#include <linux/string.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/slab.h> #include <asm/errno.h> #include <asm/of_device.h> /** * of_match_device - Tell if an of_device structure has a matching * of_match structure * @ids: array of of device match structures to search in * @dev: the of device structure to match against * * Used by a driver to check whether an of_device present in the * system is in its list of supported devices. */ const struct of_device_id *of_match_device(const struct of_device_id *matches, const struct of_device *dev) { if (!dev->node) return NULL; while (matches->name[0] || matches->type[0] || matches->compatible[0]) { int match = 1; if (matches->name[0]) match &= dev->node->name && !strcmp(matches->name, dev->node->name); if (matches->type[0]) match &= dev->node->type && !strcmp(matches->type, dev->node->type); if (matches->compatible[0]) match &= of_device_is_compatible(dev->node, matches->compatible); if (match) return matches; matches++; } return NULL; } static int of_platform_bus_match(struct device *dev, struct device_driver *drv) { struct of_device * of_dev = to_of_device(dev); struct of_platform_driver * of_drv = to_of_platform_driver(drv); const struct of_device_id * matches = of_drv->match_table; if (!matches) return 0; return of_match_device(matches, of_dev) != NULL; } struct of_device *of_dev_get(struct of_device *dev) { struct device *tmp; if (!dev) return NULL; tmp = get_device(&dev->dev); if (tmp) return to_of_device(tmp); else return NULL; } void of_dev_put(struct of_device *dev) { if (dev) put_device(&dev->dev); } static int of_device_probe(struct device *dev) { int error = -ENODEV; struct of_platform_driver *drv; struct of_device *of_dev; const struct of_device_id *match; drv = to_of_platform_driver(dev->driver); of_dev = to_of_device(dev); if (!drv->probe) return error; of_dev_get(of_dev); match = of_match_device(drv->match_table, of_dev); if (match) error = drv->probe(of_dev, match); if (error) of_dev_put(of_dev); return error; } static int of_device_remove(struct device *dev) { struct of_device * of_dev = to_of_device(dev); struct of_platform_driver * drv = to_of_platform_driver(dev->driver); if (dev->driver && drv->remove) drv->remove(of_dev); return 0; } static int of_device_suspend(struct device *dev, pm_message_t state) { struct of_device * of_dev = to_of_device(dev); struct of_platform_driver * drv = to_of_platform_driver(dev->driver); int error = 0; if (dev->driver && drv->suspend) error = drv->suspend(of_dev, state); return error; } static int of_device_resume(struct device * dev) { struct of_device * of_dev = to_of_device(dev); struct of_platform_driver * drv = to_of_platform_driver(dev->driver); int error = 0; if (dev->driver && drv->resume) error = drv->resume(of_dev); return error; } void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name) { unsigned long ret = res->start + offset; struct resource *r; if (res->flags & IORESOURCE_MEM) r = request_mem_region(ret, size, name); else r = request_region(ret, size, name); if (!r) ret = 0; return (void __iomem *) ret; } EXPORT_SYMBOL(of_ioremap); void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) { if (res->flags & IORESOURCE_MEM) release_mem_region((unsigned long) base, size); else release_region((unsigned long) base, size); } EXPORT_SYMBOL(of_iounmap); static int node_match(struct device *dev, void *data) { struct of_device *op = to_of_device(dev); struct device_node *dp = data; return (op->node == dp); } struct of_device *of_find_device_by_node(struct device_node *dp) { struct device *dev = bus_find_device(&of_bus_type, NULL, dp, node_match); if (dev) return to_of_device(dev); return NULL; } EXPORT_SYMBOL(of_find_device_by_node); #ifdef CONFIG_PCI struct bus_type isa_bus_type = { .name = "isa", .match = of_platform_bus_match, .probe = of_device_probe, .remove = of_device_remove, .suspend = of_device_suspend, .resume = of_device_resume, }; EXPORT_SYMBOL(isa_bus_type); struct bus_type ebus_bus_type = { .name = "ebus", .match = of_platform_bus_match, .probe = of_device_probe, .remove = of_device_remove, .suspend = of_device_suspend, .resume = of_device_resume, }; EXPORT_SYMBOL(ebus_bus_type); #endif #ifdef CONFIG_SBUS struct bus_type sbus_bus_type = { .name = "sbus", .match = of_platform_bus_match, .probe = of_device_probe, .remove = of_device_remove, .suspend = of_device_suspend, .resume = of_device_resume, }; EXPORT_SYMBOL(sbus_bus_type); #endif struct bus_type of_bus_type = { .name = "of", .match = of_platform_bus_match, .probe = of_device_probe, .remove = of_device_remove, .suspend = of_device_suspend, .resume = of_device_resume, }; EXPORT_SYMBOL(of_bus_type); static inline u64 of_read_addr(const u32 *cell, int size) { u64 r = 0; while (size--) r = (r << 32) | *(cell++); return r; } static void __init get_cells(struct device_node *dp, int *addrc, int *sizec) { if (addrc) *addrc = of_n_addr_cells(dp); if (sizec) *sizec = of_n_size_cells(dp); } /* Max address size we deal with */ #define OF_MAX_ADDR_CELLS 4 struct of_bus { const char *name; const char *addr_prop_name; int (*match)(struct device_node *parent); void (*count_cells)(struct device_node *child, int *addrc, int *sizec); int (*map)(u32 *addr, const u32 *range, int na, int ns, int pna); unsigned int (*get_flags)(u32 *addr); }; /* * Default translator (generic bus) */ static void of_bus_default_count_cells(struct device_node *dev, int *addrc, int *sizec) { get_cells(dev, addrc, sizec); } /* Make sure the least significant 64-bits are in-range. Even * for 3 or 4 cell values it is a good enough approximation. */ static int of_out_of_range(const u32 *addr, const u32 *base, const u32 *size, int na, int ns) { u64 a = of_read_addr(addr, na); u64 b = of_read_addr(base, na); if (a < b) return 1; b += of_read_addr(size, ns); if (a >= b) return 1; return 0; } static int of_bus_default_map(u32 *addr, const u32 *range, int na, int ns, int pna) { u32 result[OF_MAX_ADDR_CELLS]; int i; if (ns > 2) { printk("of_device: Cannot handle size cells (%d) > 2.", ns); return -EINVAL; } if (of_out_of_range(addr, range, range + na + pna, na, ns)) return -EINVAL; /* Start with the parent range base. */ memcpy(result, range + na, pna * 4); /* Add in the child address offset. */ for (i = 0; i < na; i++) result[pna - 1 - i] += (addr[na - 1 - i] - range[na - 1 - i]); memcpy(addr, result, pna * 4); return 0; } static unsigned int of_bus_default_get_flags(u32 *addr) { return IORESOURCE_MEM; } /* * PCI bus specific translator */ static int of_bus_pci_match(struct device_node *np) { if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) { /* Do not do PCI specific frobbing if the * PCI bridge lacks a ranges property. We * want to pass it through up to the next * parent as-is, not with the PCI translate * method which chops off the top address cell. */ if (!of_find_property(np, "ranges", NULL)) return 0; return 1; } return 0; } static void of_bus_pci_count_cells(struct device_node *np, int *addrc, int *sizec) { if (addrc) *addrc = 3; if (sizec) *sizec = 2; } static int of_bus_pci_map(u32 *addr, const u32 *range, int na, int ns, int pna) { u32 result[OF_MAX_ADDR_CELLS]; int i; /* Check address type match */ if ((addr[0] ^ range[0]) & 0x03000000) return -EINVAL; if (of_out_of_range(addr + 1, range + 1, range + na + pna, na - 1, ns)) return -EINVAL; /* Start with the parent range base. */ memcpy(result, range + na, pna * 4); /* Add in the child address offset, skipping high cell. */ for (i = 0; i < na - 1; i++) result[pna - 1 - i] += (addr[na - 1 - i] - range[na - 1 - i]); memcpy(addr, result, pna * 4); return 0; } static unsigned int of_bus_pci_get_flags(u32 *addr) { unsigned int flags = 0; u32 w = addr[0]; switch((w >> 24) & 0x03) { case 0x01: flags |= IORESOURCE_IO; case 0x02: /* 32 bits */ case 0x03: /* 64 bits */ flags |= IORESOURCE_MEM; } if (w & 0x40000000) flags |= IORESOURCE_PREFETCH; return flags; } /* * SBUS bus specific translator */ static int of_bus_sbus_match(struct device_node *np) { return !strcmp(np->name, "sbus") || !strcmp(np->name, "sbi"); } static void of_bus_sbus_count_cells(struct device_node *child, int *addrc, int *sizec) { if (addrc) *addrc = 2; if (sizec) *sizec = 1; } /* * FHC/Central bus specific translator. * * This is just needed to hard-code the address and size cell * counts. 'fhc' and 'central' nodes lack the #address-cells and * #size-cells properties, and if you walk to the root on such * Enterprise boxes all you'll get is a #size-cells of 2 which is * not what we want to use. */ static int of_bus_fhc_match(struct device_node *np) { return !strcmp(np->name, "fhc") || !strcmp(np->name, "central"); } #define of_bus_fhc_count_cells of_bus_sbus_count_cells /* * Array of bus specific translators */ static struct of_bus of_busses[] = { /* PCI */ { .name = "pci", .addr_prop_name = "assigned-addresses", .match = of_bus_pci_match, .count_cells = of_bus_pci_count_cells, .map = of_bus_pci_map, .get_flags = of_bus_pci_get_flags, }, /* SBUS */ { .name = "sbus", .addr_prop_name = "reg", .match = of_bus_sbus_match, .count_cells = of_bus_sbus_count_cells, .map = of_bus_default_map, .get_flags = of_bus_default_get_flags, }, /* FHC */ { .name = "fhc", .addr_prop_name = "reg", .match = of_bus_fhc_match, .count_cells = of_bus_fhc_count_cells, .map = of_bus_default_map, .get_flags = of_bus_default_get_flags, }, /* Default */ { .name = "default", .addr_prop_name = "reg", .match = NULL, .count_cells = of_bus_default_count_cells, .map = of_bus_default_map, .get_flags = of_bus_default_get_flags, }, }; static struct of_bus *of_match_bus(struct device_node *np) { int i; for (i = 0; i < ARRAY_SIZE(of_busses); i ++) if (!of_busses[i].match || of_busses[i].match(np)) return &of_busses[i]; BUG(); return NULL; } static int __init build_one_resource(struct device_node *parent, struct of_bus *bus, struct of_bus *pbus, u32 *addr, int na, int ns, int pna) { u32 *ranges; unsigned int rlen; int rone; ranges = of_get_property(parent, "ranges", &rlen); if (ranges == NULL || rlen == 0) { u32 result[OF_MAX_ADDR_CELLS]; int i; memset(result, 0, pna * 4); for (i = 0; i < na; i++) result[pna - 1 - i] = addr[na - 1 - i]; memcpy(addr, result, pna * 4); return 0; } /* Now walk through the ranges */ rlen /= 4; rone = na + pna + ns; for (; rlen >= rone; rlen -= rone, ranges += rone) { if (!bus->map(addr, ranges, na, ns, pna)) return 0; } return 1; } static int __init use_1to1_mapping(struct device_node *pp) { char *model; /* If this is on the PMU bus, don't try to translate it even * if a ranges property exists. */ if (!strcmp(pp->name, "pmu")) return 1; /* If we have a ranges property in the parent, use it. */ if (of_find_property(pp, "ranges", NULL) != NULL) return 0; /* If the parent is the dma node of an ISA bus, pass * the translation