); } void sbus_dma_sync_sg_for_device(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int direction) { } /* Enable 64-bit DVMA mode for the given device. */ void sbus_set_sbus64(struct sbus_dev *sdev, int bursts) { struct sbus_iommu *iommu = sdev->bus->iommu; int slot = sdev->slot; unsigned long cfg_reg; u64 val; cfg_reg = iommu->sbus_control_reg; switch (slot) { case 0: cfg_reg += 0x20UL; break; case 1: cfg_reg += 0x28UL; break; case 2: cfg_reg += 0x30UL; break; case 3: cfg_reg += 0x38UL; break; case 13: cfg_reg += 0x40UL; break; case 14: cfg_reg += 0x48UL; break; case 15: cfg_reg += 0x50UL; break; default: return; }; val = upa_readq(cfg_reg); if (val & (1UL << 14UL)) { /* Extended transfer mode already enabled. */ return; } val |= (1UL << 14UL); if (bursts & DMA_BURST8) val |= (1UL << 1UL); if (bursts & DMA_BURST16) val |= (1UL << 2UL); if (bursts & DMA_BURST32) val |= (1UL << 3UL); if (bursts & DMA_BURST64) val |= (1UL << 4UL); upa_writeq(val, cfg_reg); } /* INO number to IMAP register offset for SYSIO external IRQ's. * This should conform to both Sunfire/Wildfire server and Fusion * desktop designs. */ #define SYSIO_IMAP_SLOT0 0x2c04UL #define SYSIO_IMAP_SLOT1 0x2c0cUL #define SYSIO_IMAP_SLOT2 0x2c14UL #define SYSIO_IMAP_SLOT3 0x2c1cUL #define SYSIO_IMAP_SCSI 0x3004UL #define SYSIO_IMAP_ETH 0x300cUL #define SYSIO_IMAP_BPP 0x3014UL #define SYSIO_IMAP_AUDIO 0x301cUL #define SYSIO_IMAP_PFAIL 0x3024UL #define SYSIO_IMAP_KMS 0x302cUL #define SYSIO_IMAP_FLPY 0x3034UL #define SYSIO_IMAP_SHW 0x303cUL #define SYSIO_IMAP_KBD 0x3044UL #define SYSIO_IMAP_MS 0x304cUL #define SYSIO_IMAP_SER 0x3054UL #define SYSIO_IMAP_TIM0 0x3064UL #define SYSIO_IMAP_TIM1 0x306cUL #define SYSIO_IMAP_UE 0x3074UL #define SYSIO_IMAP_CE 0x307cUL #define SYSIO_IMAP_SBERR 0x3084UL #define SYSIO_IMAP_PMGMT 0x308cUL #define SYSIO_IMAP_GFX 0x3094UL #define SYSIO_IMAP_EUPA 0x309cUL #define bogon ((unsigned long) -1) static unsigned long sysio_irq_offsets[] = { /* SBUS Slot 0 --> 3, level 1 --> 7 */ SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, /* Onboard devices (not relevant/used on SunFire). */ SYSIO_IMAP_SCSI, SYSIO_IMAP_ETH, SYSIO_IMAP_BPP, bogon, SYSIO_IMAP_AUDIO, SYSIO_IMAP_PFAIL, bogon, bogon, SYSIO_IMAP_KMS, SYSIO_IMAP_FLPY, SYSIO_IMAP_SHW, SYSIO_IMAP_KBD, SYSIO_IMAP_MS, SYSIO_IMAP_SER, bogon, bogon, SYSIO_IMAP_TIM0, SYSIO_IMAP_TIM1, bogon, bogon, SYSIO_IMAP_UE, SYSIO_IMAP_CE, SYSIO_IMAP_SBERR, SYSIO_IMAP_PMGMT, }; #undef bogon #define NUM_SYSIO_OFFSETS ARRAY_SIZE(sysio_irq_offsets) /* Convert Interrupt Mapping register pointer to associated * Interrupt Clear register pointer, SYSIO specific version. */ #define SYSIO_ICLR_UNUSED0 0x3400UL #define SYSIO_ICLR_SLOT0 0x340cUL #define SYSIO_ICLR_SLOT1 0x344cUL #define SYSIO_ICLR_SLOT2 0x348cUL #define SYSIO_ICLR_SLOT3 0x34ccUL static unsigned long sysio_imap_to_iclr(unsigned long imap) { unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0; return imap + diff; } unsigned int sbus_build_irq(void *buscookie, unsigned int ino) { struct sbus_bus *sbus = (struct sbus_bus *)buscookie; struct sbus_iommu *iommu = sbus->iommu; unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL; unsigned long imap, iclr; int sbus_level = 0; imap = sysio_irq_offsets[ino]; if (imap == ((unsigned long)-1)) { prom_printf("get_irq_translations: Bad SYSIO INO[%x]\n", ino); prom_halt(); } imap += reg_base; /* SYSIO inconsistency. For external SLOTS, we have to select * the right ICLR register based upon the lower SBUS irq level * bits. */ if (ino >= 0x20) { iclr = sysio_imap_to_iclr(imap); } else { int sbus_slot = (ino & 0x18)>>3; sbus_level = ino & 0x7; switch(sbus_slot) { case 0: iclr = reg_base + SYSIO_ICLR_SLOT0; break; case 1: iclr = reg_base + SYSIO_ICLR_SLOT1; break; case 2: iclr = reg_base + SYSIO_ICLR_SLOT2; break; default: case 3: iclr = reg_base + SYSIO_ICLR_SLOT3; break; }; iclr += ((unsigned long)sbus_level - 1UL) * 8UL; } return build_irq(sbus_level, iclr, imap); } /* Error interrupt handling. */ #define SYSIO_UE_AFSR 0x0030UL #define SYSIO_UE_AFAR 0x0038UL #define SYSIO_UEAFSR_PPIO 0x8000000000000000UL /* Primary PIO cause */ #define SYSIO_UEAFSR_PDRD 0x4000000000000000UL /* Primary DVMA read cause */ #define SYSIO_UEAFSR_PDWR 0x2000000000000000UL /* Primary DVMA write cause */ #define SYSIO_UEAFSR_SPIO 0x1000000000000000UL /* Secondary PIO is cause */ #define SYSIO_UEAFSR_SDRD 0x0800000000000000UL /* Secondary DVMA read cause */ #define SYSIO_UEAFSR_SDWR 0x0400000000000000UL /* Secondary DVMA write cause*/ #define SYSIO_UEAFSR_RESV1 0x03ff000000000000UL /* Reserved */ #define SYSIO_UEAFSR_DOFF 0x0000e00000000000UL /* Doubleword Offset */ #define SYSIO_UEAFSR_SIZE 0x00001c0000000000UL /* Bad transfer size 2^SIZE */ #define SYSIO_UEAFSR_MID 0x000003e000000000UL /* UPA MID causing the fault */ #define SYSIO_UEAFSR_RESV2 0x0000001fffffffffUL /* Reserved */ static irqreturn_t sysio_ue_handler(int irq, void *dev_id, struct pt_regs *regs) { struct sbus_bus *sbus = dev_id; struct sbus_iommu *iommu = sbus->iommu; unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL; unsigned long afsr_reg, afar_reg; unsigned long afsr, afar, error_bits; int reported; afsr_reg = reg_base + SYSIO_UE_AFSR; afar_reg = reg_base + SYSIO_UE_AFAR; /* Latch error status. */ afsr = upa_readq(afsr_reg); afar = upa_readq(afar_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SYSIO_UEAFSR_PPIO | SYSIO_UEAFSR_PDRD | SYSIO_UEAFSR_PDWR | SYSIO_UEAFSR_SPIO | SYSIO_UEAFSR_SDRD | SYSIO_UEAFSR_SDWR); upa_writeq(error_bits, afsr_reg); /* Log the error. */ printk("SYSIO[%x]: Uncorrectable ECC Error, primary error type[%s]\n", sbus->portid, (((error_bits & SYSIO_UEAFSR_PPIO) ? "PIO" : ((error_bits & SYSIO_UEAFSR_PDRD) ? "DVMA Read" : ((error_bits & SYSIO_UEAFSR_PDWR) ? "DVMA Write" : "???"))))); printk("SYSIO[%x]: DOFF[%lx] SIZE[%lx] MID[%lx]\n", sbus->portid, (afsr & SYSIO_UEAFSR_DOFF) >> 45UL, (afsr & SYSIO_UEAFSR_SIZE) >> 42UL, (afsr & SYSIO_UEAFSR_MID) >> 37UL); printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar); printk("SYSIO[%x]: Secondary UE errors [", sbus->portid); reported = 0; if (afsr & SYSIO_UEAFSR_SPIO) { reported++; printk("(PIO)"); } if (afsr & SYSIO_UEAFSR_SDRD) { reported++; printk("(DVMA Read)"); } if (afsr & SYSIO_UEAFSR_SDWR) { reported++; printk("(DVMA Write)"); } if (!reported) printk("(none)"); printk("]\n"); return IRQ_HANDLED; } #define SYSIO_CE_AFSR 0x0040UL #define SYSIO_CE_AFAR 0x0048UL #define SYSIO_CEAFSR_PPIO 0x8000000000000000UL /* Primary PIO cause */ #define SYSIO_CEAFSR_PDRD 0x4000000000000000UL /* Primary DVMA read cause */ #define SYSIO_CEAFSR_PDWR 0x2000000000000000UL /* Primary DVMA write cause */ #define SYSIO_CEAFSR_SPIO 0x1000000000000000UL /* Secondary PIO cause */ #define SYSIO_CEAFSR_SDRD 0x0800000000000000UL /* Secondary DVMA read cause */ #define SYSIO_CEAFSR_SDWR 0x0400000000000000UL /* Secondary DVMA write cause*/ #define SYSIO_CEAFSR_RESV1 0x0300000000000000UL /* Reserved */ #define SYSIO_CEAFSR_ESYND 0x00ff000000000000UL /* Syndrome Bits */ #define SYSIO_CEAFSR_DOFF 0x0000e00000000000UL /* Double Offset */ #define SYSIO_CEAFSR_SIZE 0x00001c0000000000UL /* Bad transfer size 2^SIZE */ #define SYSIO_CEAFSR_MID 0x000003e000000000UL /* UPA MID causing the fault */ #define SYSIO_CEAFSR_RESV2 0x0000001fffffffffUL /* Reserved */ static irqreturn_t sysio_ce_handler(int irq, void *dev_id, struct pt_regs *regs) { struct sbus_bus *sbus = dev_id; struct sbus_iommu *iommu = sbus->iommu; unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL; unsigned long afsr_reg, afar_reg; unsigned long afsr, afar, error_bits; int reported; afsr_reg = reg_base + SYSIO_CE_AFSR; afar_reg = reg_base + SYSIO_CE_AFAR; /* Latch error status. */ afsr = upa_readq(afsr_reg); afar = upa_readq(afar_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SYSIO_CEAFSR_PPIO | SYSIO_CEAFSR_PDRD | SYSIO_CEAFSR_PDWR | SYSIO_CEAFSR_SPIO | SYSIO_CEAFSR_SDRD | SYSIO_CEAFSR_SDWR); upa_writeq(error_bits, afsr_reg); printk("SYSIO[%x]: Correctable ECC Error, primary error type[%s]\n", sbus->portid, (((error_bits & SYSIO_CEAFSR_PPIO) ? "PIO" : ((error_bits & SYSIO_CEAFSR_PDRD) ? "DVMA Read" : ((error_bits & SYSIO_CEAFSR_PDWR) ? "DVMA Write" : "???"))))); /* XXX Use syndrome and afar to print out module string just like * XXX UDB CE trap handler does... -DaveM */ printk("SYSIO[%x]: DOFF[%lx] ECC Syndrome[%lx] Size[%lx] MID[%lx]\n", sbus->portid, (afsr & SYSIO_CEAFSR_DOFF) >> 45UL, (afsr & SYSIO_CEAFSR_ESYND) >> 48UL, (afsr & SYSIO_CEAFSR_SIZE) >> 42UL, (afsr & SYSIO_CEAFSR_MID) >> 37UL); printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar); printk("SYSIO[%x]: Secondary CE errors [", sbus->portid); reported = 0; if (afsr & SYSIO_CEAFSR_SPIO) { reported++; printk("(PIO)"); } if (afsr & SYSIO_CEAFSR_SDRD) { reported++; printk("(DVMA Read)"); } if (afsr & SYSIO_CEAFSR_SDWR) { reported++; printk("(DVMA Write)"); } if (!reported) printk("(none)"); printk("]\n"); return IRQ_HANDLED; } #define SYSIO_SBUS_AFSR 0x2010UL #define SYSIO_SBUS_AFAR 0x2018UL #define SYSIO_SBAFSR_PLE 0x8000000000000000UL /* Primary Late PIO Error */ #define SYSIO_SBAFSR_PTO 0x4000000000000000UL /* Primary SBUS Timeout */ #define SYSIO_SBAFSR_PBERR 0x2000000000000000UL /* Primary SBUS Error ACK */ #define SYSIO_SBAFSR_SLE 0x1000000000000000UL /* Secondary Late PIO Error */ #define SYSIO_SBAFSR_STO 0x0800000000000000UL /* Secondary SBUS Timeout */ #define SYSIO_SBAFSR_SBERR 0x0400000000000000UL /* Secondary SBUS Error ACK */ #define SYSIO_SBAFSR_RESV1 0x03ff000000000000UL /* Reserved */ #define SYSIO_SBAFSR_RD 0x0000800000000000UL /* Primary was late PIO read */ #define SYSIO_SBAFSR_RESV2 0x0000600000000000UL /* Reserved */ #define SYSIO_SBAFSR_SIZE 0x00001c0000000000UL /* Size of transfer */ #define SYSIO_SBAFSR_MID 0x000003e000000000UL /* MID causing the error */ #define SYSIO_SBAFSR_RESV3 0x0000001fffffffffUL /* Reserved */ static irqreturn_t sysio_sbus_error_handler(int irq, void *dev_id, struct pt_regs *regs) { struct sbus_bus *sbus = dev_id; struct sbus_iommu *iommu = sbus->iommu; unsigned long afsr_reg, afar_reg, reg_base; unsigned long afsr, afar, error_bits; int reported; reg_base = iommu->sbus_control_reg - 0x2000UL; afsr_reg = reg_base + SYSIO_SBUS_AFSR; afar_reg = reg_base + SYSIO_SBUS_AFAR; afsr = upa_readq(afsr_reg); afar = upa_readq(afar_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SYSIO_SBAFSR_PLE | SYSIO_SBAFSR_PTO | SYSIO_SBAFSR_PBERR | SYSIO_SBAFSR_SLE | SYSIO_SBAFSR_STO | SYSIO_SBAFSR_SBERR); upa_writeq(error_bits, afsr_reg); /* Log the error. */ printk("SYSIO[%x]: SBUS Error, primary error type[%s] read(%d)\n", sbus->portid, (((error_bits & SYSIO_SBAFSR_PLE) ? "Late PIO Error" : ((error_bits & SYSIO_SBAFSR_PTO) ? "Time Out" : ((error_bits & SYSIO_SBAFSR_PBERR) ? "Error Ack" : "???")))), (afsr & SYSIO_SBAFSR_RD) ? 