up to the root. */ if (!strcmp(pp->name, "dma")) return 0; /* Similarly for Simba PCI bridges. */ model = of_get_property(pp, "model", NULL); if (model && !strcmp(model, "SUNW,simba")) return 0; return 1; } static int of_resource_verbose; static void __init build_device_resources(struct of_device *op, struct device *parent) { struct of_device *p_op; struct of_bus *bus; int na, ns; int index, num_reg; void *preg; if (!parent) return; p_op = to_of_device(parent); bus = of_match_bus(p_op->node); bus->count_cells(op->node, &na, &ns); preg = of_get_property(op->node, bus->addr_prop_name, &num_reg); if (!preg || num_reg == 0) return; /* Convert to num-cells. */ num_reg /= 4; /* Convert to num-entries. */ num_reg /= na + ns; /* Prevent overruning the op->resources[] array. */ if (num_reg > PROMREG_MAX) { printk(KERN_WARNING "%s: Too many regs (%d), " "limiting to %d.\n", op->node->full_name, num_reg, PROMREG_MAX); num_reg = PROMREG_MAX; } for (index = 0; index < num_reg; index++) { struct resource *r = &op->resource[index]; u32 addr[OF_MAX_ADDR_CELLS]; u32 *reg = (preg + (index * ((na + ns) * 4))); struct device_node *dp = op->node; struct device_node *pp = p_op->node; struct of_bus *pbus, *dbus; u64 size, result = OF_BAD_ADDR; unsigned long flags; int dna, dns; int pna, pns; size = of_read_addr(reg + na, ns); flags = bus->get_flags(reg); memcpy(addr, reg, na * 4); if (use_1to1_mapping(pp)) { result = of_read_addr(addr, na); goto build_res; } dna = na; dns = ns; dbus = bus; while (1) { dp = pp; pp = dp->parent; if (!pp) { result = of_read_addr(addr, dna); break; } pbus = of_match_bus(pp); pbus->count_cells(dp, &pna, &pns); if (build_one_resource(dp, dbus, pbus, addr, dna, dns, pna)) break; dna = pna; dns = pns; dbus = pbus; } build_res: memset(r, 0, sizeof(*r)); if (of_resource_verbose) printk("%s reg[%d] -> %lx\n", op->node->full_name, index, result); if (result != OF_BAD_ADDR) { if (tlb_type == hypervisor) result &= 0x0fffffffffffffffUL; r->start = result; r->end = result + size - 1; r->flags = flags; } r->name = op->node->name; } } static struct device_node * __init apply_interrupt_map(struct device_node *dp, struct device_node *pp, u32 *imap, int imlen, u32 *imask, unsigned int *irq_p) { struct device_node *cp; unsigned int irq = *irq_p; struct of_bus *bus; phandle handle; u32 *reg; int na, num_reg, i; bus = of_match_bus(pp); bus->count_cells(dp, &na, NULL); reg = of_get_property(dp, "reg", &num_reg); if (!reg || !num_reg) return NULL; imlen /= ((na + 3) * 4); handle = 0; for (i = 0; i < imlen; i++) { int j; for (j = 0; j < na; j++) { if ((reg[j] & imask[j]) != imap[j]) goto next; } if (imap[na] == irq) { handle = imap[na + 1]; irq = imap[na + 2]; break; } next: imap += (na + 3); } if (i == imlen) { /* Psycho and Sabre PCI controllers can have 'interrupt-map' * properties that do not include the on-board device * interrupts. Instead, the device's 'interrupts' property * is already a fully specified INO value. * * Handle this by deciding that, if we didn't get a * match in the parent's 'interrupt-map', and the * parent is an IRQ translater, then use the parent as * our IRQ controller. */ if (pp->irq_trans) return pp; return NULL; } *irq_p = irq; cp = of_find_node_by_phandle(handle); return cp; } static unsigned int __init pci_irq_swizzle(struct device_node *dp, struct device_node *pp, unsigned int irq) { struct linux_prom_pci_registers *regs; unsigned int bus, devfn, slot, ret; if (irq < 1 || irq > 4) return irq; regs = of_get_property(dp, "reg", NULL); if (!regs) return irq; bus = (regs->phys_hi >> 16) & 0xff; devfn = (regs->phys_hi >> 8) & 0xff; slot = (devfn >> 3) & 0x1f; if (pp->irq_trans) { /* Derived from Table 8-3, U2P User's Manual. This branch * is handling a PCI controller that lacks a proper set of * interrupt-map and interrupt-map-mask properties. The * Ultra-E450 is one example. * * The bit layout is BSSLL, where: * B: 0 on bus A, 1 on bus B * D: 2-bit slot number, derived from PCI device number as * (dev - 1) for bus A, or (dev - 2) for bus B * L: 2-bit line number * * Actually, more "portable" way to calculate the funky * slot number is to subtract pbm->pci_first_slot from the * device number, and that's exactly what the pre-OF * sparc64 code did, but we're building this stuff generically * using the OBP tree, not in the PCI controller layer. */ if (bus & 0x80) { /* PBM-A */ bus = 0x00; slot = (slot - 1) << 2; } else { /* PBM-B */ bus = 0x10; slot = (slot - 2) << 2; } irq -= 1; ret = (bus | slot | irq); } else { /* Going through a PCI-PCI bridge that lacks a set of * interrupt-map and interrupt-map-mask properties. */ ret = ((irq - 1 + (slot & 3)) & 3) + 1; } return ret; } static int of_irq_verbose; static unsigned int __init build_one_device_irq(struct of_device *op, struct device *parent, unsigned int irq) { struct device_node *dp = op->node; struct device_node *pp, *ip; unsigned int orig_irq = irq; if (irq == 0xffffffff) return irq; if (dp->irq_trans) { irq = dp->irq_trans->irq_build(dp, irq, dp->irq_trans->data); if (of_irq_verbose) printk("%s: direct translate %x --> %x\n", dp->full_name, orig_irq, irq); return irq; } /* Something more complicated. Walk up to the root, applying * interrupt-map or bus specific translations, until we hit * an IRQ translator. * * If we hit a bus type or situation we cannot handle, we * stop and assume that the original IRQ number was in a * format which has special meaning to it's immediate parent. */ pp = dp->parent; ip = NULL; while (pp) { void *imap, *imsk; int imlen; imap = of_get_property(pp, "interrupt-map", &imlen); imsk = of_get_property(pp, "interrupt-map-mask", NULL); if (imap && imsk) { struct device_node *iret; int this_orig_irq = irq; iret = apply_interrupt_map(dp, pp, imap, imlen, imsk, &irq); if (of_irq_verbose) printk("%s: Apply [%s:%x] imap --> [%s:%x]\n", op->node->full_name, pp->full_name, this_orig_irq, (iret ? iret->full_name : "NULL"), irq); if (!iret) break; if (iret->irq_trans) { ip = iret; break; } } else { if (!strcmp(pp->type, "pci") || !strcmp(pp->type, "pciex")) { unsigned int this_orig_irq = irq; irq = pci_irq_swizzle(dp, pp, irq); if (of_irq_verbose) printk("%s: PCI swizzle [%s] " "%x --> %x\n", op->node->full_name, pp->full_name, this_orig_irq, irq); } if (pp->irq_trans) { ip = pp; break; } } dp = pp; pp = pp->parent; } if (!ip) return orig_irq; irq = ip->irq_trans->irq_build(op->node, irq, ip->irq_trans->data); if (of_irq_verbose) printk("%s: Apply IRQ trans [%s] %x --> %x\n", op->node->full_name, ip->full_name, orig_irq, irq); return irq; } static struct of_device * __init scan_one_device(struct device_node *dp, struct device *parent) { struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL); unsigned int *irq; int len, i; if (!op) return NULL; op->node = dp; op->clock_freq = of_getintprop_default(dp, "clock-frequency", (25*1000*1000)); op->portid = of_getintprop_default(dp, "upa-portid", -1); if (op->portid == -1) op->portid = of_getintprop_default(dp, "portid", -1); irq = of_get_property(dp, "interrupts", &len); if (irq) { memcpy(op->irqs, irq, len); op->num_irqs = len / 4; } else { op->num_irqs = 0; } /* Prevent overruning the op->irqs[] array. */ if (op->num_irqs > PROMINTR_MAX) { printk(KERN_WARNING "%s: Too many irqs (%d), " "limiting to %d.\n", dp->full_name, op->num_irqs, PROMINTR_MAX); op->num_irqs = PROMINTR_MAX; } build_device_resources(op, parent); for (i = 0; i < op->num_irqs; i++) op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]); op->dev.parent = parent; op->dev.bus = &of_bus_type; if (!parent) strcpy(op->dev.bus_id, "root"); else sprintf(op->dev.bus_id, "%08x", dp->node); if (of_device_register(op)) { printk("%s: Could not register of device.\n", dp->full_name); kfree(op); op = NULL; } return op; } static void __init scan_tree(struct device_node *dp, struct device *parent) { while (dp) { struct of_device *op = scan_one_device(dp, parent); if (op) scan_tree(dp->child, &op->dev); dp = dp->sibling; } } static void __init scan_of_devices(void) { struct device_node *root = of_find_node_by_path("/"); struct of_device *parent; parent = scan_one_device(root, NULL); if (!parent) return; scan_tree(root->child, &parent->dev); } static int __init of_bus_driver_init(void) { int err; err = bus_register(&of_bus_type); #ifdef CONFIG_PCI if (!err) err = bus_register(&isa_bus_type); if (!err) err = bus_register(&ebus_bus_type); #endif #ifdef CONFIG_SBUS if (!err) err = bus_register(&sbus_bus_type); #endif if (!err) scan_of_devices(); return err; } postcore_initcall(of_bus_driver_init); static int __init of_debug(char *str) { int val = 0; get_option(&str, &val); if (val & 1) of_resource_verbose = 1; if (val & 2) of_irq_verbose = 1; return 1; } __setup("of_debug=", of_debug); int of_register_driver(struct of_platform_driver *drv, struct bus_type *bus) { /* initialize common driver fields */ drv->driver.name = drv->name; drv->driver.bus = bus; /* register with core */ return driver_register(&drv->driver); } void of_unregister_driver(struct of_platform_driver *drv) { driver_unregister(&drv->driver); } static ssize_t dev_show_devspec(struct device *dev, struct device_attribute *attr, char *buf) { struct of_device *ofdev; ofdev = to_of_device(dev); return sprintf(buf, "%s", ofdev->node->full_name); } static DEVICE_ATTR(devspec, S_IRUGO, dev_show_devspec, NULL); /** * of_release_dev - free an of device structure when all users of it are finished. * @dev: device that's been disconnected * * Will be called only by the device core when all users of this of device are * done. */ void of_release_dev(struct device *dev) { struct of_device *ofdev; ofdev = to_of_device(dev); kfree(ofdev); } int of_device_register(struct of_device *ofdev) { int rc; BUG_ON(ofdev->node == NULL); rc = device_register(&ofdev->dev); if (rc) return rc; rc = device_create_file(&ofdev->dev, &dev_attr_devspec); if (rc) device_unregister(&ofdev->dev); return rc; } void of_device_unregister(struct of_device *ofdev) { device_remove_file(&ofdev->dev, &dev_attr_devspec); device_unregister(&ofdev->dev); } struct of_device* of_platform_device_create(struct device_node *np, const char *bus_id, struct device *parent, struct bus_type *bus) { struct of_device *dev; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return NULL; dev->dev.parent = parent; dev->dev.bus = bus; dev->dev.release = of_release_dev; strlcpy(dev->dev.bus_id, bus_id, BUS_ID_SIZE); if (of_device_register(dev) != 0) { kfree(dev); return NULL; } return dev; } EXPORT_SYMBOL(of_match_device); EXPORT_SYMBOL(of_register_driver); EXPORT_SYMBOL(of_unregister_driver); EXPORT_SYMBOL(of_device_register); EXPORT_SYMBOL(of_device_unregister); EXPORT_SYMBOL(of_dev_get); EXPORT_SYMBOL(of_dev_put); EXPORT_SYMBOL(of_platform_device_create); EXPORT_SYMBOL(of_release_dev);