1 : 0); printk("SYSIO[%x]: size[%lx] MID[%lx]\n", sbus->portid, (afsr & SYSIO_SBAFSR_SIZE) >> 42UL, (afsr & SYSIO_SBAFSR_MID) >> 37UL); printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar); printk("SYSIO[%x]: Secondary SBUS errors [", sbus->portid); reported = 0; if (afsr & SYSIO_SBAFSR_SLE) { reported++; printk("(Late PIO Error)"); } if (afsr & SYSIO_SBAFSR_STO) { reported++; printk("(Time Out)"); } if (afsr & SYSIO_SBAFSR_SBERR) { reported++; printk("(Error Ack)"); } if (!reported) printk("(none)"); printk("]\n"); /* XXX check iommu/strbuf for further error status XXX */ return IRQ_HANDLED; } #define ECC_CONTROL 0x0020UL #define SYSIO_ECNTRL_ECCEN 0x8000000000000000UL /* Enable ECC Checking */ #define SYSIO_ECNTRL_UEEN 0x4000000000000000UL /* Enable UE Interrupts */ #define SYSIO_ECNTRL_CEEN 0x2000000000000000UL /* Enable CE Interrupts */ #define SYSIO_UE_INO 0x34 #define SYSIO_CE_INO 0x35 #define SYSIO_SBUSERR_INO 0x36 static void __init sysio_register_error_handlers(struct sbus_bus *sbus) { struct sbus_iommu *iommu = sbus->iommu; unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL; unsigned int irq; u64 control; irq = sbus_build_irq(sbus, SYSIO_UE_INO); if (request_irq(irq, sysio_ue_handler, SA_SHIRQ, "SYSIO UE", sbus) < 0) { prom_printf("SYSIO[%x]: Cannot register UE interrupt.\n", sbus->portid); prom_halt(); } irq = sbus_build_irq(sbus, SYSIO_CE_INO); if (request_irq(irq, sysio_ce_handler, SA_SHIRQ, "SYSIO CE", sbus) < 0) { prom_printf("SYSIO[%x]: Cannot register CE interrupt.\n", sbus->portid); prom_halt(); } irq = sbus_build_irq(sbus, SYSIO_SBUSERR_INO); if (request_irq(irq, sysio_sbus_error_handler, SA_SHIRQ, "SYSIO SBUS Error", sbus) < 0) { prom_printf("SYSIO[%x]: Cannot register SBUS Error interrupt.\n", sbus->portid); prom_halt(); } /* Now turn the error interrupts on and also enable ECC checking. */ upa_writeq((SYSIO_ECNTRL_ECCEN | SYSIO_ECNTRL_UEEN | SYSIO_ECNTRL_CEEN), reg_base + ECC_CONTROL); control = upa_readq(iommu->sbus_control_reg); control |= 0x100UL; /* SBUS Error Interrupt Enable */ upa_writeq(control, iommu->sbus_control_reg); } /* Boot time initialization. */ void __init sbus_iommu_init(int __node, struct sbus_bus *sbus) { struct linux_prom64_registers *pr; struct device_node *dp; struct sbus_iommu *iommu; unsigned long regs, tsb_base; u64 control; int i; dp = of_find_node_by_phandle(__node); sbus->portid = of_getintprop_default(dp, "upa-portid", -1); pr = of_get_property(dp, "reg", NULL); if (!pr) { prom_printf("sbus_iommu_init: Cannot map SYSIO control registers.\n"); prom_halt(); } regs = pr->phys_addr; iommu = kmalloc(sizeof(*iommu) + SMP_CACHE_BYTES, GFP_ATOMIC); if (iommu == NULL) { prom_printf("sbus_iommu_init: Fatal error, kmalloc(iommu) failed\n"); prom_halt(); } /* Align on E$ line boundary. */ iommu = (struct sbus_iommu *) (((unsigned long)iommu + (SMP_CACHE_BYTES - 1UL)) & ~(SMP_CACHE_BYTES - 1UL)); memset(iommu, 0, sizeof(*iommu)); /* We start with no consistent mappings. */ iommu->lowest_consistent_map = CLUSTER_NPAGES; for (i = 0; i < NCLUSTERS; i++) { iommu->alloc_info[i].flush = 0; iommu->alloc_info[i].next = 0; } /* Setup spinlock. */ spin_lock_init(&iommu->lock); /* Init register offsets. */ iommu->iommu_regs = regs + SYSIO_IOMMUREG_BASE; iommu->strbuf_regs = regs + SYSIO_STRBUFREG_BASE; /* The SYSIO SBUS control register is used for dummy reads * in order to ensure write completion. */ iommu->sbus_control_reg = regs + 0x2000UL; /* Link into SYSIO software state. */ sbus->iommu = iommu; printk("SYSIO: UPA portID %x, at %016lx\n", sbus->portid, regs); /* Setup for TSB_SIZE=7, TBW_SIZE=0, MMU_DE=1, MMU_EN=1 */ control = upa_readq(iommu->iommu_regs + IOMMU_CONTROL); control = ((7UL << 16UL) | (0UL << 2UL) | (1UL << 1UL) | (1UL << 0UL)); /* Using the above configuration we need 1MB iommu page * table (128K ioptes * 8 bytes per iopte). This is * page order 7 on UltraSparc. */ tsb_base = __get_free_pages(GFP_ATOMIC, get_order(IO_TSB_SIZE)); if (tsb_base == 0UL) { prom_printf("sbus_iommu_init: Fatal error, cannot alloc TSB table.\n"); prom_halt(); } iommu->page_table = (iopte_t *) tsb_base; memset(iommu->page_table, 0, IO_TSB_SIZE); upa_writeq(control, iommu->iommu_regs + IOMMU_CONTROL); /* Clean out any cruft in the IOMMU using * diagnostic accesses. */ for (i = 0; i < 16; i++) { unsigned long dram = iommu->iommu_regs + IOMMU_DRAMDIAG; unsigned long tag = iommu->iommu_regs + IOMMU_TAGDIAG; dram += (unsigned long)i * 8UL; tag += (unsigned long)i * 8UL; upa_writeq(0, dram); upa_writeq(0, tag); } upa_readq(iommu->sbus_control_reg); /* Give the TSB to SYSIO. */ upa_writeq(__pa(tsb_base), iommu->iommu_regs + IOMMU_TSBBASE); /* Setup streaming buffer, DE=1 SB_EN=1 */ control = (1UL << 1UL) | (1UL << 0UL); upa_writeq(control, iommu->strbuf_regs + STRBUF_CONTROL); /* Clear out the tags using diagnostics. */ for (i = 0; i < 16; i++) { unsigned long ptag, ltag; ptag = iommu->strbuf_regs + STRBUF_PTAGDIAG; ltag = iommu->strbuf_regs + STRBUF_LTAGDIAG; ptag += (unsigned long)i * 8UL; ltag += (unsigned long)i * 8UL; upa_writeq(0UL, ptag); upa_writeq(0UL, ltag); } /* Enable DVMA arbitration for all devices/slots. */ control = upa_readq(iommu->sbus_control_reg); control |= 0x3fUL; upa_writeq(control, iommu->sbus_control_reg); /* Now some Xfire specific grot... */ if (this_is_starfire) sbus->starfire_cookie = starfire_hookup(sbus->portid); else sbus->starfire_cookie = NULL; sysio_register_error_handlers(sbus); } void sbus_fill_device_irq(struct sbus_dev *sdev) { struct device_node *dp = of_find_node_by_phandle(sdev->prom_node); struct linux_prom_irqs *irqs; irqs = of_get_property(dp, "interrupts", NULL); if (!irqs) { sdev->irqs[0] = 0; sdev->num_irqs = 0; } else { unsigned int pri = irqs[0].pri; sdev->num_irqs = 1; if (pri < 0x20) pri += sdev->slot * 8; sdev->irqs[0] = sbus_build_irq(sdev->bus, pri); } }